beam_search
mindnlp.transformers.generation.beam_search
¶
Beam search
mindnlp.transformers.generation.beam_search.BeamHypotheses
¶
BeamHypotheses
Source code in mindnlp/transformers/generation/beam_search.py
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
|
mindnlp.transformers.generation.beam_search.BeamHypotheses.__init__(num_beams, length_penalty, early_stopping, max_length=None)
¶
Initialize n-best list of hypotheses.
Source code in mindnlp/transformers/generation/beam_search.py
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 |
|
mindnlp.transformers.generation.beam_search.BeamHypotheses.__len__()
¶
Number of hypotheses in the list.
Source code in mindnlp/transformers/generation/beam_search.py
1092 1093 1094 1095 1096 |
|
mindnlp.transformers.generation.beam_search.BeamHypotheses.add(hyp, sum_logprobs, beam_indices=None)
¶
Add a new hypothesis to the list.
Source code in mindnlp/transformers/generation/beam_search.py
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 |
|
mindnlp.transformers.generation.beam_search.BeamHypotheses.is_done(best_sum_logprobs, cur_len)
¶
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence.
Source code in mindnlp/transformers/generation/beam_search.py
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
|
mindnlp.transformers.generation.beam_search.BeamScorer
¶
Bases: ABC
Abstract base class for all beam scorers that are used for [~PreTrainedModel.beam_search
] and
[~PreTrainedModel.beam_sample
].
Source code in mindnlp/transformers/generation/beam_search.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
mindnlp.transformers.generation.beam_search.BeamScorer.finalize(input_ids, next_scores, next_tokens, next_indices, max_length, **kwargs)
¶
Finalizes the beam scoring process.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the BeamScorer class.
TYPE:
|
input_ids |
The input tensor with shape (batch_size, beam_width, sequence_length) containing the input token IDs.
TYPE:
|
next_scores |
The tensor with shape (batch_size, beam_width) containing the scores for the next tokens.
TYPE:
|
next_tokens |
The tensor with shape (batch_size, beam_width) containing the IDs of the next tokens.
TYPE:
|
next_indices |
The tensor with shape (batch_size, beam_width) containing the indices of the next tokens.
TYPE:
|
max_length |
The maximum length of the sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The tensor with shape (batch_size, beam_width, max_length) representing the final scores. |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
This exception is raised if the method is called directly as it is an abstract method. |
Source code in mindnlp/transformers/generation/beam_search.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
mindnlp.transformers.generation.beam_search.BeamScorer.process(input_ids, next_scores, next_tokens, next_indices, **kwargs)
¶
This method processes the input data to calculate the next scores, tokens, and indices for beam search.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the BeamScorer class.
|
input_ids |
The input tensor containing the token IDs.
TYPE:
|
next_scores |
The tensor containing the scores for the next tokens.
TYPE:
|
next_tokens |
The tensor containing the next token IDs.
TYPE:
|
next_indices |
The tensor containing the indices of the next tokens.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the updated next tokens tensor. |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
This exception is raised when the method is called directly as it is an abstract method and should be implemented in a subclass. |
Source code in mindnlp/transformers/generation/beam_search.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
mindnlp.transformers.generation.beam_search.BeamSearchScorer
¶
Bases: BeamScorer
[BeamScorer
] implementing standard beam search decoding.
Adapted in part from Facebook's XLM beam search code.
Reference for the diverse beam search algorithm and implementation Ashwin Kalyan's DBS implementation
PARAMETER | DESCRIPTION |
---|---|
batch_size |
Batch Size of
TYPE:
|
num_beams |
Number of beams for beam search.
TYPE:
|
device |
Defines the device type (e.g.,
TYPE:
|
length_penalty |
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
likelihood of the sequence (i.e. negative),
TYPE:
|
do_early_stopping |
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
TYPE:
|
num_beam_hyps_to_keep |
The number of beam hypotheses that shall be returned upon calling
[
TYPE:
|
num_beam_groups |
Number of groups to divide
TYPE:
|
max_length |
The maximum length of the sequence to be generated.
TYPE:
|
Source code in mindnlp/transformers/generation/beam_search.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
|
mindnlp.transformers.generation.beam_search.BeamSearchScorer.is_done: bool
property
¶
Checks if the BeamSearchScorer instance is done.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the BeamSearchScorer class.
|
RETURNS | DESCRIPTION |
---|---|
bool
|
Returns a boolean value indicating whether the BeamSearchScorer instance is done or not.
TYPE:
|
This method returns True if the internal '_done' attribute, which represents the completion status of the BeamSearchScorer instance, is set to True for all elements. Otherwise, it returns False. The '_done' attribute is a container that holds the completion status of each element in the BeamSearchScorer instance.
Note
The '_done' attribute is expected to be a container with elements that can be evaluated as boolean values. If the '_done' attribute contains non-boolean elements, unexpected behavior may occur.
mindnlp.transformers.generation.beam_search.BeamSearchScorer.__init__(batch_size, num_beams, length_penalty=1.0, do_early_stopping=False, num_beam_hyps_to_keep=1, num_beam_groups=1, max_length=None)
¶
Initializes a new instance of the BeamSearchScorer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
batch_size |
The size of the batch.
