Skip to content

base

mindnlp.engine.trainer.base.Trainer

Trainer is a simple but feature-complete training and eval loop for MindSpore, optimized for 🤗 Transformers.

Source code in mindnlp/engine/trainer/base.py
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
class Trainer:
    """
    Trainer is a simple but feature-complete training and eval loop for MindSpore, optimized for 🤗 Transformers.
    """
    from ..utils import _get_learning_rate
    def __init__(
        self,
        model: Union[PreTrainedModel, nn.Module] = None,
        args: TrainingArguments = None,
        map_fn: Optional[Union[Callable, BaseMapFunction]] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
        model_init: Optional[Callable[[], PreTrainedModel]] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
        callbacks: Optional[List[TrainerCallback]] = None,
        optimizers: Tuple[optim.Optimizer, LearningRateSchedule] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[mindspore.Tensor, mindspore.Tensor], mindspore.Tensor]] = None,
    ):
        """
        Initializes the Trainer class.

        Args:
            self (Trainer): The Trainer object itself.
            model (Union[PreTrainedModel, nn.Module]): The pre-trained model or neural network cell to be trained.
            args (TrainingArguments): The training arguments including hyperparameters and output directory.
            map_fn (Optional[Union[Callable, BaseMapFunction]]): Optional map function for data preprocessing.
            train_dataset (Optional[Dataset]): The training dataset.
            eval_dataset (Optional[Union[Dataset, Dict[str, Dataset]]]): The evaluation dataset.
            tokenizer (Optional[PreTrainedTokenizerBase]): The pre-trained tokenizer for tokenizing inputs.
            model_init (Optional[Callable[[], PreTrainedModel]]): Optional model initialization function.
            compute_metrics (Optional[Callable[[EvalPrediction], Dict]]): Optional function to compute evaluation metrics.
            callbacks (Optional[List[TrainerCallback]]): Optional list of trainer callbacks.
            optimizers (Tuple[nn.Optimizer, LearningRateSchedule]): Tuple of optimizer and learning rate scheduler.
            preprocess_logits_for_metrics (Optional[Callable[[mindspore.Tensor, mindspore.Tensor], mindspore.Tensor]]): Optional function to preprocess logits for metrics.

        Returns:
            None: This method does not return any value.

        Raises:
            RuntimeError: If `model` or `model_init` is not provided.
            ValueError: If the provided model cannot be used for training, or if there is an issue with the map function.
            ValueError: If `train_dataset` does not implement __len__ and `max_steps` is not specified.
            RuntimeError: If there is a conflict between `model_init` and `optimizers` arguments.
        """
        if args is None:
            output_dir = "tmp_trainer"
            logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
            args = TrainingArguments(output_dir=output_dir)

        self.args = args
        # Seed must be set before instantiating the model when using model
        # mindspore do not support full determinisim on 2.2
        enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
        self.is_in_train = False

        # set the correct log level depending on the node
        log_level = args.get_process_log_level()
        logging.set_verbosity(log_level)
        if model is None:
            if model_init is not None:
                self.model_init = model_init
                model = self.call_model_init()
            else:
                raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
        else:
            if model_init is not None:
                raise RuntimeError(
                    "`Trainer` requires either a `model` or `model_init` argument, but not both. `model_init` will"
                    " overwrite your model when calling the `train` method"
                )
            self.model_init = model_init

        if model.__class__.__name__ in MODEL_MAPPING_NAMES:
            raise ValueError(
                f"The model you have picked ({model.__class__.__name__}) cannot be used as is for training: it only "
                "computes hidden states and does not accept any labels. You should choose a model with a head "
                "suitable for your task like any of the `AutoModelForXxx` listed at "
                "https://huggingface.co/docs/transformers/model_doc/auto"
            )

        # if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
        #     self.is_model_parallel = True
        # else:
        self.is_model_parallel = False

        # TODO: support quantized model

        self.data_map_fn = map_fn
        if map_fn is not None and not (hasattr(map_fn, 'input_columns') and hasattr(map_fn, 'output_columns')) and \
            not check_input_output_count(map_fn):
            raise ValueError('`map_fn` must have same number of inputs and outputs when it is callable function'
                             ' without attributes `input_columns` and `output_columns`')

        self.train_dataset = copy.deepcopy(train_dataset)
        self.eval_dataset = copy.deepcopy(eval_dataset)
        self.tokenizer = tokenizer

        # later use `self.model is self.model_wrapped` to check if it's wrapped or not
        self.model = model
        self.model.set_train()

        self.neftune_noise_alpha = args.neftune_noise_alpha

        self.compute_metrics = compute_metrics
        self.preprocess_logits_for_metrics = preprocess_logits_for_metrics
        self.optimizer, self.lr_scheduler = optimizers
        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
                "Passing a `model_init` is incompatible with providing the `optimizers` argument. "
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )

        default_callbacks = DEFAULT_CALLBACKS
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
        self.callback_handler = CallbackHandler(
            callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
        )
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)

        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

        if self.args.should_save:
            os.makedirs(self.args.output_dir, exist_ok=True)

        if args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        if train_dataset is not None and not has_length(train_dataset) and args.max_steps <= 0:
            raise ValueError(
                "The train_dataset does not implement __len__, max_steps has to be specified. "
                "The number of steps needs to be known in advance for the learning rate scheduler."
            )

        self._signature_columns = None

        # Mixed precision setup
        self.use_amp = False

        # Label smoothing
        if self.args.label_smoothing_factor != 0:
            self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
        else:
            self.label_smoother = None

        self.state = TrainerState(
            is_local_process_zero=self.is_local_process_zero(),
            is_world_process_zero=self.is_world_process_zero(),
        )

        self.control = TrainerControl()
        # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
        # returned to 0 every time flos need to be logged

        self.current_flos = 0
        self.hp_search_backend = None
        default_label_names = find_labels(self.model.__class__)
        self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
        self.can_return_loss = can_return_loss(self.model.__class__)
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
        # Internal variables to help with automatic batch size reduction
        self._train_batch_size = args.train_batch_size
        self._created_lr_scheduler = False

    def _activate_neftune(self, model):
        r"""
        Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper:
        https://arxiv.org/abs/2310.05914
        """
        # TODO: support neftune
        unwrapped_model = model

        if _is_peft_model(unwrapped_model):
            embeddings = unwrapped_model.base_model.model.get_input_embeddings()
        else:
            embeddings = unwrapped_model.get_input_embeddings()

        del unwrapped_model

        embeddings.neftune_noise_alpha = self.neftune_noise_alpha
        hook_handle = embeddings.register_forward_hook(neftune_post_forward_hook)
        self.neftune_hook_handle = hook_handle
        return model

    def _deactivate_neftune(self, model):
        """
        Deactivates the neftune method. Make sure to call `_activate_neftune` first.
        """
        # TODO: support neftune
        # if not hasattr(self, "neftune_hook_handle"):
        #     raise ValueError("Neftune is not activated make sure to call `trainer._activate_neftune()` first")

        unwrapped_model = model

        if _is_peft_model(unwrapped_model):
            embeddings = unwrapped_model.base_model.model.get_input_embeddings()
        else:
            embeddings = unwrapped_model.get_input_embeddings()

        self.neftune_hook_handle.remove()
        del embeddings.neftune_noise_alpha, unwrapped_model

    def add_callback(self, callback):
        """
        Add a callback to the current list of [`~transformers.TrainerCallback`].

        Args:
           callback (`type` or [`~transformers.TrainerCallback`]):
               A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the
               first case, will instantiate a member of that class.
        """
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback):
        """
        Remove a callback from the current list of [`~transformers.TrainerCallback`] and returns it.

        If the callback is not found, returns `None` (and no error is raised).

        Args:
           callback (`type` or [`~transformers.TrainerCallback`]):
               A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the
               first case, will pop the first member of that class found in the list of callbacks.

        Returns:
            [`~transformers.TrainerCallback`]: The callback removed, if found.
        """
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback):
        """
        Remove a callback from the current list of [`~transformers.TrainerCallback`].

        Args:
           callback (`type` or [`~transformers.TrainerCallback`]):
               A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the
               first case, will remove the first member of that class found in the list of callbacks.
        """
        self.callback_handler.remove_callback(callback)

    def _set_signature_columns_if_needed(self):
        r"""
        Method to set signature columns if they are not already set.

        Args:
            self (Trainer): The instance of the Trainer class.

        Returns:
            None: This method does not return any value.

        Raises:
            NotImplementedError: If the model does not have a 'forward' method.
        """
        if self._signature_columns is None:
            # Inspect model forward signature to keep only the arguments it accepts.
            model_to_inspect = self.model
            if _is_peft_model(self.model):
                if hasattr(self.model, "get_base_model"):
                    model_to_inspect = self.model.get_base_model()
                else:
                    # PeftMixedModel do not provide a `get_base_model` method
                    model_to_inspect = self.model.base_model.model
            signature = inspect.signature(model_to_inspect.forward)
            self._signature_columns = list(signature.parameters.keys())

            # Labels may be named label or label_ids, the default data collator handles that.
            self._signature_columns += list(set(["label", "label_ids"] + self.label_names))

    def _remove_unused_columns(self, dataset: "mindspore.dataset.Dataset", description: Optional[str] = None):
        r""" 
        Method _remove_unused_columns in the class Trainer removes unused columns from the input dataset if the corresponding argument is set to True.

        Args:
            self: The instance of the Trainer class.
            dataset (mindspore.dataset.Dataset): The input dataset from which the unused columns need to be removed.
            description (Optional[str]): An optional description of the dataset. Defaults to None.

        Returns:
            None: This method does not return any value.

        Raises:
            None
        """
        if not self.args.remove_unused_columns:
            return dataset
        self._set_signature_columns_if_needed()
        signature_columns = self._signature_columns

        ignored_columns = list(set(dataset.get_col_names()) - set(signature_columns))
        if len(ignored_columns) > 0:
            dset_description = "" if description is None else f"in the {description} set"
            logger.info(
                f"The following columns {dset_description} don't have a corresponding argument in "
                f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
                f" If {', '.join(ignored_columns)} are not expected by `{self.model.__class__.__name__}.forward`, "
                " you can safely ignore this message."
            )

        columns = [k for k in dataset.get_col_names() if k not in ignored_columns]

        return dataset.project(columns)

    def create_optimizer_and_scheduler(self, num_training_steps: int):
        """
        Setup the optimizer and the learning rate scheduler.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through `optimizers`, or subclass and override this method (or `create_optimizer` and/or
        `create_scheduler`) in a subclass.
        """
        self.create_optimizer()
        optimizer = self.optimizer
        self.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)

    def get_decay_parameter_names(self, model) -> List[str]:
        """
        Get all parameter names that weight decay will be applied to

        Note that some models implement their own layernorm instead of calling nn.LayerNorm, weight decay could still
        apply to those modules since this function only filter out instance of nn.LayerNorm
        """
        decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
        decay_parameters = [name for name in decay_parameters if "bias" not in name]
        return decay_parameters

    def create_optimizer(self):
        """
        Setup the optimizer.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through `optimizers`, or subclass and override this method in a subclass.
        """
        opt_model = self.model

        if self.optimizer is None:
            decay_parameters = self.get_decay_parameter_names(opt_model)
            optimizer_grouped_parameters = [
                {
                    "params": [
                        p for p in opt_model.trainable_params() if (p.name in decay_parameters and p.requires_grad)
                    ],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [
                        p for p in opt_model.trainable_params() if (p.name not in decay_parameters and p.requires_grad)
                    ],
                    "weight_decay": 0.0,
                },
            ]

            optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args, opt_model)

            # Overwrite `params` in case it's created by `get_optimizer_cls_and_kwargs`
            # e.g. for GaLore optimizer.
            if "params" in optimizer_kwargs:
                optimizer_grouped_parameters = optimizer_kwargs.pop("params")

            # For layer-wise dummy optimizers we overwrite optimizer_grouped_parameters with `optimizer_dict`
            # to avoid arguments conflicts.
            if "optimizer_dict" in optimizer_kwargs:
                optimizer_grouped_parameters = optimizer_kwargs.pop("optimizer_dict")

            self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

        return self.optimizer

    @staticmethod
    def get_optimizer_cls_and_kwargs(
        args: TrainingArguments, model: Optional[PreTrainedModel] = None
    ) -> Tuple[Any, Any]:
        """
        Returns the optimizer class and optimizer parameters based on the training arguments.

        Args:
            args (`transformers.training_args.TrainingArguments`):
                The training arguments for the training session.

        """
        # parse args.optim_args
        optim_args = {}
        if args.optim_args:
            for mapping in args.optim_args.replace(" ", "").split(","):
                key, value = mapping.split("=")
                optim_args[key] = value

        optimizer_kwargs = {"lr": args.learning_rate}

        adam_kwargs = {
            "betas": (args.adam_beta1, args.adam_beta2),
            "eps": args.adam_epsilon,
        }
        # TODO: support Adafactor
        # if args.optim == OptimizerNames.ADAFACTOR:
        #     optimizer_cls = Adafactor
        #     optimizer_kwargs.update({"scale_parameter": False, "relative_step": False})
        # TODO: support AdamW huggingface version
        # elif args.optim == OptimizerNames.ADAMW_HF:
        #     from .optimization import AdamW

        #     optimizer_cls = AdamW
        #     optimizer_kwargs.update(adam_kwargs)
        if args.optim == OptimizerNames.ADAMW:
            from mindnlp.core.optim import AdamW

            optimizer_cls = AdamW
            optimizer_kwargs.update(adam_kwargs)
        elif args.optim == OptimizerNames.SGD:
            optimizer_cls = mindspore.experimental.optim.SGD
        # TODO: support Adagrad and Rmsporp
        # elif args.optim == OptimizerNames.ADAGRAD:
        #     optimizer_cls = mindspore.nn.Adagrad
        # elif args.optim == OptimizerNames.RMSPROP:
        #     optimizer_cls = mindspore.nn.RMSprop
        else:
            raise ValueError(f"Trainer cannot instantiate unsupported optimizer: {args.optim}")
        return optimizer_cls, optimizer_kwargs

    def create_scheduler(self, num_training_steps: int, optimizer = None):
        """
        Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
        passed as an argument.

