beam_constraints
mindnlp.transformers.generation.beam_constraints
¶
Beam constraints
mindnlp.transformers.generation.beam_constraints.Constraint
¶
Bases: ABC
Abstract base class for all constraints that can be applied during generation. It must define how the constraint can be satisfied.
All classes that inherit Constraint must follow the requirement that
Example
>>> completed = False
>>> while not completed:
>>> _, completed = constraint.update(constraint.advance())
will always terminate (halt).
Source code in mindnlp/transformers/generation/beam_constraints.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.__init__()
¶
Initializes an instance of the Constraint class.
PARAMETER | DESCRIPTION |
---|---|
self |
Constraint instance being initialized.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.advance()
abstractmethod
¶
When called, returns the token that would take this constraint one step closer to being fulfilled.
RETURNS | DESCRIPTION |
---|---|
token_ids
|
Must be a tensor of a list of indexable tokens, not some integer.
TYPE:
|
Source code in mindnlp/transformers/generation/beam_constraints.py
78 79 80 81 82 83 84 85 86 87 88 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.copy(stateful=False)
abstractmethod
¶
Creates a new instance of this constraint.
PARAMETER | DESCRIPTION |
---|---|
stateful(`bool`) |
Whether to not only copy the constraint for new instance, but also its state.
|
RETURNS | DESCRIPTION |
---|---|
constraint
|
The same constraint as the one being called from.
TYPE:
|
Source code in mindnlp/transformers/generation/beam_constraints.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.does_advance(token_id)
abstractmethod
¶
Reads in a token and returns whether it creates progress.
Source code in mindnlp/transformers/generation/beam_constraints.py
90 91 92 93 94 95 96 97 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.remaining()
abstractmethod
¶
Returns the number of remaining steps of advance()
in order to complete this constraint.
Source code in mindnlp/transformers/generation/beam_constraints.py
134 135 136 137 138 139 140 141 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.reset()
abstractmethod
¶
Resets the state of this constraint to its initialization. We would call this in cases where the fulfillment of a constraint is abrupted by an unwanted token.
Source code in mindnlp/transformers/generation/beam_constraints.py
124 125 126 127 128 129 130 131 132 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.test()
¶
Tests whether this constraint has been properly defined.
Source code in mindnlp/transformers/generation/beam_constraints.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
mindnlp.transformers.generation.beam_constraints.Constraint.update(token_id)
abstractmethod
¶
Reads in a token and returns booleans that indicate the progress made by it. This function will update the
state of this object unlikes does_advance(self, token_id: int)
.
This isn't to test whether a certain token will advance the progress; it's to update its state as if it has been generated. This becomes important if token_id != desired token (refer to else statement in PhrasalConstraint)
PARAMETER | DESCRIPTION |
---|---|
token_id(`int`) |
The id of a newly generated token in the beam search.
|
Source code in mindnlp/transformers/generation/beam_constraints.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState
¶
A class for beam scorers to track its progress through a list of constraints.
PARAMETER | DESCRIPTION |
---|---|
constraints |
A list of [
TYPE:
|
Source code in mindnlp/transformers/generation/beam_constraints.py
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.__init__(constraints)
¶
Initialize a ConstraintListState object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ConstraintListState class.
TYPE:
|
constraints |
A list of Constraint objects representing the constraints.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.add(token_id)
¶
This method 'add' belongs to the class 'ConstraintListState' and is used to update the state based on the provided token_id.
PARAMETER | DESCRIPTION |
---|---|
self |
Represents the instance of the 'ConstraintListState' class.
|
token_id |
Represents the token identifier that needs to be processed.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple
|
The method returns a tuple containing two boolean values, 'complete' and 'stepped'.
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised when the 'token_id' parameter is not of integer type. |
RuntimeError
|
Raised when the update operation does not yield incremental progress despite the advancement condition being met. |
Source code in mindnlp/transformers/generation/beam_constraints.py
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.advance()
¶
The list of tokens to generate such that we can make progress. By "list" we don't mean the list of token that will fully fulfill a constraint.
Given constraints c_i = {t_ij | j == # of tokens}
, If we're not in the middle of progressing through a
specific constraint c_i
, we return:
[t_k1 for k in indices of unfulfilled constraints]
If we are in the middle of a constraint, then we return:
[t_ij]
, where i
is the index of the inprogress constraint, j
is the next step for the constraint.
Though we don't care which constraint is fulfilled first, if we are in the progress of fulfilling a constraint, that's the only one we'll return.
Source code in mindnlp/transformers/generation/beam_constraints.py
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.copy(stateful=True)
¶
This method creates a copy of the ConstraintListState object with the option to include stateful constraints.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the ConstraintListState class.