TYPE:
|
num_beams |
The number of beams to use in the beam search.
TYPE:
|
length_penalty |
The length penalty factor to apply during beam search.
TYPE:
|
do_early_stopping |
Determines whether to perform early stopping during beam search. Can be a boolean value or a string.
TYPE:
|
num_beam_hyps_to_keep |
The number of beam hypotheses to keep.
TYPE:
|
num_beam_groups |
The number of beam groups to use during beam search.
TYPE:
|
max_length |
The maximum length of the generated sequences. If not specified, there is no maximum length restriction.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the num_beams parameter is not an integer strictly greater than 1, or if num_beams is 1 and do_early_stopping is not used. |
ValueError
|
If the num_beam_groups parameter is not an integer smaller or equal than num_beams, or if num_beams is not divisible by num_beam_groups. |
Source code in mindnlp/transformers/generation/beam_search.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
mindnlp.transformers.generation.beam_search.BeamSearchScorer.finalize(input_ids, final_beam_scores, final_beam_tokens, final_beam_indices, max_length, pad_token_id=None, eos_token_id=None, beam_indices=None)
¶
This method finalizes the beam search process by selecting the best beam hypotheses and forwarding the final output sequences.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class BeamSearchScorer.
|
input_ids |
The input tensor containing token IDs.
TYPE:
|
final_beam_scores |
The final scores of the selected beam hypotheses.
TYPE:
|
final_beam_tokens |
The token IDs of the final beam hypotheses.
TYPE:
|
final_beam_indices |
The indices of the final beam hypotheses.
TYPE:
|
max_length |
The maximum length of the output sequences.
TYPE:
|
pad_token_id |
The token ID used for padding, default is None.
TYPE:
|
eos_token_id |
The token ID or list of token IDs representing the end of sequence, default is None.
TYPE:
|
beam_indices |
The indices of the beam hypotheses, default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the final output sequences ('sequences' key), the scores of the sequences ('sequence_scores' key), and the indices of the beam hypotheses ('beam_indices' key). |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if 'pad_token_id' is not defined when necessary. |
Source code in mindnlp/transformers/generation/beam_search.py
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
|
mindnlp.transformers.generation.beam_search.BeamSearchScorer.process(input_ids, next_scores, next_tokens, next_indices, pad_token_id=None, eos_token_id=None, beam_indices=None, group_index=0)
¶
This method processes input data for beam search scoring in a BeamSearchScorer instance.
PARAMETER | DESCRIPTION |
---|---|
self |
BeamSearchScorer instance.
|
input_ids |
The input tensor containing token IDs.
TYPE:
|
next_scores |
The tensor containing scores for next tokens.
TYPE:
|
next_tokens |
The tensor containing the IDs of next tokens.
TYPE:
|
next_indices |
The tensor containing indices of next tokens.
TYPE:
|
pad_token_id |
The ID of the padding token. Default is None.
TYPE:
|
eos_token_id |
The ID or list of IDs indicating end-of-sequence tokens. Default is None.
TYPE:
|
beam_indices |
The tensor containing beam indices. Default is None.
TYPE:
|
group_index |
The index of the group. Default is 0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Tensor]
|
Dict[str, mindspore.Tensor]: A dictionary containing the processed beam scores, tokens, and indices. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input batch size does not match the expected group size. |
ValueError
|
If the expected group size does not match the group size used by the beam scorer. |
ValueError
|
If the generated beams are greater than or equal to the specified number of beams without defining eos_token_id and pad_token. |
ValueError
|
If the number of generated beams is less than the specified number of beams. |
ValueError
|
If an error occurs during beam search processing. |
Source code in mindnlp/transformers/generation/beam_search.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer
¶
Bases: BeamScorer
[BeamScorer
] implementing constrained beam search decoding.
PARAMETER | DESCRIPTION |
---|---|
batch_size |
Batch Size of
TYPE:
|
num_beams |
Number of beams for beam search.
TYPE:
|
constraints |
A list of positive constraints represented as
TYPE:
|
device |
Defines the device type (e.g.,
TYPE:
|
length_penalty |
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
likelihood of the sequence (i.e. negative),
TYPE:
|
do_early_stopping |
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
TYPE:
|
num_beam_hyps_to_keep |
The number of beam hypotheses that shall be returned upon calling
[
TYPE:
|
num_beam_groups |
Number of groups to divide
TYPE:
|
max_length |
The maximum length of the sequence to be generated.
TYPE:
|
Source code in mindnlp/transformers/generation/beam_search.py
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.is_done: bool
property
¶
Method to check if the ConstrainedBeamSearchScorer instance has completed processing.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of ConstrainedBeamSearchScorer on which the method is called. This parameter is required to access the internal state of the scorer. |
RETURNS | DESCRIPTION |
---|---|
bool
|
Returns a boolean value indicating whether the processing is completed (True) or not (False). True if all processing is done, False otherwise.