        Args:
            num_training_steps (int): The number of training steps to do.
        """
        if self.lr_scheduler is None:
            from ...modules.optimization import get_scheduler
            self.lr_scheduler = get_scheduler(
                self.args.lr_scheduler_type,
                optimizer=self.optimizer if optimizer is None else optimizer,
                num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
                num_training_steps=num_training_steps,
                scheduler_specific_kwargs=self.args.lr_scheduler_kwargs,
            )
            self._created_lr_scheduler = True
        return self.lr_scheduler

    def num_examples(self, dataset: 'mindspore.dataset.Dataset') -> int:
        """
        Helper to get number of samples in a [`~mindspore.dataset.GeneratorDataset`] by accessing its dataset. When
        dataloader.dataset does not exist or has no length, estimates as best it can
        """
        return dataset.get_dataset_size() * dataset.get_batch_size()

    def num_tokens(self, train_ds: 'mindspore.dataset.Dataset', max_steps: Optional[int] = None) -> int:
        """
        Helper to get number of tokens in a [`~mindspore.dataset.GeneratorDataset`] by enumerating dataloader.
        """
        train_tokens = 0
        try:
            for step, batch in train_ds.create_dict_iterator():
                tokens = batch["input_ids"].numel()
                if max_steps is not None:
                    return tokens * max_steps
                train_tokens += tokens
            return train_tokens
        except KeyError:
            logger.warning("Cannot get num_tokens from dataloader")
            return train_tokens

    def call_model_init(self):
        r"""
        Method to call the model initialization function and validate its output.

        Args:
            self (Trainer): Instance of the Trainer class.
                This parameter represents the current instance of the Trainer class.

        Returns:
            None: This method does not return any value.

        Raises:
            RuntimeError: If the model_init method does not have 0 or 1 arguments.
                This exception is raised when the number of arguments in the model_init method is not 0 or 1.
            RuntimeError: If the model_init method returns None.
                This exception is raised when the model_init method returns None.
        """
        model_init_argcount = number_of_arguments(self.model_init)
        if model_init_argcount == 0:
            model = self.model_init()
        else:
            raise RuntimeError("model_init should have 0 or 1 argument.")

        if model is None:
            raise RuntimeError("model_init should not return None.")

        return model

    @lru_cache(128)
    def get_train_dataset(self) -> Dataset:
        """
        Returns the training [`~mindspore.dataset.GeneratorDataset`].

        Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
        training if necessary) otherwise.

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")

        train_dataset = self.train_dataset
        map_fn = self.data_map_fn
        if isinstance(train_dataset, (BatchDataset, PaddedBatchDataset)):
            if self.data_map_fn is not None:
                logger.warning("The trainer has been passed a `map_fn` and found `BatchDataset` at same time, "
                               "the `map_fn` will be ignored.")
            return train_dataset

        if map_fn is not None:
            if mismatch_dataset_col_names(get_function_args(map_fn), train_dataset.get_col_names()):
                raise ValueError(f'The arguments of `map_fn` must be subset of useful dataset columns, '
                                f'but found {args_only_in_map_fn(get_function_args(map_fn), train_dataset.get_col_names())}')
            train_dataset = train_dataset.map(map_fn, map_fn.input_columns, map_fn.output_columns)

        train_dataset = self._remove_unused_columns(train_dataset, description="training")

        train_dataset = train_dataset.batch(self._train_batch_size, self.args.dataset_drop_last, self.args.dataset_num_workers)
        return train_dataset

    @lru_cache(128)
    def get_test_dataset(self, test_dataset: Dataset) -> Dataset:
        """
        Returns the test [`~mindspore.dataset.GeneratorDataset`].

        Subclass and override this method if you want to inject some custom behavior.

        Args:
            test_dataset (`mindspore.dataset`, *optional*):
                The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the
                `model.forward()` method are automatically removed. It must implement `__len__`.
        """
        # data_collator = self.data_collator
        if isinstance(test_dataset, (BatchDataset, PaddedBatchDataset)):
            return test_dataset
        test_dataset = self._remove_unused_columns(test_dataset, description="test")
        test_dataset = test_dataset.batch(self.args.eval_batch_size, self.args.dataset_drop_last, self.args.dataset_num_workers)

        # We use the same batch_size as for eval.
        return test_dataset

    @lru_cache(128)
    def get_eval_dataset(self, eval_dataset: Dataset = None) -> Dataset:
        """
        Returns the test [`~mindspore.dataset.GeneratorDataset`].

        Subclass and override this method if you want to inject some custom behavior.

        Args:
            test_dataset (`mindspore.dataset`, *optional*):
                The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the
                `model.forward()` method are automatically removed. It must implement `__len__`.
        """
        # data_collator = self.data_collator
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")

        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset

        if isinstance(eval_dataset, (BatchDataset, PaddedBatchDataset)):
            return eval_dataset

        eval_dataset = self._remove_unused_columns(eval_dataset, description="test")
        eval_dataset = eval_dataset.batch(self.args.eval_batch_size, self.args.dataset_drop_last, self.args.dataset_num_workers)

        # We use the same batch_size as for eval.
        return eval_dataset

    def train(
        self,
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
        ignore_keys_for_eval: Optional[List[str]] = None,
        **kwargs,
    ):
        """
        Main training entry point.

        Args:
            resume_from_checkpoint (`str` or `bool`, *optional*):
                If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a
                `bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance
                of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here.
            ignore_keys_for_eval (`List[str]`, *optional*)
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions for evaluation during the training.
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments used to hide deprecated arguments
        """
        if resume_from_checkpoint is False:
            resume_from_checkpoint = None

        args = self.args

        self.is_in_train = True

        # Attach NEFTune hooks if necessary
        if self.neftune_noise_alpha is not None:
            self.model = self._activate_neftune(self.model)

        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
        # This might change the seed so needs to run first.
        self._train_batch_size = self.args.train_batch_size
        # Model re-init
        model_reloaded = False
        if self.model_init is not None:
            # Seed must be set before instantiating the model when using model_init.
            enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
            self.model = self.call_model_init()
            model_reloaded = True
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None

        self.model_reload = model_reloaded

        # Load potential model checkpoint
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
            if resume_from_checkpoint is None:
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")

        if resume_from_checkpoint is not None:
            self._load_from_checkpoint(resume_from_checkpoint)
            # In case of repeating the find_executable_batch_size, set `self._train_batch_size` properly
            state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
            if state.train_batch_size is not None:
                self._train_batch_size = state.train_batch_size

        if model_reloaded:
            self.model_wrapped = self.model

        inner_training_loop = find_executable_batch_size(
            self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
        )

        return inner_training_loop(
            args=args,
            resume_from_checkpoint=resume_from_checkpoint,
            ignore_keys_for_eval=ignore_keys_for_eval,
        )

    def _load_best_model(self):
        r"""Load the best model checkpoint.

        This method loads the best model checkpoint based on the provided state. The best model checkpoint is determined by the highest score achieved during training.

        Args:
            self: An instance of the Trainer class.

        Returns:
            None. The method only loads the best model checkpoint.

        Raises:
            None.

        Note:
            This method assumes that the best model checkpoint is saved in the specified checkpoint directory. If the best model checkpoint is not found, a warning message will be logged.

            If the model is a PEFT model, the method checks if the active adapter is available and loads the adapter model if it exists. Otherwise, a warning message is logged.

            If `save_safetensors` flag is enabled and the best safe model checkpoint is available, the method loads the safe model state dictionary. Otherwise, it loads the model state dictionary using
MindSpore's `load_checkpoint` function.

            If the best model checkpoint is not found, but the weights index file exists, the method attempts to load the sharded checkpoint using the `load_sharded_checkpoint` function.

            If the best model checkpoint is not found and `save_on_each_node` is not activated during distributed training, a warning message is logged.
        """
        logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
        best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
        best_safe_model_path = os.path.join(self.state.best_model_checkpoint, SAFE_WEIGHTS_NAME)
        best_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_WEIGHTS_NAME)
        best_safe_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME)

        model = self.model

        if (
            os.path.exists(best_model_path)
            or os.path.exists(best_safe_model_path)
            or os.path.exists(best_adapter_model_path)
            or os.path.exists(best_safe_adapter_model_path)
        ):
            has_been_loaded = True

            if _is_peft_model(model):
                # If train a model using PEFT & LoRA, assume that adapter have been saved properly.
                if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
                    if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path):
                        model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
                        # Load_adapter has no return value present, modify it when appropriate.
                        load_result = [], []
                    else:
                        logger.warning(
                            "The intermediate checkpoints of PEFT may not be saved correctly, "
                            f"consider using a custom callback to save {ADAPTER_WEIGHTS_NAME} in corresponding saving folders. "
                            "Check some examples here: https://github.com/huggingface/peft/issues/96"
                        )
                        has_been_loaded = False
                else:
                    logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
                    has_been_loaded = False
            else:
                # We load the model state dict on the CPU to avoid an OOM error.
                if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
                    state_dict = safe_load_file(best_safe_model_path)
                else:
                    state_dict = mindspore.load_checkpoint(
                        best_model_path,
                    )

                # If the model is on the GPU, it still works!
                # which takes *args instead of **kwargs
                load_result = model.load_state_dict(state_dict, False)
            if has_been_loaded:
                self._issue_warnings_after_load(load_result)
        elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):
            load_result = load_sharded_checkpoint(
                model, self.state.best_model_checkpoint, strict=False
            )
            self._issue_warnings_after_load(load_result)
        else:
            logger.warning(
                f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
                "on multiple nodes, you should activate `--save_on_each_node`."
            )

    def _get_output_dir(self):
        r"""
        This method retrieves the output directory from the Trainer object.

        Args:
            self: Trainer object instance.

        Returns:
            None. Returns the output directory path specified in the Trainer object.

        Raises:
            This method does not raise any exceptions.
        """
        run_dir = self.args.output_dir
        return run_dir

    def _inner_training_loop(
        self, batch_size=None, args=None, resume_from_checkpoint=None, ignore_keys_for_eval=None
    ):
        r"""
        Method _inner_training_loop in the class Trainer.

        Args:
            self (Trainer): The Trainer object.
            batch_size (int): The batch size for training.
            args (dict): Additional arguments for training configuration.
            resume_from_checkpoint (str): Path to a checkpoint to resume training from.
            ignore_keys_for_eval (list): List of keys to ignore during evaluation.

        Returns:
            None: This method does not return any value.

        Raises:
            ValueError: If args.max_steps must be set to a positive value if dataloader does not have a length.
            Warning: If there are no samples in the epoch_iterator during training.
            Exception: Any unexpected exceptions raised during the training process.
        """
        self._train_batch_size = batch_size
        if self.args.auto_find_batch_size:
            self.state.train_batch_size = self._train_batch_size
        logger.debug(f"Currently training with a batch size of: {self._train_batch_size}")
        # Dataset and number of training steps
        train_dataset = self.get_train_dataset()

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
        total_train_batch_size = self._train_batch_size * args.gradient_accumulation_steps * args.world_size

        len_dataset = None
        num_train_tokens = None

        if has_length(train_dataset):
            len_dataset = len(train_dataset)
            num_update_steps_per_epoch = len_dataset // args.gradient_accumulation_steps
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
            num_examples = self.num_examples(train_dataset)
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
                )
                # May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
                if args.include_tokens_per_second:
                    num_train_tokens = (
                        self.num_tokens(train_dataset, args.max_steps) * args.gradient_accumulation_steps
                    )
            else:
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
                num_train_samples = self.num_examples(train_dataset) * args.num_train_epochs
                if args.include_tokens_per_second:
                    num_train_tokens = self.num_tokens(train_dataset) * args.num_train_epochs
        elif args.max_steps > 0:  # Rely on max_steps when dataloader does not have a working size
            max_steps = args.max_steps
            # Setting a very large number of epochs so we go as many times as necessary over the iterator.
            num_train_epochs = sys.maxsize
            num_update_steps_per_epoch = max_steps
            num_examples = total_train_batch_size * args.max_steps
            num_train_samples = args.max_steps * total_train_batch_size
            if args.include_tokens_per_second:
                num_train_tokens = self.num_tokens(train_dataset, args.max_steps) * args.gradient_accumulation_steps
        else:
            raise ValueError(
                "args.max_steps must be set to a positive value if dataloader does not have a length, was"
                f" {args.max_steps}"
            )

        delay_optimizer_creation = False # do not delay now

        # We need to reset the scheduler, as its parameters may be different on subsequent calls
        if self._created_lr_scheduler:
            self.lr_scheduler = None
            self._created_lr_scheduler = False

        if not delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

        self.state = TrainerState()
        self.state.train_batch_size = self._train_batch_size

        # Compute absolute values for logging, eval, and save if given as ratio
        if args.logging_steps is not None:
            if args.logging_steps < 1:
                self.state.logging_steps = math.ceil(max_steps * args.logging_steps)
            else:
                self.state.logging_steps = args.logging_steps
        if args.eval_steps is not None:
            if args.eval_steps < 1:
                self.state.eval_steps = math.ceil(max_steps * args.eval_steps)
            else:
                self.state.eval_steps = args.eval_steps
        if args.save_steps is not None:
            if args.save_steps < 1:
                self.state.save_steps = math.ceil(max_steps * args.save_steps)
            else:
                self.state.save_steps = args.save_steps

        # Activate gradient checkpointing if needed
        if args.recompute:
            if args.recompute_kwargs is None:
                recompute_kwargs = {}
            else:
                recompute_kwargs = args.recompute_kwargs

            self.model.recompute_enable(recompute_kwargs=recompute_kwargs)

        model = self.model

        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

        # # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

        # important: at this point:
        # self.model         is the Transformers Model

        # Train!
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {num_examples:,}")
        logger.info(f"  Num Epochs = {num_train_epochs:,}")
        logger.info(f"  Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}")
        if self.args.per_device_train_batch_size != self._train_batch_size:
            logger.info(f"  Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}")
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
        logger.info(f"  Total optimization steps = {max_steps:,}")
        logger.info(f"  Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}")

        self.state.epoch = 0
        start_time = time.time()
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        steps_trained_progress_bar = None