TYPE:
|
stateful |
A flag indicating whether to include stateful constraints in the copy. Defaults to True. If set to True, the copy will include complete_constraints and inprogress_constraint.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ConstraintListState
|
A new instance of the ConstraintListState class with copied constraints based on the specified stateful parameter. |
Source code in mindnlp/transformers/generation/beam_constraints.py
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.get_bank()
¶
This method 'get_bank' is defined within the 'ConstraintListState' class and retrieves the bank value based on certain constraints.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'ConstraintListState' class.
|
RETURNS | DESCRIPTION |
---|---|
bank value: The method calculates and returns the bank value based on the complete and in-progress constraints as well as the maximum sequence length. |
Source code in mindnlp/transformers/generation/beam_constraints.py
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.init_state()
¶
This method initializes the state of the ConstraintListState object.
PARAMETER | DESCRIPTION |
---|---|
self |
ConstraintListState - The instance of the ConstraintListState class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
|
mindnlp.transformers.generation.beam_constraints.ConstraintListState.reset(token_ids)
¶
Source code in mindnlp/transformers/generation/beam_constraints.py
750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint
¶
Bases: Constraint
A special [Constraint
] that is fulfilled by fulfilling just one of several constraints.
PARAMETER | DESCRIPTION |
---|---|
nested_token_ids |
A list of words, where each word is a list of ids. This constraint is fulfilled by generating just one from the list of words.
TYPE:
|
Source code in mindnlp/transformers/generation/beam_constraints.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.__init__(nested_token_ids)
¶
Initialize a DisjunctiveConstraint object with the provided nested_token_ids.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveConstraint class.
|
nested_token_ids |
A list of lists containing positive integers representing token IDs. This parameter is required and must be a non-empty list of lists. Each inner list represents a sequence of token IDs. Each token ID should be a positive integer (greater than or equal to 0).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If nested_token_ids is not a list or is an empty list. |
ValueError
|
If nested_token_ids is not a list of lists. |
ValueError
|
If any inner list in nested_token_ids contains non-integer values or negative integers. |
Source code in mindnlp/transformers/generation/beam_constraints.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.advance()
¶
Advance the current sequence in the DisjunctiveConstraint object and return the next available token.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the DisjunctiveConstraint class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
If there are no more tokens available in the current sequence. |
Source code in mindnlp/transformers/generation/beam_constraints.py
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.copy(stateful=False)
¶
Copy method creates a new instance of DisjunctiveConstraint and returns it. This method can be used to create a copy of an existing DisjunctiveConstraint object.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the DisjunctiveConstraint object.
TYPE:
|
stateful |
A flag indicating whether to create a stateful copy or not. If set to True, the state of the current instance will be copied to the new instance. Default is False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DisjunctiveConstraint
|
A new instance of the DisjunctiveConstraint object. |
Note
- If stateful is set to True, the new instance will have the same values for seq_len, current_seq, and completed as the current instance.
- If stateful is set to False, the new instance will have default values for seq_len, current_seq, and completed.
Example
>>> constraint = DisjunctiveConstraint(['A', 'B', 'C'])
>>> constraint.seq_len = 10
>>> constraint.current_seq = ['A', 'B']
>>> constraint.completed = False
...
>>> # Create a stateful copy
>>> new_constraint = constraint.copy(stateful=True)
>>> # new_constraint.seq_len = 10
>>> # new_constraint.current_seq = ['A', 'B']
>>> # new_constraint.completed = False
...
>>> # Create a non-stateful copy
>>> new_constraint = constraint.copy(stateful=False)
>>> # new_constraint.seq_len = default value
>>> # new_constraint.current_seq = default value
>>> # new_constraint.completed = default value
Source code in mindnlp/transformers/generation/beam_constraints.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.does_advance(token_id)
¶
Checks if a given token ID can be advanced in the DisjunctiveConstraint.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveConstraint class.
TYPE:
|
token_id |
The ID of the token to be checked for advancement.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. It only performs a check. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the provided |
Note
The does_advance
method checks if the given token_id
can be advanced in the DisjunctiveConstraint.
It first validates that the token_id
is of type int. Then, it retrieves the next possible tokens from the
trie associated with the current sequence. Finally, it returns whether the token_id
is present in the next
tokens or not.
Source code in mindnlp/transformers/generation/beam_constraints.py
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.remaining()
¶
Returns the remaining length of the current sequence in a DisjunctiveConstraint object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveConstraint class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.reset()
¶
Resets the state of the DisjunctiveConstraint.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveConstraint class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveConstraint.update(token_id)
¶
This method updates the state of the DisjunctiveConstraint object based on the provided token_id.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveConstraint class.