TYPE:
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.__init__(batch_size, num_beams, constraints, length_penalty=1.0, do_early_stopping=False, num_beam_hyps_to_keep=1, num_beam_groups=1, max_length=None)
¶
Initializes an instance of the ConstrainedBeamSearchScorer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
batch_size |
The number of examples in a batch.
TYPE:
|
num_beams |
The number of beams to use for beam search.
TYPE:
|
constraints |
A list of constraints to be applied during beam search.
TYPE:
|
length_penalty |
The length penalty to be applied during beam search.
TYPE:
|
do_early_stopping |
Whether to perform early stopping during beam search.
TYPE:
|
num_beam_hyps_to_keep |
The number of beam hypotheses to keep during beam search.
TYPE:
|
num_beam_groups |
The number of beam groups to use during beam search.
TYPE:
|
max_length |
The maximum length of output sequences.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If num_beams is not an integer strictly greater than 1 or if num_beam_groups is not an integer smaller or equal than num_beams or if num_beam_groups is not divisible by num_beams. |
Note
- For
num_beams
== 1, it is recommended to usegreedy_search
instead. - The parameter
constraints
is a list of constraints that should be satisfied by the generated sequences. - The parameter
length_penalty
is a scalar value that affects the length normalization penalty during beam search. - The parameter
do_early_stopping
determines whether beam search should stop early if all beam hypotheses have reached the end token. - The parameter
num_beam_hyps_to_keep
specifies the number of beam hypotheses to keep during beam search. - The parameter
num_beam_groups
determines the number of beam groups to use during beam search. - The parameter
max_length
specifies the maximum length of the output sequences. - The method initializes internal variables and objects required for beam search.
Source code in mindnlp/transformers/generation/beam_search.py
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.check_completes_constraints(sequence)
¶
This method checks if the given sequence completes constraints in the ConstrainedBeamSearchScorer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ConstrainedBeamSearchScorer class. |
sequence |
A list representing the input sequence to be checked for completing constraints.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value explicitly. It updates the state of the ConstrainedBeamSearchScorer instance. |
Source code in mindnlp/transformers/generation/beam_search.py
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.finalize(input_ids, final_beam_scores, final_beam_tokens, final_beam_indices, max_length, pad_token_id=None, eos_token_id=None, beam_indices=None)
¶
This method finalizes the beam search process in the ConstrainedBeamSearchScorer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
input_ids |
The input tensor containing token IDs.
TYPE:
|
final_beam_scores |
The final scores of the beams.
TYPE:
|
final_beam_tokens |
The final tokens of the beams.
TYPE:
|
final_beam_indices |
The final indices of the beams.
TYPE:
|
max_length |
The maximum length of the output sequences.
TYPE:
|
pad_token_id |
The token ID used for padding. Default is None.
TYPE:
|
eos_token_id |
The token ID or list of token IDs representing the end of sequence. Default is None.
TYPE:
|
beam_indices |
The indices of the beams. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the final sequences, sequence scores, and beam indices. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if 'pad_token_id' is not defined. |
Source code in mindnlp/transformers/generation/beam_search.py
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.make_constraint_states(n)
¶
Generates a list of constraint states for a ConstrainedBeamSearchScorer object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ConstrainedBeamSearchScorer class. |
n |
The number of constraint states to generate.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/beam_search.py
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.process(input_ids, next_scores, next_tokens, next_indices, scores_for_all_vocab, pad_token_id=None, eos_token_id=None, beam_indices=None)
¶
PARAMETER | DESCRIPTION |
---|---|
input_ids |
Indices of input sequence tokens in the vocabulary. Indices can be obtained using any class inheriting from [
TYPE:
|
next_scores |
Current scores of the top
TYPE:
|
next_tokens |
TYPE:
|
next_indices |
Beam indices indicating to which beam hypothesis the
TYPE:
|
scores_for_all_vocab |
The scores of all tokens in the vocabulary for each of the beam hypotheses.
TYPE:
|
pad_token_id |
The id of the padding token.
TYPE:
|
eos_token_id |
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.
TYPE:
|
beam_indices |
Beam indices indicating to which beam hypothesis each token correspond.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
|
Source code in mindnlp/transformers/generation/beam_search.py
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
|
mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.step_sentence_constraint(batch_idx, input_ids, vocab_scores, sent_beam_scores, sent_beam_tokens, sent_beam_indices, push_progress=False)
¶
This method performs a step in the constrained beam search process to generate new sequences based on the input constraints.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ConstrainedBeamSearchScorer class.
|
batch_idx |
The index of the batch being processed.
TYPE:
|
input_ids |
The input token ids for the current batch.
TYPE:
|
vocab_scores |
The scores for the vocabulary tokens.
TYPE:
|
sent_beam_scores |
The scores of the current beam hypotheses.
TYPE:
|
sent_beam_tokens |
The tokens of the current beam hypotheses.
TYPE:
|
sent_beam_indices |
The indices of the current beam hypotheses.
TYPE:
|
push_progress |
A flag indicating whether to push progress. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. Instead, it updates the sent_beam_scores, sent_beam_tokens, and sent_beam_indices in place. |
Source code in mindnlp/transformers/generation/beam_search.py
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
|