        # Check if continuing training from a checkpoint
        if resume_from_checkpoint is not None and os.path.isfile(
            os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
        ):
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
            if not args.ignore_data_skip:
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
            else:
                steps_trained_in_current_epoch = 0

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
            if not args.ignore_data_skip:
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first"
                    f" {steps_trained_in_current_epoch} batches in the first epoch."
                )

        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataset = train_dataset
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()

        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
        tr_loss = mindspore.tensor(0.0)
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
        self._globalstep_last_logged = self.state.global_step
        grad_norm: Optional[float] = None

        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)

        total_batched_samples = 0
        for epoch in range(epochs_trained, num_train_epochs):
            epoch_iterator = train_dataset
            if hasattr(epoch_iterator, "set_epoch"):
                epoch_iterator.set_epoch(epoch)

            # Reset the past mems state at the beginning of each epoch if necessary.
            if args.past_index >= 0:
                self._past = None

            steps_in_epoch = (
                len(epoch_iterator)
                if len_dataset is not None
                else args.max_steps * args.gradient_accumulation_steps
            )
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)

            if epoch == epochs_trained and resume_from_checkpoint is not None and steps_trained_in_current_epoch == 0:
                # self._load_rng_state(resume_from_checkpoint)
                pass

            rng_to_sync = False
            steps_skipped = 0
            if steps_trained_in_current_epoch > 0:
                # epoch_iterator = skip_first_batches(epoch_iterator, steps_trained_in_current_epoch)
                steps_skipped = steps_trained_in_current_epoch
                steps_trained_in_current_epoch = 0
                rng_to_sync = True

            step = -1
            for step, inputs in enumerate(epoch_iterator.create_dict_iterator()):
                total_batched_samples += 1

                if self.args.include_num_input_tokens_seen:
                    main_input_name = getattr(self.model, "main_input_name", "input_ids")
                    if main_input_name not in inputs:
                        logger.warning(
                            "Tried to track the number of tokens seen, however the current model is "
                            "not configured properly to know what item is the input. To fix this, add "
                            "a `main_input_name` attribute to the model class you are using."
                        )
                    else:
                        self.state.num_input_tokens_seen += self.accelerator.gather(inputs[main_input_name]).numel()
                if rng_to_sync:
                    # self._load_rng_state(resume_from_checkpoint)
                    rng_to_sync = False

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
                    continue
                if steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None

                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)

                tr_loss_step, grads = self.training_step(model, inputs)
                if (
                    args.logging_nan_inf_filter
                    and (ops.isnan(tr_loss_step) or ops.isinf(tr_loss_step))
                ):
                    # if loss is nan or inf simply add the average of previous logged losses
                    tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
                else:
                    tr_loss += tr_loss_step

                self.current_flos += float(self.floating_point_ops(inputs))

                is_last_step_and_steps_less_than_grad_acc = (
                    steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch
                )
                if (
                    total_batched_samples % args.gradient_accumulation_steps == 0
                    or
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    is_last_step_and_steps_less_than_grad_acc
                ):
                    # Gradient clipping
                    if args.max_grad_norm is not None and args.max_grad_norm > 0:
                        # deepspeed does its own clipping
                        grads = ops.clip_by_global_norm(grads, args.max_grad_norm)

                    # Optimizer step
                    self.optimizer(grads)

                    self.state.global_step += 1
                    self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)
                    self._maybe_log_save_evaluate(tr_loss, grad_norm, model, epoch, ignore_keys_for_eval)
                else:
                    self.control = self.callback_handler.on_substep_end(args, self.state, self.control)

                if self.control.should_epoch_stop or self.control.should_training_stop:
                    break
            if step < 0:
                logger.warning(
                    "There seems to be not a single sample in your epoch_iterator, stopping training at step"
                    f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
                    f" num_steps ({max_steps}) higher than the number of available samples."
                )
                self.control.should_training_stop = True

            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
            self._maybe_log_save_evaluate(tr_loss, grad_norm, model, epoch, ignore_keys_for_eval)

            if self.control.should_training_stop:
                break

        if args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
            # Wait for everyone to get here so we are sure the model has been saved by process 0.
            self._load_best_model()

        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        train_loss = self._total_loss_scalar / self.state.global_step

        metrics = speed_metrics(
            "train",
            start_time,
            num_samples=num_train_samples,
            num_steps=self.state.max_steps,
            num_tokens=num_train_tokens,
        )
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
        metrics["train_loss"] = train_loss

        self.is_in_train = False

        self.log(metrics)

        checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=self.args.output_dir)

        # Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
        if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1:
            for checkpoint in checkpoints_sorted:
                if not os.path.samefile(checkpoint, self.state.best_model_checkpoint):
                    logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
                    shutil.rmtree(checkpoint)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        # After training we make sure to retrieve back the original forward pass method
        # for the embedding layer by removing the forward post hook.
        if self.neftune_noise_alpha is not None:
            self._deactivate_neftune(self.model)

        return TrainOutput(self.state.global_step, train_loss, metrics)

    def _load_from_checkpoint(self, resume_from_checkpoint, model=None):
        r"""
        Loads the model from a checkpoint directory.

        Args:
            self (Trainer): The Trainer instance.
            resume_from_checkpoint (str): The path to the checkpoint directory.
            model (Optional[object]): The model to load. If not provided, the model specified in the Trainer instance will be used.

        Returns:
            None

        Raises:
            ValueError: If a valid checkpoint cannot be found at the given directory.

        '''

        The method `_load_from_checkpoint` is responsible for loading the model from a checkpoint directory. It takes three parameters: `self`, `resume_from_checkpoint`, and an optional parameter `model`. The
method does not return any value (`None`).

        - `self` (Trainer): The `Trainer` instance on which the method is called.
        - `resume_from_checkpoint` (str): The path to the checkpoint directory from which the model will be loaded.
        - `model` (Optional[object]): An optional parameter that specifies the model to be loaded. If not provided, the model specified in the `Trainer` instance will be used.

        The method first checks if a valid checkpoint can be found at the given `resume_from_checkpoint` directory. If no valid checkpoint is found, a `ValueError` is raised.

        If a valid checkpoint is found, the method proceeds to load the model. It first checks if a configuration file (`CONFIG_NAME`) is present in the checkpoint directory. If a configuration file is found,
it loads the configuration using the `PretrainedConfig.from_json_file` method.

        Next, the method checks if either the weights file (`weights_file`) or the safe weights file (`safe_weights_file`) is present in the checkpoint directory. If either of these files is found, the method
checks if the `save_safetensors` flag is enabled. If the flag is enabled and the safe weights file is present, it loads the model's state dictionary using the `safe_load_file` method. Otherwise, it uses the
`mindspore.load_checkpoint` method to load the model's state dictionary. The method then loads the state dictionary into the model using the `model.load_state_dict` method, with the `False` argument indicating
that strict loading should be disabled. After loading the state dictionary, any temporary variables are deleted and any warnings are issued using the `_issue_warnings_after_load` method.

        If neither the weights file nor the safe weights file is found, the method calls the `load_sharded_checkpoint` method to load the model from the checkpoint directory, with the `prefer_safe` parameter
indicating whether to prefer safe tensors.

        Note: The method assumes that the necessary imports and variables are already defined.
        """
        if model is None:
            model = self.model

        config_file = os.path.join(resume_from_checkpoint, CONFIG_NAME)
        adapter_weights_file = os.path.join(resume_from_checkpoint, ADAPTER_WEIGHTS_NAME)
        adapter_safe_weights_file = os.path.join(resume_from_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME)
        weights_file = os.path.join(resume_from_checkpoint, WEIGHTS_NAME)
        weights_index_file = os.path.join(resume_from_checkpoint, WEIGHTS_INDEX_NAME)
        safe_weights_file = os.path.join(resume_from_checkpoint, SAFE_WEIGHTS_NAME)
        safe_weights_index_file = os.path.join(resume_from_checkpoint, SAFE_WEIGHTS_INDEX_NAME)

        if not (
            any(
                os.path.isfile(f)
                for f in [
                    weights_file,
                    safe_weights_file,
                    weights_index_file,
                    safe_weights_index_file,
                    adapter_weights_file,
                    adapter_safe_weights_file,
                ]
            )
        ):
            raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")

        logger.info(f"Loading model from {resume_from_checkpoint}.")

        if os.path.isfile(config_file):
            config = PretrainedConfig.from_json_file(config_file)

        if os.path.isfile(weights_file) or os.path.isfile(safe_weights_file):
            # If the model is on the GPU, it still works!
            # We load the model state dict on the CPU to avoid an OOM error.
            if self.args.save_safetensors and os.path.isfile(safe_weights_file):
                state_dict = safe_load_file(safe_weights_file)
            else:
                state_dict = mindspore.load_checkpoint(
                    weights_file,
                )

            # workaround for FSDP bug
            # which takes *args instead of **kwargs
            load_result = model.load_state_dict(state_dict, False)
            # release memory
            del state_dict
            self._issue_warnings_after_load(load_result)

        # Load adapters following PR # 24096
        # elif _is_peft_model(model):
        #     # If train a model using PEFT & LoRA, assume that adapter have been saved properly.
        #     if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
        #         if os.path.exists(resume_from_checkpoint):
        #             model.load_adapter(resume_from_checkpoint, model.active_adapter, is_trainable=True)
        #         else:
        #             logger.warning(
        #                 "The intermediate checkpoints of PEFT may not be saved correctly, "
        #                 f"consider using a custom callback to save {ADAPTER_WEIGHTS_NAME} in corresponding saving folders. "
        #                 "Check some examples here: https://github.com/huggingface/peft/issues/96"
        #             )
        #     else:
        #         logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
        else:
            # We load the sharded checkpoint
            load_result = load_sharded_checkpoint(
                model, resume_from_checkpoint, prefer_safe=self.args.save_safetensors
            )
            self._issue_warnings_after_load(load_result)

    def _load_optimizer_and_scheduler(self, checkpoint):
        """If optimizer and scheduler states exist, load them."""
        if checkpoint is None:
            return

        checkpoint_file_exists = (
            os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME))
        )
        if checkpoint_file_exists and os.path.isfile(os.path.join(checkpoint, SCHEDULER_NAME)):
            # Load in optimizer and scheduler states
            mindspore.load_param_into_net(self.optimizer, mindspore.load_checkpoint(os.path.join(checkpoint, OPTIMIZER_NAME)))
            # with warnings.catch_warnings(record=True) as caught_warnings:
            with open(os.path.join(checkpoint, SCHEDULER_NAME), 'r') as fp:
                self.lr_scheduler.load_state_dict(json.load(fp))

            # reissue_pt_warnings(caught_warnings)

    def _prepare_inputs(self, inputs: Dict[str, Union[mindspore.Tensor, Any]]) -> Dict[str, Union[mindspore.Tensor, Any]]:
        """
        Prepare `inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
        if len(inputs) == 0:
            raise ValueError(
                "The batch received was empty, your model won't be able to train on it. Double-check that your "
                f"training dataset contains keys expected by the model: {','.join(self._signature_columns)}."
            )
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past

        return inputs

    def training_step(self, model: nn.Module, inputs: Dict[str, Union[mindspore.Tensor, Any]]) -> Tuple[List[mindspore.Tensor], mindspore.Tensor]:
        """
        Perform a training step on a batch of inputs.

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.Module`):
                The model to train.
            inputs (`Dict[str, Union[mindspore.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.

        Return:
            `mindspore.Tensor`: The tensor with training loss on this batch.
        """
        model.set_train()
        inputs = self._prepare_inputs(inputs)

        def forward(inputs):
            return self.compute_loss(model, inputs)

        if getattr(self, 'grad_fn', None) is None or self.model_reload:
            self.grad_fn = mindspore.value_and_grad(forward, None, self.optimizer.parameters)

        loss, grads = self.grad_fn(inputs)

        return loss / self.args.gradient_accumulation_steps, grads

    def compute_loss(self, model, inputs, return_outputs=False):
        """
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
        if self.label_smoother is not None and "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
        outputs = model(**inputs)
        # Save past state if it exists
        # TODO: this needs to be fixed and made cleaner later.
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]

        if labels is not None:
            # unwrapped_model = self.accelerator.unwrap_model(model)
            unwrapped_model = model
            if _is_peft_model(unwrapped_model):
                model_name = type(unwrapped_model.get_base_model()).__name__
            else:
                model_name = type(unwrapped_model).__name__
            if model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
                loss = self.label_smoother(outputs, labels, shift_labels=True)
            else:
                loss = self.label_smoother(outputs, labels)
        else:
            if isinstance(outputs, dict) and "loss" not in outputs:
                raise ValueError(
                    "The model did not return a loss from the inputs, only the following keys: "
                    f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
                )
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss

    def is_local_process_zero(self) -> bool:
        """
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
        machines) main process.
        """
        return self.args.local_process_index == 0

    def is_world_process_zero(self) -> bool:
        """
        Whether or not this process is the global main process (when training in a distributed fashion on several
        machines, this is only going to be `True` for one process).
        """
        # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
        # process index.
        return self.args.process_index == 0

    def floating_point_ops(self, inputs: Dict[str, Union[mindspore.Tensor, Any]]):
        """
        For models that inherit from [`PreTrainedModel`], uses that method to compute the number of floating point
        operations for every backward + forward pass. If using another model, either implement such a method in the
        model or subclass and override this method.

        Args:
            inputs (`Dict[str, Union[mindspore.Tensor, Any]]`):
                The inputs and targets of the model.

        Returns:
            `int`: The number of floating-point operations.
        """
        if hasattr(self.model, "floating_point_ops"):
            return self.model.floating_point_ops(inputs)
        else:
            return 0

    def _issue_warnings_after_load(self, load_result):
        r"""Issues warnings after loading a checkpoint model.