TYPE:
|
token_id |
The identifier of the token to be processed. It must be of type 'int'.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the token_id provided is not of type 'int'. |
Source code in mindnlp/transformers/generation/beam_constraints.py
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveTrie
¶
DisjunctiveTrie
Source code in mindnlp/transformers/generation/beam_constraints.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveTrie.__init__(nested_token_ids, no_subsets=True)
¶
A helper class that builds a trie with the words represented in nested_token_ids
.
Source code in mindnlp/transformers/generation/beam_constraints.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveTrie.count_leaves(root)
¶
Counts the number of leaves in a Disjunctive Trie starting from a given root node.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveTrie class.
TYPE:
|
root |
The root node of the Disjunctive Trie from which the leaf count should be calculated.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveTrie.has_subsets(trie, nested_token_ids)
¶
Returns whether # of leaves == # of words. Otherwise some word is a subset of another.
Source code in mindnlp/transformers/generation/beam_constraints.py
418 419 420 421 422 423 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveTrie.next_tokens(current_seq)
¶
The next possible tokens that will progress the trie, given the current sequence of tokens in current_seq
.
Source code in mindnlp/transformers/generation/beam_constraints.py
365 366 367 368 369 370 371 372 373 374 375 376 |
|
mindnlp.transformers.generation.beam_constraints.DisjunctiveTrie.reached_leaf(current_seq)
¶
This method is part of the DisjunctiveTrie class and is used to determine if the current sequence has reached a leaf node within the trie structure.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the DisjunctiveTrie class.
|
current_seq |
A sequence representing the current state within the trie. It is of type str and is used to navigate through the trie structure. There are no specific restrictions on the content of the sequence.
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns a value of type None, indicating that there are no more tokens to traverse in the trie, and the current sequence has reached a leaf node. |
Source code in mindnlp/transformers/generation/beam_constraints.py
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint
¶
Bases: Constraint
[Constraint
] enforcing that an ordered sequence of tokens is included in the output.
PARAMETER | DESCRIPTION |
---|---|
token_ids |
The id of the token that must be generated by the output.
TYPE:
|
Source code in mindnlp/transformers/generation/beam_constraints.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.__init__(token_ids)
¶
init
Initializes a new instance of the PhrasalConstraint class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhrasalConstraint class.
|
token_ids |
A list of token IDs representing the constraints. This parameter is required and should be a non-empty list of positive integers.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If token_ids is not a non-empty list or if it contains non-positive integers. |
Source code in mindnlp/transformers/generation/beam_constraints.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.advance()
¶
Advance to the next token in the PhrasalConstraint.
PARAMETER | DESCRIPTION |
---|---|
self |
The PhrasalConstraint instance.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
If the PhrasalConstraint is completed, returns None. |
int
|
The next token ID if the PhrasalConstraint is not completed. |
Source code in mindnlp/transformers/generation/beam_constraints.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.copy(stateful=False)
¶
Copy a PhrasalConstraint.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhrasalConstraint class.
TYPE:
|
stateful |
If True, the copy will include the stateful attributes of the constraint. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
PhrasalConstraint
|
A new instance of the PhrasalConstraint class with a copy of the token_ids. If stateful is True, the new instance will also have the same seq_len, fulfilled_idx, and completed attributes as the original instance. |
Source code in mindnlp/transformers/generation/beam_constraints.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.does_advance(token_id)
¶
Checks if the given token_id
can be advanced in the context of the PhrasalConstraint class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the PhrasalConstraint class.
TYPE:
|
token_id |
The ID of the token to be advanced.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the |
Source code in mindnlp/transformers/generation/beam_constraints.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.remaining()
¶
This method calculates the remaining length of the sequence that needs to be fulfilled for the phrasal constraint.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhrasalConstraint class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
int
|
The remaining length of the sequence to be fulfilled for the phrasal constraint. |
Source code in mindnlp/transformers/generation/beam_constraints.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.reset()
¶
Resets the state of the PhrasalConstraint object.
PARAMETER | DESCRIPTION |
---|---|
self |
PhrasalConstraint
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_constraints.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
mindnlp.transformers.generation.beam_constraints.PhrasalConstraint.update(token_id)
¶
Updates the state of the PhrasalConstraint object based on the given token ID.
PARAMETER | DESCRIPTION |
---|---|
self |
The PhrasalConstraint object.
TYPE:
|
token_id |
The ID of the token to update the state with.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the |
This method updates the state of the PhrasalConstraint object by either advancing the fulfillment index, marking the constraint as completed, or resetting the state. The method returns None.
If the token_id
is not an integer, a ValueError is raised with a descriptive error message.
Note
The method modifies the state of the PhrasalConstraint object by updating the fulfillment index, completion status, and potentially resetting the state.
Source code in mindnlp/transformers/generation/beam_constraints.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|