        Args:
            self (Trainer): The current instance of the Trainer class.
            load_result (tuple): A tuple containing two lists. The first list represents the missing keys in the loaded checkpoint model, 
                while the second list represents the unexpected keys in the loaded checkpoint model.

        Returns:
            None. This method does not return any value.

        Raises:
            None. This method does not raise any exceptions.
        """
        if len(load_result[0]) != 0:
            if self.model._keys_to_ignore_on_save is not None and set(load_result[0]) == set(
                self.model._keys_to_ignore_on_save
            ):
                self.model.tie_weights()
            else:
                logger.warning(f"There were missing keys in the checkpoint model loaded: {load_result[0]}.")
        if len(load_result[1]) != 0:
            logger.warning(
                f"There were unexpected keys in the checkpoint model loaded: {load_result[1]}."
            )

    def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, epoch, ignore_keys_for_eval):
        r""" 
        This method '_maybe_log_save_evaluate' is a part of the 'Trainer' class. It takes 6 parameters:

        Args:
        - self (object): The instance of the Trainer class.
        - tr_loss (Tensor): The training loss value.
        - grad_norm (float or None): The gradient norm value, or None if not available.
        - model (object): The model being trained.
        - epoch (int): The current epoch number.
        - ignore_keys_for_eval (list or None): A list of keys to ignore during evaluation, or None if not applicable.

        Returns:
        None: This method does not return any value.

        Raises:
        - ValueError: If an invalid input is provided.
        - RuntimeError: If any runtime error occurs during execution.
        - KeyError: If a key error occurs while accessing dictionaries.
        """
        if self.control.should_log and self.state.global_step > self._globalstep_last_logged:
            logs: Dict[str, float] = {}

            # # all_gather + mean() to get average loss over all processes
            # tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
            tr_loss_scalar = tr_loss.item()

            # reset tr_loss to zero
            ops.assign(tr_loss, 0)

            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
            if grad_norm is not None:
                logs["grad_norm"] = grad_norm
            logs["learning_rate"] = self._get_learning_rate()

            self._total_loss_scalar += tr_loss_scalar
            self._globalstep_last_logged = self.state.global_step
            self.store_flos()
            self.log(logs)

        metrics = None

        if self.control.should_evaluate:
            metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
            # self._report_to_hp_search(trial, self.state.global_step, metrics)

            # Run delayed LR scheduler now that metrics are populated
            if isinstance(self.lr_scheduler, mindspore.experimental.optim.lr_scheduler.ReduceLROnPlateau):
                metric_to_check = self.args.metric_for_best_model
                if not metric_to_check.startswith("eval_"):
                    metric_to_check = f"eval_{metric_to_check}"
                self.lr_scheduler.step(metrics[metric_to_check])

        if self.control.should_save:
            self._save_checkpoint(model, metrics=metrics)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

    def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
        """
        Will save the model, so you can reload it using `from_pretrained()`.

        Will only save from the main process.
        """
        if output_dir is None:
            output_dir = self.args.output_dir

        if self.args.should_save:
            self._save(output_dir)

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        """
        Save the model checkpoint to the specified output directory.

        Args:
            self (Trainer): The instance of the Trainer class.
            output_dir (Optional[str], optional): The directory path where the model checkpoint will be saved. If not provided, it defaults to self.args.output_dir. Defaults to None.
            state_dict (optional): The state dictionary of the model. Defaults to None.

        Returns:
            None: This method does not return any value.

        Raises:
            ValueError: If the model is not an instance of PreTrainedModel.
            RuntimeError: If an error occurs during the saving process.
        """
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")

        supported_classes = (PreTrainedModel,) #if not is_peft_available() else (PreTrainedModel, PeftModel)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, supported_classes):
            if state_dict is None:
                state_dict = self.model.parameters_dict()

            if isinstance(self.model, supported_classes):
                self.model.save_pretrained(
                    output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
                )
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
                if self.args.save_safetensors:
                    safe_save_file(
                        state_dict, os.path.join(output_dir, SAFE_WEIGHTS_NAME), metadata={"format": "np"}
                    )
                else:
                    mindspore.save_checkpoint(self.model, os.path.join(output_dir, WEIGHTS_NAME))
        else:
            self.model.save_pretrained(
                output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
            )

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # # Good practice: save your training arguments together with the trained model
        # mindspore.save_checkpoint(save_obj, ckpt_file_name, integrated_save=True, async_save=False, append_dict=None, enc_key=None, enc_mode='AES-GCM', choice_func=None, **kwargs)

    def _save_optimizer_and_scheduler(self, output_dir):
        r"""
        Save the optimizer and scheduler states to the specified output directory.

        Args:
            self (Trainer): The Trainer object instance.
            output_dir (str): The directory path where the optimizer and scheduler states will be saved.

        Returns:
            None. This method does not return any value.

        Raises:
            N/A
        """
        if self.args.should_save:
            # deepspeed.save_checkpoint above saves model/optim/sched
            mindspore.save_checkpoint(self.optimizer, os.path.join(output_dir, OPTIMIZER_NAME))

        # Save SCHEDULER & SCALER
        if self.args.should_save:
            # with warnings.catch_warnings(record=True) as caught_warnings:
            lr_scheduler_state_dict = copy.deepcopy(self.lr_scheduler.state_dict())
            with open(os.path.join(output_dir, SCHEDULER_NAME), 'w') as fp:
                json.dump(convert_tensor_to_scalar(lr_scheduler_state_dict), fp)
            # reissue_pt_warnings(caught_warnings)

    def _save_checkpoint(self, model, metrics=None):
        r"""
        Save the model checkpoint along with relevant metrics and state information.

        Args:
            self (Trainer): The Trainer instance.
            model: The model to be saved.
            metrics (dict): A dictionary containing evaluation metrics. Defaults to None if metrics are not available.

        Returns:
            None. This method does not return any value.

        Raises:
            ValueError: If the metric for the best model is not specified correctly.
            FileNotFoundError: If the specified output directory does not exist.
            OSError: If there are any issues with file operations while saving the checkpoint.
        """
        # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
        # want to save except FullyShardedDDP.
        # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"

        # Save model checkpoint
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"

        # self.store_flos()

        run_dir = self._get_output_dir()
        output_dir = os.path.join(run_dir, checkpoint_folder)
        self.save_model(output_dir, _internal_call=True)

        if not self.args.save_only_model:
            # Save optimizer and scheduler
            self._save_optimizer_and_scheduler(output_dir)
            # Save RNG state
            # self._save_rng_state(output_dir)

        # Determine the new best metric / best model checkpoint
        if metrics is not None and self.args.metric_for_best_model is not None:
            metric_to_check = self.args.metric_for_best_model
            if not metric_to_check.startswith("eval_"):
                metric_to_check = f"eval_{metric_to_check}"
            metric_value = metrics[metric_to_check]

            operator = np.greater if self.args.greater_is_better else np.less
            if (
                self.state.best_metric is None
                or self.state.best_model_checkpoint is None
                or operator(metric_value, self.state.best_metric)
            ):
                self.state.best_metric = metric_value
                self.state.best_model_checkpoint = output_dir

        # Save the Trainer state
        if self.args.should_save:
            self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))

        # Maybe delete some older checkpoints.
        if self.args.should_save:
            # Solely rely on numerical checkpoint id for rotation.
            # mtime is not reliable especially on some fuse fs in cloud environments.
            self._rotate_checkpoints(use_mtime=False, output_dir=run_dir)

    def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
        r"""
        Rotate the checkpoints to limit the total number of saved checkpoints.

        Args:
            self (Trainer): The instance of the Trainer class.
            use_mtime (bool, optional): If True, sorts the checkpoints based on modification time. Defaults to False.
            output_dir (str, optional): The directory where the checkpoints are stored. Defaults to None.

        Returns:
            None: This method does not return any value.

        Raises:
            - OSError: If an error occurs while deleting the older checkpoints using shutil.rmtree.
            - TypeError: If the input parameters are of incorrect types.
        """
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        # If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which
        # we don't do to allow resuming.
        save_total_limit = self.args.save_total_limit
        if (
            self.state.best_model_checkpoint is not None
            and self.args.save_total_limit == 1
            and checkpoints_sorted[-1] != self.state.best_model_checkpoint
        ):
            save_total_limit = 2

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
            shutil.rmtree(checkpoint, ignore_errors=True)

    def store_flos(self):
        r"""
        Stores the current number of floating point operations (FLOs) and updates the total FLOs count.

        Args:
            self (Trainer): The Trainer object itself.

        Returns:
            None: This method does not return any value.

        Raises:
            N/A
        """
        # Storing the number of floating-point operations that went into the model
        # if self.args.parallel_mode == ParallelMode.DISTRIBUTED:
        #     self.state.total_flos += (
        #         distributed_broadcast_scalars([self.current_flos], device=self.args.device).sum().item()
        #     )
        #     self.current_flos = 0
        # else:
        self.state.total_flos += self.current_flos
        self.current_flos = 0

    def evaluate(
        self,
        eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> Dict[str, float]:
        """
        Run evaluation and returns metrics.

        The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
        (pass it to the init `compute_metrics` argument).

        You can also subclass and override this method to inject custom behavior.

        Args:
            eval_dataset (Union[`Dataset`, Dict[str, `Dataset`]), *optional*):
                Pass a dataset if you wish to override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns
                not accepted by the `model.forward()` method are automatically removed. If it is a dictionary, it will
                evaluate on each dataset, prepending the dictionary key to the metric name. Datasets must implement the
                `__len__` method.

                <Tip>

                If you pass a dictionary with names of datasets as keys and datasets as values, evaluate will run
                separate evaluations on each dataset. This can be useful to monitor how training affects other
                datasets or simply to get a more fine-grained evaluation.
                When used with `load_best_model_at_end`, make sure `metric_for_best_model` references exactly one
                of the datasets. If you, for example, pass in `{"data1": data1, "data2": data2}` for two datasets
                `data1` and `data2`, you could specify `metric_for_best_model="eval_data1_loss"` for using the
                loss on `data1` and `metric_for_best_model="eval_data1_loss"` for the loss on `data2`.

                </Tip>

            ignore_keys (`List[str]`, *optional*):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
            metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)

        Returns:
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
            dictionary also contains the epoch number which comes from the training state.
        """
        # handle multipe eval datasets
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
        if isinstance(eval_dataset, dict):
            metrics = {}
            for eval_dataset_name, _eval_dataset in eval_dataset.items():
                dataset_metrics = self.evaluate(
                    eval_dataset=_eval_dataset,
                    ignore_keys=ignore_keys,
                    metric_key_prefix=f"{metric_key_prefix}_{eval_dataset_name}",
                )
                metrics.update(dataset_metrics)
            return metrics

        eval_dataset = self.get_eval_dataset(eval_dataset)

        start_time = time.time()

        eval_loop = self.evaluation_loop
        output = eval_loop(
            eval_dataset,
            description="Evaluation",
            # No point gathering the predictions if there are no metrics, otherwise we defer to
            # self.args.prediction_loss_only
            prediction_loss_only=True if self.compute_metrics is None else None,
            ignore_keys=ignore_keys,
            metric_key_prefix=metric_key_prefix,
        )

        total_batch_size = self.args.eval_batch_size * self.args.world_size
        if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
            start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )

        self.log(output.metrics)

        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)

        return output.metrics

    def predict(
        self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
    ) -> PredictionOutput:
        """
        Run prediction and returns predictions and potential metrics.

        Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
        will also return metrics, like in `evaluate()`.

        Args:
            test_dataset (`Dataset`):
                Dataset to run the predictions on. If it is an `datasets.Dataset`, columns not accepted by the
                `model.forward()` method are automatically removed. Has to implement the method `__len__`
            ignore_keys (`List[str]`, *optional*):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
            metric_key_prefix (`str`, *optional*, defaults to `"test"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "test_bleu" if the prefix is "test" (default)

        <Tip>

        If your predictions or labels have different sequence length (for instance because you're doing dynamic padding
        in a token classification task) the predictions will be padded (on the right) to allow for concatenation into
        one array. The padding index is -100.

        </Tip>

        Returns: *NamedTuple* A namedtuple with the following keys:

            - predictions (`np.ndarray`): The predictions on `test_dataset`.
            - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
            - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
              labels).
        """
        # memory metrics - must set up as early as possible
        # self._memory_tracker.start()

        test_dataloader = self.get_test_dataset(test_dataset)
        start_time = time.time()

        eval_loop = self.evaluation_loop
        output = eval_loop(
            test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
        )
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        # if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
        #     start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )

        self.control = self.callback_handler.on_predict(self.args, self.state, self.control, output.metrics)

        return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)

    def evaluation_loop(
        self,
        dataset,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> EvalLoopOutput:
        """
        Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.

        Works both with or without labels.
        """
        args = self.args

        prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only

        model = self.model
        # if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
        # while ``train`` is running, cast it to the right dtype first and then put on device
        if not self.is_in_train:
            if args.fp16_full_eval:
                model = model.to(dtype=mindspore.float16)
            elif args.bf16_full_eval:
                model = model.to(dtype=mindspore.bfloat16)

        batch_size = self.args.eval_batch_size

        logger.info(f"***** Running {description} *****")
        if has_length(dataset):
            logger.info(f"  Num examples = {self.num_examples(dataset)}")
        else:
            logger.info("  Num examples: Unknown")
        logger.info(f"  Batch size = {batch_size}")

        model.set_train(False)

        self.callback_handler.eval_dataset = dataset

        if args.past_index >= 0:
            self._past = None

        # Initialize containers
        # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
        losses_host = None
        preds_host = None
        labels_host = None
        inputs_host = None

        # losses/preds/labels on CPU (final containers)
        all_losses = None
        all_preds = None
        all_labels = None
        all_inputs = None
        # Will be useful when we have an iterable dataset so don't know its length.

        observed_num_examples = 0
        # Main evaluation loop
        for step, inputs in enumerate(dataset.create_dict_iterator()):
            # Update the observed num examples
            observed_batch_size = find_batch_size(inputs)

            if observed_batch_size is not None:
                observed_num_examples += observed_batch_size
                # For batch samplers, batch_size is not known by the dataloader in advance.
                if batch_size is None:
                    batch_size = observed_batch_size

            # Prediction step
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
            main_input_name = getattr(self.model, "main_input_name", "input_ids")
            inputs_decode = self._prepare_input(inputs[main_input_name]) if args.include_inputs_for_metrics else None

            # Update containers on host
            if loss is not None:
                losses = loss.repeat(observed_batch_size)
                # losses = loss.repeat(batch_size)
                losses_host = losses if losses_host is None else nested_concat(losses_host, losses, padding_index=-100)
            # if labels is not None:
            #     labels = self.accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
            if inputs_decode is not None:
                # inputs_decode = self.accelerator.pad_across_processes(inputs_decode, dim=1, pad_index=-100)
                # inputs_decode = self.gather_function((inputs_decode))
                inputs_host = (
                    inputs_decode
                    if inputs_host is None
                    else nested_concat(inputs_host, inputs_decode, padding_index=-100)
                )

            if logits is not None:
                # logits = self.accelerator.pad_across_processes(logits, dim=1, pad_index=-100)
                if self.preprocess_logits_for_metrics is not None:
                    logits = self.preprocess_logits_for_metrics(logits, labels)
                # logits = self.gather_function((logits))
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)

            if labels is not None:
                # labels = self.gather_function((labels))
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)

            self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)

            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:
                if losses_host is not None:
                    losses = nested_numpify(losses_host)
                    all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
                if preds_host is not None:
                    logits = nested_numpify(preds_host)
                    all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
                if inputs_host is not None:
                    inputs_decode = nested_numpify(inputs_host)
                    all_inputs = (
                        inputs_decode
                        if all_inputs is None
                        else nested_concat(all_inputs, inputs_decode, padding_index=-100)
                    )
                if labels_host is not None:
                    labels = nested_numpify(labels_host)
                    all_labels = (
                        labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
                    )

                # Set back to None to begin a new accumulation
                losses_host, preds_host, inputs_host, labels_host = None, None, None, None

        if args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")

        # Gather all remaining tensors and put them back on the CPU
        if losses_host is not None:
            losses = nested_numpify(losses_host)
            all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)

        if preds_host is not None:
            logits = nested_numpify(preds_host)
            all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
        if inputs_host is not None:
            inputs_decode = nested_numpify(inputs_host)
            all_inputs = (
                inputs_decode if all_inputs is None else nested_concat(all_inputs, inputs_decode, padding_index=-100)
            )
        if labels_host is not None:
            labels = nested_numpify(labels_host)
            all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)

        # Number of samples
        if has_length(dataset):
            num_samples = len(dataset)
        if num_samples == 0 and observed_num_examples > 0:
            num_samples = observed_num_examples

        # Metrics!
        if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
            if args.include_inputs_for_metrics:
                metrics = self.compute_metrics(
                    EvalPrediction(predictions=all_preds, label_ids=all_labels, inputs=all_inputs)
                )
            else:
                metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
        else:
            metrics = {}

        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

        if all_losses is not None:
            metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)

    def _nested_gather(self, tensors, name=None):
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        return tensors

    def prediction_step(
        self,
        model: nn.Module,
        inputs: Dict[str, Union[mindspore.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
    ) -> Tuple[Optional[mindspore.Tensor], Optional[mindspore.Tensor], Optional[mindspore.Tensor]]:
        """
        Perform an evaluation step on `model` using `inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.cell`):
                The model to evaluate.
            inputs (`Dict[str, Union[mindspore.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (`bool`):
                Whether or not to return the loss only.
            ignore_keys (`List[str]`, *optional*):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.

        Return:
            Tuple[Optional[mindspore.Tensor], Optional[mindspore.Tensor], Optional[mindspore.Tensor]]: A tuple with the loss,
            logits and labels (each being optional).
        """
        has_labels = False if len(self.label_names) == 0 else all(inputs.get(k) is not None for k in self.label_names)
        # For CLIP-like models capable of returning loss values.
        # If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
        # is `True` in `model.forward`.
        return_loss = inputs.get("return_loss", None)
        if return_loss is None:
            return_loss = self.can_return_loss
        loss_without_labels = len(self.label_names) == 0 and return_loss

        inputs = self._prepare_inputs(inputs)
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []

        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels or loss_without_labels:
            labels = tuple(inputs.get(name) for name in self.label_names)
            # labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

        if has_labels or loss_without_labels:
            loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
            loss = loss.mean()

            if isinstance(outputs, dict):
                logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
            else:
                logits = outputs[1:]
        else:
            loss = None
            outputs = model(**inputs)
            if isinstance(outputs, dict):
                logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
            else:
                logits = outputs
            # TODO: this needs to be fixed and made cleaner later.
            if self.args.past_index >= 0:
                self._past = outputs[self.args.past_index - 1]

        if prediction_loss_only:
            return (loss, None, None)

        # logits = nested_detach(logits)
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)

    def log(self, logs: Dict[str, float]) -> None:
        """
        Log `logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (`Dict[str, float]`):
                The values to log.
        """
        if self.state.epoch is not None:
            logs["epoch"] = round(self.state.epoch, 2)
        if self.args.include_num_input_tokens_seen:
            logs["num_input_tokens_seen"] = self.state.num_input_tokens_seen

        output = {**logs, **{"step": self.state.global_step}}
        self.state.log_history.append(output)
        self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)

    def _sorted_checkpoints(
        self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
    ) -> List[str]:
        r"""
        Method to retrieve and sort checkpoints based on specific criteria.

        Args:
            self: Trainer object, the instance invoking the method.
            output_dir (str, optional): Directory path to search for checkpoints. Defaults to None.
            checkpoint_prefix (str): Prefix for identifying checkpoint files.
            use_mtime (bool): Flag to indicate whether to use modification time for sorting.

        Returns:
            List[str]: A list of sorted checkpoint file paths.

        Raises:
            N/A
        """
        ordering_and_checkpoint_path = []

        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
                if regex_match is not None and regex_match.groups() is not None:
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        # Make sure we don't delete the best model.
        if (
            self.state.best_model_checkpoint is not None
            and str(Path(self.state.best_model_checkpoint)) in checkpoints_sorted
        ):
            best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
            for i in range(best_model_index, len(checkpoints_sorted) - 2):
                checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
        return checkpoints_sorted

mindnlp.engine.trainer.base.Trainer.__init__(model=None, args=None, map_fn=None, train_dataset=None, eval_dataset=None, tokenizer=None, model_init=None, compute_metrics=None, callbacks=None, optimizers=(None, None), preprocess_logits_for_metrics=None)

Initializes the Trainer class.

PARAMETER DESCRIPTION
self

The Trainer object itself.

TYPE: Trainer

model

The pre-trained model or neural network cell to be trained.

TYPE: Union[PreTrainedModel, Module] DEFAULT: None

args

The training arguments including hyperparameters and output directory.

TYPE: TrainingArguments DEFAULT: None

map_fn

Optional map function for data preprocessing.

TYPE: Optional[Union[Callable, BaseMapFunction]] DEFAULT: None

train_dataset

The training dataset.

TYPE: Optional[Dataset] DEFAULT: None

eval_dataset

The evaluation dataset.

TYPE: Optional[Union[Dataset, Dict[str, Dataset]]] DEFAULT: None

tokenizer

The pre-trained tokenizer for tokenizing inputs.

TYPE: Optional[PreTrainedTokenizerBase] DEFAULT: None

model_init

Optional model initialization function.

TYPE: Optional[Callable[[], PreTrainedModel]] DEFAULT: None

compute_metrics

Optional function to compute evaluation metrics.

TYPE: Optional[Callable[[EvalPrediction], Dict]] DEFAULT: None

callbacks

Optional list of trainer callbacks.

TYPE: Optional[List[TrainerCallback]] DEFAULT: None

optimizers

Tuple of optimizer and learning rate scheduler.

TYPE: Tuple[Optimizer, LearningRateSchedule] DEFAULT: (None, None)

preprocess_logits_for_metrics

Optional function to preprocess logits for metrics.

TYPE: Optional[Callable[[Tensor, Tensor], Tensor]] DEFAULT: None

RETURNS DESCRIPTION
None

This method does not return any value.

RAISES DESCRIPTION
RuntimeError

If model or model_init is not provided.

ValueError

If the provided model cannot be used for training, or if there is an issue with the map function.

ValueError

If train_dataset does not implement len and max_steps is not specified.

RuntimeError

If there is a conflict between model_init and optimizers arguments.

Source code in mindnlp/engine/trainer/base.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def __init__(
    self,
    model: Union[PreTrainedModel, nn.Module] = None,
    args: TrainingArguments = None,
    map_fn: Optional[Union[Callable, BaseMapFunction]] = None,
    train_dataset: Optional[Dataset] = None,
    eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
    tokenizer: Optional[PreTrainedTokenizerBase] = None,
    model_init: Optional[Callable[[], PreTrainedModel]] = None,
    compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
    callbacks: Optional[List[TrainerCallback]] = None,
    optimizers: Tuple[optim.Optimizer, LearningRateSchedule] = (None, None),
    preprocess_logits_for_metrics: Optional[Callable[[mindspore.Tensor, mindspore.Tensor], mindspore.Tensor]] = None,
):
    """
    Initializes the Trainer class.

    Args:
        self (Trainer): The Trainer object itself.
        model (Union[PreTrainedModel, nn.Module]): The pre-trained model or neural network cell to be trained.
        args (TrainingArguments): The training arguments including hyperparameters and output directory.
        map_fn (Optional[Union[Callable, BaseMapFunction]]): Optional map function for data preprocessing.
        train_dataset (Optional[Dataset]): The training dataset.
        eval_dataset (Optional[Union[Dataset, Dict[str, Dataset]]]): The evaluation dataset.
        tokenizer (Optional[PreTrainedTokenizerBase]): The pre-trained tokenizer for tokenizing inputs.
        model_init (Optional[Callable[[], PreTrainedModel]]): Optional model initialization function.
        compute_metrics (Optional[Callable[[EvalPrediction], Dict]]): Optional function to compute evaluation metrics.
        callbacks (Optional[List[TrainerCallback]]): Optional list of trainer callbacks.
        optimizers (Tuple[nn.Optimizer, LearningRateSchedule]): Tuple of optimizer and learning rate scheduler.
        preprocess_logits_for_metrics (Optional[Callable[[mindspore.Tensor, mindspore.Tensor], mindspore.Tensor]]): Optional function to preprocess logits for metrics.

    Returns:
        None: This method does not return any value.

    Raises:
        RuntimeError: If `model` or `model_init` is not provided.
        ValueError: If the provided model cannot be used for training, or if there is an issue with the map function.
        ValueError: If `train_dataset` does not implement __len__ and `max_steps` is not specified.
        RuntimeError: If there is a conflict between `model_init` and `optimizers` arguments.
    """
    if args is None:
        output_dir = "tmp_trainer"
        logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
        args = TrainingArguments(output_dir=output_dir)

    self.args = args
    # Seed must be set before instantiating the model when using model
    # mindspore do not support full determinisim on 2.2
    enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
    self.is_in_train = False

    # set the correct log level depending on the node
    log_level = args.get_process_log_level()
    logging.set_verbosity(log_level)
    if model is None:
        if model_init is not None:
            self.model_init = model_init
            model = self.call_model_init()
        else:
            raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
    else:
        if model_init is not None:
            raise RuntimeError(
                "`Trainer` requires either a `model` or `model_init` argument, but not both. `model_init` will"
                " overwrite your model when calling the `train` method"
            )
        self.model_init = model_init

    if model.__class__.__name__ in MODEL_MAPPING_NAMES:
        raise ValueError(
            f"The model you have picked ({model.__class__.__name__}) cannot be used as is for training: it only "
            "computes hidden states and does not accept any labels. You should choose a model with a head "
            "suitable for your task like any of the `AutoModelForXxx` listed at "
            "https://huggingface.co/docs/transformers/model_doc/auto"
        )

    # if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
    #     self.is_model_parallel = True
    # else:
    self.is_model_parallel = False

    # TODO: support quantized model

    self.data_map_fn = map_fn
    if map_fn is not None and not (hasattr(map_fn, 'input_columns') and hasattr(map_fn, 'output_columns')) and \
        not check_input_output_count(map_fn):
        raise ValueError('`map_fn` must have same number of inputs and outputs when it is callable function'
                         ' without attributes `input_columns` and `output_columns`')

    self.train_dataset = copy.deepcopy(train_dataset)
    self.eval_dataset = copy.deepcopy(eval_dataset)
    self.tokenizer = tokenizer

    # later use `self.model is self.model_wrapped` to check if it's wrapped or not
    self.model = model
    self.model.set_train()

    self.neftune_noise_alpha = args.neftune_noise_alpha

    self.compute_metrics = compute_metrics
    self.preprocess_logits_for_metrics = preprocess_logits_for_metrics
    self.optimizer, self.lr_scheduler = optimizers
    if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
        raise RuntimeError(
            "Passing a `model_init` is incompatible with providing the `optimizers` argument. "
            "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
        )

    default_callbacks = DEFAULT_CALLBACKS
    callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
    self.callback_handler = CallbackHandler(
        callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
    )
    self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)

    # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
    self._loggers_initialized = False

    if self.args.should_save:
        os.makedirs(self.args.output_dir, exist_ok=True)

    if args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")

    if train_dataset is not None and not has_length(train_dataset) and args.max_steps <= 0:
        raise ValueError(
            "The train_dataset does not implement __len__, max_steps has to be specified. "
            "The number of steps needs to be known in advance for the learning rate scheduler."
        )

    self._signature_columns = None

    # Mixed precision setup
    self.use_amp = False

    # Label smoothing
    if self.args.label_smoothing_factor != 0:
        self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
    else:
        self.label_smoother = None

    self.state = TrainerState(
        is_local_process_zero=self.is_local_process_zero(),
        is_world_process_zero=self.is_world_process_zero(),
    )

    self.control = TrainerControl()
    # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
    # returned to 0 every time flos need to be logged

    self.current_flos = 0
    self.hp_search_backend = None
    default_label_names = find_labels(self.model.__class__)
    self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
    self.can_return_loss = can_return_loss(self.model.__class__)
    self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
    # Internal variables to help with automatic batch size reduction
    self._train_batch_size = args.train_batch_size
    self._created_lr_scheduler = False

mindnlp.engine.trainer.base.Trainer.add_callback(callback)

Add a callback to the current list of [~transformers.TrainerCallback].

PARAMETER DESCRIPTION
callback

A [~transformers.TrainerCallback] class or an instance of a [~transformers.TrainerCallback]. In the first case, will instantiate a member of that class.

TYPE: `type` or [`~transformers.TrainerCallback`]

Source code in mindnlp/engine/trainer/base.py
329
330
331
332
333
334
335
336
337
338
def add_callback(self, callback):
    """
    Add a callback to the current list of [`~transformers.TrainerCallback`].

    Args:
       callback (`type` or [`~transformers.TrainerCallback`]):
           A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the
           first case, will instantiate a member of that class.
    """
    self.callback_handler.add_callback(callback)

mindnlp.engine.trainer.base.Trainer.call_model_init()

Method to call the model initialization function and validate its output.

PARAMETER DESCRIPTION
self

Instance of the Trainer class. This parameter represents the current instance of the Trainer class.

TYPE: Trainer

RETURNS DESCRIPTION
None

This method does not return any value.

RAISES DESCRIPTION
RuntimeError

If the model_init method does not have 0 or 1 arguments. This exception is raised when the number of arguments in the model_init method is not 0 or 1.

RuntimeError

If the model_init method returns None. This exception is raised when the model_init method returns None.

Source code in mindnlp/engine/trainer/base.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def call_model_init(self):
    r"""
    Method to call the model initialization function and validate its output.

    Args:
        self (Trainer): Instance of the Trainer class.
            This parameter represents the current instance of the Trainer class.

    Returns:
        None: This method does not return any value.

    Raises:
        RuntimeError: If the model_init method does not have 0 or 1 arguments.
            This exception is raised when the number of arguments in the model_init method is not 0 or 1.
        RuntimeError: If the model_init method returns None.
            This exception is raised when the model_init method returns None.
    """
    model_init_argcount = number_of_arguments(self.model_init)
    if model_init_argcount == 0:
        model = self.model_init()
    else:
        raise RuntimeError("model_init should have 0 or 1 argument.")

    if model is None:
        raise RuntimeError("model_init should not return None.")

    return model

mindnlp.engine.trainer.base.Trainer.compute_loss(model, inputs, return_outputs=False)

How the loss is computed by Trainer. By default, all models return the loss in the first element.

Subclass and override for custom behavior.

Source code in mindnlp/engine/trainer/base.py
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
def compute_loss(self, model, inputs, return_outputs=False):
    """
    How the loss is computed by Trainer. By default, all models return the loss in the first element.

    Subclass and override for custom behavior.
    """
    if self.label_smoother is not None and "labels" in inputs:
        labels = inputs.pop("labels")
    else:
        labels = None
    outputs = model(**inputs)
    # Save past state if it exists
    # TODO: this needs to be fixed and made cleaner later.
    if self.args.past_index >= 0:
        self._past = outputs[self.args.past_index]

    if labels is not None:
        # unwrapped_model = self.accelerator.unwrap_model(model)
        unwrapped_model = model
        if _is_peft_model(unwrapped_model):
            model_name = type(unwrapped_model.get_base_model()).__name__
        else:
            model_name = type(unwrapped_model).__name__
        if model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
            loss = self.label_smoother(outputs, labels, shift_labels=True)
        else:
            loss = self.label_smoother(outputs, labels)
    else:
        if isinstance(outputs, dict) and "loss" not in outputs:
            raise ValueError(
                "The model did not return a loss from the inputs, only the following keys: "
                f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
            )
        # We don't use .loss here since the model may return tuples instead of ModelOutput.
        loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

    return (loss, outputs) if return_outputs else loss

mindnlp.engine.trainer.base.Trainer.create_optimizer()

Setup the optimizer.

We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through optimizers, or subclass and override this method in a subclass.

Source code in mindnlp/engine/trainer/base.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
def create_optimizer(self):
    """
    Setup the optimizer.

    We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
    Trainer's init through `optimizers`, or subclass and override this method in a subclass.
    """
    opt_model = self.model

    if self.optimizer is None:
        decay_parameters = self.get_decay_parameter_names(opt_model)
        optimizer_grouped_parameters = [
            {
                "params": [
                    p for p in opt_model.trainable_params() if (p.name in decay_parameters and p.requires_grad)
                ],
                "weight_decay": self.args.weight_decay,
            },
            {
                "params": [
                    p for p in opt_model.trainable_params() if (p.name not in decay_parameters and p.requires_grad)
                ],
                "weight_decay": 0.0,
            },
        ]

        optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args, opt_model)

        # Overwrite `params` in case it's created by `get_optimizer_cls_and_kwargs`
        # e.g. for GaLore optimizer.
        if "params" in optimizer_kwargs:
            optimizer_grouped_parameters = optimizer_kwargs.pop("params")

        # For layer-wise dummy optimizers we overwrite optimizer_grouped_parameters with `optimizer_dict`
        # to avoid arguments conflicts.
        if "optimizer_dict" in optimizer_kwargs:
            optimizer_grouped_parameters = optimizer_kwargs.pop("optimizer_dict")

        self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

    return self.optimizer

mindnlp.engine.trainer.base.Trainer.create_optimizer_and_scheduler(num_training_steps)

Setup the optimizer and the learning rate scheduler.

We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through optimizers, or subclass and override this method (or create_optimizer and/or create_scheduler) in a subclass.

Source code in mindnlp/engine/trainer/base.py
429
430
431
432
433
434
435
436
437
438
439
def create_optimizer_and_scheduler(self, num_training_steps: int):
    """
    Setup the optimizer and the learning rate scheduler.

    We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
    Trainer's init through `optimizers`, or subclass and override this method (or `create_optimizer` and/or
    `create_scheduler`) in a subclass.
    """
    self.create_optimizer()
    optimizer = self.optimizer
    self.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)

mindnlp.engine.trainer.base.Trainer.create_scheduler(num_training_steps, optimizer=None)

Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument.

PARAMETER DESCRIPTION
num_training_steps

The number of training steps to do.

TYPE: int

Source code in mindnlp/engine/trainer/base.py
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
def create_scheduler(self, num_training_steps: int, optimizer = None):
    """
    Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
    passed as an argument.

    Args:
        num_training_steps (int): The number of training steps to do.
    """
    if self.lr_scheduler is None:
        from ...modules.optimization import get_scheduler
        self.lr_scheduler = get_scheduler(
            self.args.lr_scheduler_type,
            optimizer=self.optimizer if optimizer is None else optimizer,
            num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
            num_training_steps=num_training_steps,
            scheduler_specific_kwargs=self.args.lr_scheduler_kwargs,
        )
        self._created_lr_scheduler = True
    return self.lr_scheduler

mindnlp.engine.trainer.base.Trainer.evaluate(eval_dataset=None, ignore_keys=None, metric_key_prefix='eval')

Run evaluation and returns metrics.

The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init compute_metrics argument).

You can also subclass and override this method to inject custom behavior.

PARAMETER DESCRIPTION
eval_dataset

Pass a dataset if you wish to override self.eval_dataset. If it is a [~datasets.Dataset], columns not accepted by the model.forward() method are automatically removed. If it is a dictionary, it will evaluate on each dataset, prepending the dictionary key to the metric name. Datasets must implement the __len__ method.

If you pass a dictionary with names of datasets as keys and datasets as values, evaluate will run separate evaluations on each dataset. This can be useful to monitor how training affects other datasets or simply to get a more fine-grained evaluation. When used with load_best_model_at_end, make sure metric_for_best_model references exactly one of the datasets. If you, for example, pass in {"data1": data1, "data2": data2} for two datasets data1 and data2, you could specify metric_for_best_model="eval_data1_loss" for using the loss on data1 and metric_for_best_model="eval_data1_loss" for the loss on data2.

TYPE: Union[`Dataset`, Dict[str, `Dataset`]), *optional* DEFAULT: None

ignore_keys

A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions.

TYPE: `List[str]`, *optional* DEFAULT: None

metric_key_prefix

An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default)

TYPE: `str`, *optional*, defaults to `"eval"` DEFAULT: 'eval'

RETURNS DESCRIPTION
Dict[str, float]

A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The

Dict[str, float]

dictionary also contains the epoch number which comes from the training state.

Source code in mindnlp/engine/trainer/base.py
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
def evaluate(
    self,
    eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
    ignore_keys: Optional[List[str]] = None,
    metric_key_prefix: str = "eval",
) -> Dict[str, float]:
    """
    Run evaluation and returns metrics.

    The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
    (pass it to the init `compute_metrics` argument).

    You can also subclass and override this method to inject custom behavior.

    Args:
        eval_dataset (Union[`Dataset`, Dict[str, `Dataset`]), *optional*):
            Pass a dataset if you wish to override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns
            not accepted by the `model.forward()` method are automatically removed. If it is a dictionary, it will
            evaluate on each dataset, prepending the dictionary key to the metric name. Datasets must implement the
            `__len__` method.

            <Tip>

            If you pass a dictionary with names of datasets as keys and datasets as values, evaluate will run
            separate evaluations on each dataset. This can be useful to monitor how training affects other
            datasets or simply to get a more fine-grained evaluation.
            When used with `load_best_model_at_end`, make sure `metric_for_best_model` references exactly one
            of the datasets. If you, for example, pass in `{"data1": data1, "data2": data2}` for two datasets
            `data1` and `data2`, you could specify `metric_for_best_model="eval_data1_loss"` for using the
            loss on `data1` and `metric_for_best_model="eval_data1_loss"` for the loss on `data2`.

            </Tip>

        ignore_keys (`List[str]`, *optional*):
            A list of keys in the output of your model (if it is a dictionary) that should be ignored when
            gathering predictions.
        metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
            An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
            "eval_bleu" if the prefix is "eval" (default)

    Returns:
        A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
        dictionary also contains the epoch number which comes from the training state.
    """
    # handle multipe eval datasets
    eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
    if isinstance(eval_dataset, dict):
        metrics = {}
        for eval_dataset_name, _eval_dataset in eval_dataset.items():
            dataset_metrics = self.evaluate(
                eval_dataset=_eval_dataset,
                ignore_keys=ignore_keys,
                metric_key_prefix=f"{metric_key_prefix}_{eval_dataset_name}",
            )
            metrics.update(dataset_metrics)
        return metrics

    eval_dataset = self.get_eval_dataset(eval_dataset)

    start_time = time.time()

    eval_loop = self.evaluation_loop
    output = eval_loop(
        eval_dataset,
        description="Evaluation",
        # No point gathering the predictions if there are no metrics, otherwise we defer to
        # self.args.prediction_loss_only
        prediction_loss_only=True if self.compute_metrics is None else None,
        ignore_keys=ignore_keys,
        metric_key_prefix=metric_key_prefix,
    )

    total_batch_size = self.args.eval_batch_size * self.args.world_size
    if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
        start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
    output.metrics.update(
        speed_metrics(
            metric_key_prefix,
            start_time,
            num_samples=output.num_samples,
            num_steps=math.ceil(output.num_samples / total_batch_size),
        )
    )

    self.log(output.metrics)

    self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)

    return output.metrics

mindnlp.engine.trainer.base.Trainer.evaluation_loop(dataset, description, prediction_loss_only=None, ignore_keys=None, metric_key_prefix='eval')

Prediction/evaluation loop, shared by Trainer.evaluate() and Trainer.predict().

Works both with or without labels.

Source code in mindnlp/engine/trainer/base.py
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
def evaluation_loop(
    self,
    dataset,
    description: str,
    prediction_loss_only: Optional[bool] = None,
    ignore_keys: Optional[List[str]] = None,
    metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
    """
    Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.

    Works both with or without labels.
    """
    args = self.args

    prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only

    model = self.model
    # if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
    # while ``train`` is running, cast it to the right dtype first and then put on device
    if not self.is_in_train:
        if args.fp16_full_eval:
            model = model.to(dtype=mindspore.float16)
        elif args.bf16_full_eval:
            model = model.to(dtype=mindspore.bfloat16)

    batch_size = self.args.eval_batch_size

    logger.info(f"***** Running {description} *****")
    if has_length(dataset):
        logger.info(f"  Num examples = {self.num_examples(dataset)}")
    else:
        logger.info("  Num examples: Unknown")
    logger.info(f"  Batch size = {batch_size}")

    model.set_train(False)

    self.callback_handler.eval_dataset = dataset

    if args.past_index >= 0:
        self._past = None

    # Initialize containers
    # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
    losses_host = None
    preds_host = None
    labels_host = None
    inputs_host = None

    # losses/preds/labels on CPU (final containers)
    all_losses = None
    all_preds = None
    all_labels = None
    all_inputs = None
    # Will be useful when we have an iterable dataset so don't know its length.

    observed_num_examples = 0
    # Main evaluation loop
    for step, inputs in enumerate(dataset.create_dict_iterator()):
        # Update the observed num examples
        observed_batch_size = find_batch_size(inputs)

        if observed_batch_size is not None:
            observed_num_examples += observed_batch_size
            # For batch samplers, batch_size is not known by the dataloader in advance.
            if batch_size is None:
                batch_size = observed_batch_size

        # Prediction step
        loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
        main_input_name = getattr(self.model, "main_input_name", "input_ids")
        inputs_decode = self._prepare_input(inputs[main_input_name]) if args.include_inputs_for_metrics else None

        # Update containers on host
        if loss is not None:
            losses = loss.repeat(observed_batch_size)
            # losses = loss.repeat(batch_size)
            losses_host = losses if losses_host is None else nested_concat(losses_host, losses, padding_index=-100)
        # if labels is not None:
        #     labels = self.accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
        if inputs_decode is not None:
            # inputs_decode = self.accelerator.pad_across_processes(inputs_decode, dim=1, pad_index=-100)
            # inputs_decode = self.gather_function((inputs_decode))
            inputs_host = (
                inputs_decode
                if inputs_host is None
                else nested_concat(inputs_host, inputs_decode, padding_index=-100)
            )

        if logits is not None:
            # logits = self.accelerator.pad_across_processes(logits, dim=1, pad_index=-100)
            if self.preprocess_logits_for_metrics is not None:
                logits = self.preprocess_logits_for_metrics(logits, labels)
            # logits = self.gather_function((logits))
            preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)

        if labels is not None:
            # labels = self.gather_function((labels))
            labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)

        self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)

        # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
        if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:
            if losses_host is not None:
                losses = nested_numpify(losses_host)
                all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
            if preds_host is not None:
                logits = nested_numpify(preds_host)
                all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
            if inputs_host is not None:
                inputs_decode = nested_numpify(inputs_host)
                all_inputs = (
                    inputs_decode
                    if all_inputs is None
                    else nested_concat(all_inputs, inputs_decode, padding_index=-100)
                )
            if labels_host is not None:
                labels = nested_numpify(labels_host)
                all_labels = (
                    labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
                )

            # Set back to None to begin a new accumulation
            losses_host, preds_host, inputs_host, labels_host = None, None, None, None

    if args.past_index and hasattr(self, "_past"):
        # Clean the state at the end of the evaluation loop
        delattr(self, "_past")

    # Gather all remaining tensors and put them back on the CPU
    if losses_host is not None:
        losses = nested_numpify(losses_host)
        all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)

    if preds_host is not None:
        logits = nested_numpify(preds_host)
        all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
    if inputs_host is not None:
        inputs_decode = nested_numpify(inputs_host)
        all_inputs = (
            inputs_decode if all_inputs is None else nested_concat(all_inputs, inputs_decode, padding_index=-100)
        )
    if labels_host is not None:
        labels = nested_numpify(labels_host)
        all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)

    # Number of samples
    if has_length(dataset):
        num_samples = len(dataset)
    if num_samples == 0 and observed_num_examples > 0:
        num_samples = observed_num_examples

    # Metrics!
    if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
        if args.include_inputs_for_metrics:
            metrics = self.compute_metrics(
                EvalPrediction(predictions=all_preds, label_ids=all_labels, inputs=all_inputs)
            )
        else:
            metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
    else:
        metrics = {}

    # To be JSON-serializable, we need to remove numpy types or zero-d tensors
    metrics = denumpify_detensorize(metrics)

    if all_losses is not None:
        metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()

    # Prefix all keys with metric_key_prefix + '_'
    for key in list(metrics.keys()):
        if not key.startswith(f"{metric_key_prefix}_"):
            metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

    return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)

mindnlp.engine.trainer.base.Trainer.floating_point_ops(inputs)

For models that inherit from [PreTrainedModel], uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method.

PARAMETER DESCRIPTION
inputs

The inputs and targets of the model.

TYPE: `Dict[str, Union[mindspore.Tensor, Any]]`

RETURNS DESCRIPTION

int: The number of floating-point operations.

Source code in mindnlp/engine/trainer/base.py
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
def floating_point_ops(self, inputs: Dict[str, Union[mindspore.Tensor, Any]]):
    """
    For models that inherit from [`PreTrainedModel`], uses that method to compute the number of floating point
    operations for every backward + forward pass. If using another model, either implement such a method in the
    model or subclass and override this method.

    Args:
        inputs (`Dict[str, Union[mindspore.Tensor, Any]]`):
            The inputs and targets of the model.

    Returns:
        `int`: The number of floating-point operations.
    """
    if hasattr(self.model, "floating_point_ops"):
        return self.model.floating_point_ops(inputs)
    else:
        return 0

mindnlp.engine.trainer.base.Trainer.get_decay_parameter_names(model)

Get all parameter names that weight decay will be applied to

Note that some models implement their own layernorm instead of calling nn.LayerNorm, weight decay could still apply to those modules since this function only filter out instance of nn.LayerNorm

Source code in mindnlp/engine/trainer/base.py
441
442
443
444
445
446
447
448
449
450
def get_decay_parameter_names(self, model) -> List[str]:
    """
    Get all parameter names that weight decay will be applied to

    Note that some models implement their own layernorm instead of calling nn.LayerNorm, weight decay could still
    apply to those modules since this function only filter out instance of nn.LayerNorm
    """
    decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    return decay_parameters

mindnlp.engine.trainer.base.Trainer.get_eval_dataset(eval_dataset=None) cached

Returns the test [~mindspore.dataset.GeneratorDataset].

Subclass and override this method if you want to inject some custom behavior.

PARAMETER DESCRIPTION
test_dataset

The test dataset to use. If it is a [~datasets.Dataset], columns not accepted by the model.forward() method are automatically removed. It must implement __len__.

TYPE: `mindspore.dataset`, *optional*

Source code in mindnlp/engine/trainer/base.py
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
@lru_cache(128)
def get_eval_dataset(self, eval_dataset: Dataset = None) -> Dataset:
    """
    Returns the test [`~mindspore.dataset.GeneratorDataset`].

    Subclass and override this method if you want to inject some custom behavior.

    Args:
        test_dataset (`mindspore.dataset`, *optional*):
            The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the
            `model.forward()` method are automatically removed. It must implement `__len__`.
    """
    # data_collator = self.data_collator
    if eval_dataset is None and self.eval_dataset is None:
        raise ValueError("Trainer: evaluation requires an eval_dataset.")

    eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset

    if isinstance(eval_dataset, (BatchDataset, PaddedBatchDataset)):
        return eval_dataset

    eval_dataset = self._remove_unused_columns(eval_dataset, description="test")
    eval_dataset = eval_dataset.batch(self.args.eval_batch_size, self.args.dataset_drop_last, self.args.dataset_num_workers)

    # We use the same batch_size as for eval.
    return eval_dataset

mindnlp.engine.trainer.base.Trainer.get_optimizer_cls_and_kwargs(args, model=None) staticmethod

Returns the optimizer class and optimizer parameters based on the training arguments.

PARAMETER DESCRIPTION
args

The training arguments for the training session.

TYPE: `transformers.training_args.TrainingArguments`

Source code in mindnlp/engine/trainer/base.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
@staticmethod
def get_optimizer_cls_and_kwargs(
    args: TrainingArguments, model: Optional[PreTrainedModel] = None
) -> Tuple[Any, Any]:
    """
    Returns the optimizer class and optimizer parameters based on the training arguments.

    Args:
        args (`transformers.training_args.TrainingArguments`):
            The training arguments for the training session.

    """
    # parse args.optim_args
    optim_args = {}
    if args.optim_args:
        for mapping in args.optim_args.replace(" ", "").split(","):
            key, value = mapping.split("=")
            optim_args[key] = value

    optimizer_kwargs = {"lr": args.learning_rate}

    adam_kwargs = {
        "betas": (args.adam_beta1, args.adam_beta2),
        "eps": args.adam_epsilon,
    }
    # TODO: support Adafactor
    # if args.optim == OptimizerNames.ADAFACTOR:
    #     optimizer_cls = Adafactor
    #     optimizer_kwargs.update({"scale_parameter": False, "relative_step": False})
    # TODO: support AdamW huggingface version
    # elif args.optim == OptimizerNames.ADAMW_HF:
    #     from .optimization import AdamW

    #     optimizer_cls = AdamW
    #     optimizer_kwargs.update(adam_kwargs)
    if args.optim == OptimizerNames.ADAMW:
        from mindnlp.core.optim import AdamW

        optimizer_cls = AdamW
        optimizer_kwargs.update(adam_kwargs)
    elif args.optim == OptimizerNames.SGD:
        optimizer_cls = mindspore.experimental.optim.SGD
    # TODO: support Adagrad and Rmsporp
    # elif args.optim == OptimizerNames.ADAGRAD:
    #     optimizer_cls = mindspore.nn.Adagrad
    # elif args.optim == OptimizerNames.RMSPROP:
    #     optimizer_cls = mindspore.nn.RMSprop
    else:
        raise ValueError(f"Trainer cannot instantiate unsupported optimizer: {args.optim}")
    return optimizer_cls, optimizer_kwargs

mindnlp.engine.trainer.base.Trainer.get_test_dataset(test_dataset) cached

Returns the test [~mindspore.dataset.GeneratorDataset].

Subclass and override this method if you want to inject some custom behavior.

PARAMETER DESCRIPTION
test_dataset

The test dataset to use. If it is a [~datasets.Dataset], columns not accepted by the model.forward() method are automatically removed. It must implement __len__.

TYPE: `mindspore.dataset`, *optional*

Source code in mindnlp/engine/trainer/base.py
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
@lru_cache(128)
def get_test_dataset(self, test_dataset: Dataset) -> Dataset:
    """
    Returns the test [`~mindspore.dataset.GeneratorDataset`].

    Subclass and override this method if you want to inject some custom behavior.

    Args:
        test_dataset (`mindspore.dataset`, *optional*):
            The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the
            `model.forward()` method are automatically removed. It must implement `__len__`.
    """
    # data_collator = self.data_collator
    if isinstance(test_dataset, (BatchDataset, PaddedBatchDataset)):
        return test_dataset
    test_dataset = self._remove_unused_columns(test_dataset, description="test")
    test_dataset = test_dataset.batch(self.args.eval_batch_size, self.args.dataset_drop_last, self.args.dataset_num_workers)

    # We use the same batch_size as for eval.
    return test_dataset

mindnlp.engine.trainer.base.Trainer.get_train_dataset() cached

Returns the training [~mindspore.dataset.GeneratorDataset].

Will use no sampler if train_dataset does not implement __len__, a random sampler (adapted to distributed training if necessary) otherwise.

Subclass and override this method if you want to inject some custom behavior.

Source code in mindnlp/engine/trainer/base.py
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
@lru_cache(128)
def get_train_dataset(self) -> Dataset:
    """
    Returns the training [`~mindspore.dataset.GeneratorDataset`].

    Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
    training if necessary) otherwise.

    Subclass and override this method if you want to inject some custom behavior.
    """
    if self.train_dataset is None:
        raise ValueError("Trainer: training requires a train_dataset.")

    train_dataset = self.train_dataset
    map_fn = self.data_map_fn
    if isinstance(train_dataset, (BatchDataset, PaddedBatchDataset)):
        if self.data_map_fn is not None:
            logger.warning("The trainer has been passed a `map_fn` and found `BatchDataset` at same time, "
                           "the `map_fn` will be ignored.")
        return train_dataset

    if map_fn is not None:
        if mismatch_dataset_col_names(get_function_args(map_fn), train_dataset.get_col_names()):
            raise ValueError(f'The arguments of `map_fn` must be subset of useful dataset columns, '
                            f'but found {args_only_in_map_fn(get_function_args(map_fn), train_dataset.get_col_names())}')
        train_dataset = train_dataset.map(map_fn, map_fn.input_columns, map_fn.output_columns)

    train_dataset = self._remove_unused_columns(train_dataset, description="training")

    train_dataset = train_dataset.batch(self._train_batch_size, self.args.dataset_drop_last, self.args.dataset_num_workers)
    return train_dataset

mindnlp.engine.trainer.base.Trainer.is_local_process_zero()

Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process.

Source code in mindnlp/engine/trainer/base.py
1423
1424
1425
1426
1427
1428
def is_local_process_zero(self) -> bool:
    """
    Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
    machines) main process.
    """
    return self.args.local_process_index == 0

mindnlp.engine.trainer.base.Trainer.is_world_process_zero()

Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be True for one process).

Source code in mindnlp/engine/trainer/base.py
1430
1431
1432
1433
1434
1435
1436
1437
def is_world_process_zero(self) -> bool:
    """
    Whether or not this process is the global main process (when training in a distributed fashion on several
    machines, this is only going to be `True` for one process).
    """
    # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
    # process index.
    return self.args.process_index == 0

mindnlp.engine.trainer.base.Trainer.log(logs)

Log logs on the various objects watching training.

Subclass and override this method to inject custom behavior.

PARAMETER DESCRIPTION
logs

The values to log.

TYPE: `Dict[str, float]`

Source code in mindnlp/engine/trainer/base.py
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
def log(self, logs: Dict[str, float]) -> None:
    """
    Log `logs` on the various objects watching training.

    Subclass and override this method to inject custom behavior.

    Args:
        logs (`Dict[str, float]`):
            The values to log.
    """
    if self.state.epoch is not None:
        logs["epoch"] = round(self.state.epoch, 2)
    if self.args.include_num_input_tokens_seen:
        logs["num_input_tokens_seen"] = self.state.num_input_tokens_seen

    output = {**logs, **{"step": self.state.global_step}}
    self.state.log_history.append(output)
    self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)

mindnlp.engine.trainer.base.Trainer.num_examples(dataset)

Helper to get number of samples in a [~mindspore.dataset.GeneratorDataset] by accessing its dataset. When dataloader.dataset does not exist or has no length, estimates as best it can

Source code in mindnlp/engine/trainer/base.py
565
566
567
568
569
570
def num_examples(self, dataset: 'mindspore.dataset.Dataset') -> int:
    """
    Helper to get number of samples in a [`~mindspore.dataset.GeneratorDataset`] by accessing its dataset. When
    dataloader.dataset does not exist or has no length, estimates as best it can
    """
    return dataset.get_dataset_size() * dataset.get_batch_size()

mindnlp.engine.trainer.base.Trainer.num_tokens(train_ds, max_steps=None)

Helper to get number of tokens in a [~mindspore.dataset.GeneratorDataset] by enumerating dataloader.

Source code in mindnlp/engine/trainer/base.py
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def num_tokens(self, train_ds: 'mindspore.dataset.Dataset', max_steps: Optional[int] = None) -> int:
    """
    Helper to get number of tokens in a [`~mindspore.dataset.GeneratorDataset`] by enumerating dataloader.
    """
    train_tokens = 0
    try:
        for step, batch in train_ds.create_dict_iterator():
            tokens = batch["input_ids"].numel()
            if max_steps is not None:
                return tokens * max_steps
            train_tokens += tokens
        return train_tokens
    except KeyError:
        logger.warning("Cannot get num_tokens from dataloader")
        return train_tokens

mindnlp.engine.trainer.base.Trainer.pop_callback(callback)

Remove a callback from the current list of [~transformers.TrainerCallback] and returns it.

If the callback is not found, returns None (and no error is raised).

PARAMETER DESCRIPTION
callback

A [~transformers.TrainerCallback] class or an instance of a [~transformers.TrainerCallback]. In the first case, will pop the first member of that class found in the list of callbacks.

TYPE: `type` or [`~transformers.TrainerCallback`]

RETURNS DESCRIPTION

[~transformers.TrainerCallback]: The callback removed, if found.

Source code in mindnlp/engine/trainer/base.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def pop_callback(self, callback):
    """
    Remove a callback from the current list of [`~transformers.TrainerCallback`] and returns it.

    If the callback is not found, returns `None` (and no error is raised).

    Args:
       callback (`type` or [`~transformers.TrainerCallback`]):
           A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the
           first case, will pop the first member of that class found in the list of callbacks.

    Returns:
        [`~transformers.TrainerCallback`]: The callback removed, if found.
    """
    return self.callback_handler.pop_callback(callback)

mindnlp.engine.trainer.base.Trainer.predict(test_dataset, ignore_keys=None, metric_key_prefix='test')

Run prediction and returns predictions and potential metrics.

Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in evaluate().

PARAMETER DESCRIPTION
test_dataset

Dataset to run the predictions on. If it is an datasets.Dataset, columns not accepted by the model.forward() method are automatically removed. Has to implement the method __len__

TYPE: `Dataset`

ignore_keys

A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions.

TYPE: `List[str]`, *optional* DEFAULT: None

metric_key_prefix

An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "test_bleu" if the prefix is "test" (default)

TYPE: `str`, *optional*, defaults to `"test"` DEFAULT: 'test'

If your predictions or labels have different sequence length (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100.

Returns: NamedTuple A namedtuple with the following keys:

- predictions (`np.ndarray`): The predictions on `test_dataset`.
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
  labels).
Source code in mindnlp/engine/trainer/base.py
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
def predict(
    self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
) -> PredictionOutput:
    """
    Run prediction and returns predictions and potential metrics.

    Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
    will also return metrics, like in `evaluate()`.

    Args:
        test_dataset (`Dataset`):
            Dataset to run the predictions on. If it is an `datasets.Dataset`, columns not accepted by the
            `model.forward()` method are automatically removed. Has to implement the method `__len__`
        ignore_keys (`List[str]`, *optional*):
            A list of keys in the output of your model (if it is a dictionary) that should be ignored when
            gathering predictions.
        metric_key_prefix (`str`, *optional*, defaults to `"test"`):
            An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
            "test_bleu" if the prefix is "test" (default)

    <Tip>

    If your predictions or labels have different sequence length (for instance because you're doing dynamic padding
    in a token classification task) the predictions will be padded (on the right) to allow for concatenation into
    one array. The padding index is -100.

    </Tip>

    Returns: *NamedTuple* A namedtuple with the following keys:

        - predictions (`np.ndarray`): The predictions on `test_dataset`.
        - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
        - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
          labels).
    """
    # memory metrics - must set up as early as possible
    # self._memory_tracker.start()

    test_dataloader = self.get_test_dataset(test_dataset)
    start_time = time.time()

    eval_loop = self.evaluation_loop
    output = eval_loop(
        test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
    )
    total_batch_size = self.args.eval_batch_size * self.args.world_size
    # if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
    #     start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
    output.metrics.update(
        speed_metrics(
            metric_key_prefix,
            start_time,
            num_samples=output.num_samples,
            num_steps=math.ceil(output.num_samples / total_batch_size),
        )
    )

    self.control = self.callback_handler.on_predict(self.args, self.state, self.control, output.metrics)

    return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)

mindnlp.engine.trainer.base.Trainer.prediction_step(model, inputs, prediction_loss_only, ignore_keys=None)

Perform an evaluation step on model using inputs.

Subclass and override to inject custom behavior.

PARAMETER DESCRIPTION
model

The model to evaluate.

TYPE: `nn.cell`

inputs

The inputs and targets of the model.

The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument labels. Check your model's documentation for all accepted arguments.

TYPE: `Dict[str, Union[mindspore.Tensor, Any]]`

prediction_loss_only

Whether or not to return the loss only.

TYPE: `bool`

ignore_keys

A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions.

TYPE: `List[str]`, *optional* DEFAULT: None

Return

Tuple[Optional[mindspore.Tensor], Optional[mindspore.Tensor], Optional[mindspore.Tensor]]: A tuple with the loss, logits and labels (each being optional).

Source code in mindnlp/engine/trainer/base.py
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
def prediction_step(
    self,
    model: nn.Module,
    inputs: Dict[str, Union[mindspore.Tensor, Any]],
    prediction_loss_only: bool,
    ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[mindspore.Tensor], Optional[mindspore.Tensor], Optional[mindspore.Tensor]]:
    """
    Perform an evaluation step on `model` using `inputs`.

    Subclass and override to inject custom behavior.

    Args:
        model (`nn.cell`):
            The model to evaluate.
        inputs (`Dict[str, Union[mindspore.Tensor, Any]]`):
            The inputs and targets of the model.

            The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
            argument `labels`. Check your model's documentation for all accepted arguments.
        prediction_loss_only (`bool`):
            Whether or not to return the loss only.
        ignore_keys (`List[str]`, *optional*):
            A list of keys in the output of your model (if it is a dictionary) that should be ignored when
            gathering predictions.

    Return:
        Tuple[Optional[mindspore.Tensor], Optional[mindspore.Tensor], Optional[mindspore.Tensor]]: A tuple with the loss,
        logits and labels (each being optional).
    """
    has_labels = False if len(self.label_names) == 0 else all(inputs.get(k) is not None for k in self.label_names)
    # For CLIP-like models capable of returning loss values.
    # If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
    # is `True` in `model.forward`.
    return_loss = inputs.get("return_loss", None)
    if return_loss is None:
        return_loss = self.can_return_loss
    loss_without_labels = len(self.label_names) == 0 and return_loss

    inputs = self._prepare_inputs(inputs)
    if ignore_keys is None:
        if hasattr(self.model, "config"):
            ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
        else:
            ignore_keys = []

    # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
    if has_labels or loss_without_labels:
        labels = tuple(inputs.get(name) for name in self.label_names)
        # labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
        if len(labels) == 1:
            labels = labels[0]
    else:
        labels = None

    if has_labels or loss_without_labels:
        loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
        loss = loss.mean()

        if isinstance(outputs, dict):
            logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
        else:
            logits = outputs[1:]
    else:
        loss = None
        outputs = model(**inputs)
        if isinstance(outputs, dict):
            logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
        else:
            logits = outputs
        # TODO: this needs to be fixed and made cleaner later.
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index - 1]

    if prediction_loss_only:
        return (loss, None, None)

    # logits = nested_detach(logits)
    if len(logits) == 1:
        logits = logits[0]

    return (loss, logits, labels)

mindnlp.engine.trainer.base.Trainer.remove_callback(callback)

Remove a callback from the current list of [~transformers.TrainerCallback].

PARAMETER DESCRIPTION
callback

A [~transformers.TrainerCallback] class or an instance of a [~transformers.TrainerCallback]. In the first case, will remove the first member of that class found in the list of callbacks.

TYPE: `type` or [`~transformers.TrainerCallback`]

Source code in mindnlp/engine/trainer/base.py
356
357
358
359
360
361
362
363
364
365
def remove_callback(self, callback):
    """
    Remove a callback from the current list of [`~transformers.TrainerCallback`].

    Args:
       callback (`type` or [`~transformers.TrainerCallback`]):
           A [`~transformers.TrainerCallback`] class or an instance of a [`~transformers.TrainerCallback`]. In the
           first case, will remove the first member of that class found in the list of callbacks.
    """
    self.callback_handler.remove_callback(callback)

mindnlp.engine.trainer.base.Trainer.save_model(output_dir=None, _internal_call=False)

Will save the model, so you can reload it using from_pretrained().

Will only save from the main process.

Source code in mindnlp/engine/trainer/base.py
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
    """
    Will save the model, so you can reload it using `from_pretrained()`.

    Will only save from the main process.
    """
    if output_dir is None:
        output_dir = self.args.output_dir

    if self.args.should_save:
        self._save(output_dir)

mindnlp.engine.trainer.base.Trainer.store_flos()

Stores the current number of floating point operations (FLOs) and updates the total FLOs count.

PARAMETER DESCRIPTION
self

The Trainer object itself.

TYPE: Trainer

RETURNS DESCRIPTION
None

This method does not return any value.

Source code in mindnlp/engine/trainer/base.py
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
def store_flos(self):
    r"""
    Stores the current number of floating point operations (FLOs) and updates the total FLOs count.

    Args:
        self (Trainer): The Trainer object itself.

    Returns:
        None: This method does not return any value.

    Raises:
        N/A
    """
    # Storing the number of floating-point operations that went into the model
    # if self.args.parallel_mode == ParallelMode.DISTRIBUTED:
    #     self.state.total_flos += (
    #         distributed_broadcast_scalars([self.current_flos], device=self.args.device).sum().item()
    #     )
    #     self.current_flos = 0
    # else:
    self.state.total_flos += self.current_flos
    self.current_flos = 0

mindnlp.engine.trainer.base.Trainer.train(resume_from_checkpoint=None, ignore_keys_for_eval=None, **kwargs)

Main training entry point.

PARAMETER DESCRIPTION
resume_from_checkpoint

If a str, local path to a saved checkpoint as saved by a previous instance of [Trainer]. If a bool and equals True, load the last checkpoint in args.output_dir as saved by a previous instance of [Trainer]. If present, training will resume from the model/optimizer/scheduler states loaded here.

TYPE: `str` or `bool`, *optional* DEFAULT: None

kwargs

Additional keyword arguments used to hide deprecated arguments

TYPE: `Dict[str, Any]`, *optional* DEFAULT: {}

Source code in mindnlp/engine/trainer/base.py
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
def train(
    self,
    resume_from_checkpoint: Optional[Union[str, bool]] = None,
    ignore_keys_for_eval: Optional[List[str]] = None,
    **kwargs,
):
    """
    Main training entry point.

    Args:
        resume_from_checkpoint (`str` or `bool`, *optional*):
            If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a
            `bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance
            of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here.
        ignore_keys_for_eval (`List[str]`, *optional*)
            A list of keys in the output of your model (if it is a dictionary) that should be ignored when
            gathering predictions for evaluation during the training.
        kwargs (`Dict[str, Any]`, *optional*):
            Additional keyword arguments used to hide deprecated arguments
    """
    if resume_from_checkpoint is False:
        resume_from_checkpoint = None

    args = self.args

    self.is_in_train = True

    # Attach NEFTune hooks if necessary
    if self.neftune_noise_alpha is not None:
        self.model = self._activate_neftune(self.model)

    if len(kwargs) > 0:
        raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
    # This might change the seed so needs to run first.
    self._train_batch_size = self.args.train_batch_size
    # Model re-init
    model_reloaded = False
    if self.model_init is not None:
        # Seed must be set before instantiating the model when using model_init.
        enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
        self.model = self.call_model_init()
        model_reloaded = True
        # Reinitializes optimizer and scheduler
        self.optimizer, self.lr_scheduler = None, None

    self.model_reload = model_reloaded

    # Load potential model checkpoint
    if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
        resume_from_checkpoint = get_last_checkpoint(args.output_dir)
        if resume_from_checkpoint is None:
            raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")

    if resume_from_checkpoint is not None:
        self._load_from_checkpoint(resume_from_checkpoint)
        # In case of repeating the find_executable_batch_size, set `self._train_batch_size` properly
        state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
        if state.train_batch_size is not None:
            self._train_batch_size = state.train_batch_size

    if model_reloaded:
        self.model_wrapped = self.model

    inner_training_loop = find_executable_batch_size(
        self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
    )

    return inner_training_loop(
        args=args,
        resume_from_checkpoint=resume_from_checkpoint,
        ignore_keys_for_eval=ignore_keys_for_eval,
    )

mindnlp.engine.trainer.base.Trainer.training_step(model, inputs)

Perform a training step on a batch of inputs.

Subclass and override to inject custom behavior.

PARAMETER DESCRIPTION
model

The model to train.

TYPE: `nn.Module`

inputs

The inputs and targets of the model.

The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument labels. Check your model's documentation for all accepted arguments.

TYPE: `Dict[str, Union[mindspore.Tensor, Any]]`

Return

mindspore.Tensor: The tensor with training loss on this batch.

Source code in mindnlp/engine/trainer/base.py
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
def training_step(self, model: nn.Module, inputs: Dict[str, Union[mindspore.Tensor, Any]]) -> Tuple[List[mindspore.Tensor], mindspore.Tensor]:
    """
    Perform a training step on a batch of inputs.

    Subclass and override to inject custom behavior.

    Args:
        model (`nn.Module`):
            The model to train.
        inputs (`Dict[str, Union[mindspore.Tensor, Any]]`):
            The inputs and targets of the model.

            The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
            argument `labels`. Check your model's documentation for all accepted arguments.

    Return:
        `mindspore.Tensor`: The tensor with training loss on this batch.
    """
    model.set_train()
    inputs = self._prepare_inputs(inputs)

    def forward(inputs):
        return self.compute_loss(model, inputs)

    if getattr(self, 'grad_fn', None) is None or self.model_reload:
        self.grad_fn = mindspore.value_and_grad(forward, None, self.optimizer.parameters)

    loss, grads = self.grad_fn(inputs)

    return loss / self.args.gradient_accumulation_steps, grads