Skip to content

beam_search

Beam search

mindnlp.transformers.generation.beam_search.BeamHypotheses

BeamHypotheses

Source code in mindnlp/transformers/generation/beam_search.py
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
class BeamHypotheses:
    """BeamHypotheses"""
    def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
        """
        Initialize n-best list of hypotheses.
        """
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.max_length = max_length
        self.num_beams = num_beams
        self.beams = []
        self.worst_score = 1e9

        if not isinstance(self.early_stopping, bool) and self.max_length is None:
            raise ValueError(
                "When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the"
                " BeamScorer class instance at initialization time."
            )

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.beams)

    def add(self, hyp: mindspore.Tensor, sum_logprobs: float, beam_indices: Optional[mindspore.Tensor] = None):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
        if len(self) < self.num_beams or score > self.worst_score:
            self.beams.append((score, hyp, beam_indices))
            if len(self) > self.num_beams:
                sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
                del self.beams[sorted_next_scores[0][1]]
                self.worst_score = sorted_next_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)

    def is_done(self, best_sum_logprobs: float, cur_len: int) -> bool:
        """
        If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
        one in the heap, then we are done with this sentence.
        """
        if len(self) < self.num_beams:
            return False

        # `True`: stop as soon as at least `num_beams` hypotheses are finished
        if self.early_stopping is True:
            return True
        # `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate
        #  when `length_penalty` is positive. See the discussion below for more details.
        # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
        if self.early_stopping is False:
            highest_attainable_score = best_sum_logprobs / cur_len**self.length_penalty
            ret = self.worst_score >= highest_attainable_score
            return ret
        # `"never"`: compute the best possible score, depending on the signal of `length_penalty`
        # `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min
        # abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain
        # its max this way
        if self.length_penalty > 0.0:
            highest_attainable_score = best_sum_logprobs / self.max_length**self.length_penalty
        # the opposite logic applies here (max `highest_attainable_score` from `cur_len`)
        else:
            highest_attainable_score = best_sum_logprobs / cur_len**self.length_penalty
        ret = self.worst_score >= highest_attainable_score
        return ret

mindnlp.transformers.generation.beam_search.BeamHypotheses.__init__(num_beams, length_penalty, early_stopping, max_length=None)

Initialize n-best list of hypotheses.

Source code in mindnlp/transformers/generation/beam_search.py
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
    """
    Initialize n-best list of hypotheses.
    """
    self.length_penalty = length_penalty
    self.early_stopping = early_stopping
    self.max_length = max_length
    self.num_beams = num_beams
    self.beams = []
    self.worst_score = 1e9

    if not isinstance(self.early_stopping, bool) and self.max_length is None:
        raise ValueError(
            "When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the"
            " BeamScorer class instance at initialization time."
        )

mindnlp.transformers.generation.beam_search.BeamHypotheses.__len__()

Number of hypotheses in the list.

Source code in mindnlp/transformers/generation/beam_search.py
1092
1093
1094
1095
1096
def __len__(self):
    """
    Number of hypotheses in the list.
    """
    return len(self.beams)

mindnlp.transformers.generation.beam_search.BeamHypotheses.add(hyp, sum_logprobs, beam_indices=None)

Add a new hypothesis to the list.

Source code in mindnlp/transformers/generation/beam_search.py
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
def add(self, hyp: mindspore.Tensor, sum_logprobs: float, beam_indices: Optional[mindspore.Tensor] = None):
    """
    Add a new hypothesis to the list.
    """
    score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
    if len(self) < self.num_beams or score > self.worst_score:
        self.beams.append((score, hyp, beam_indices))
        if len(self) > self.num_beams:
            sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
            del self.beams[sorted_next_scores[0][1]]
            self.worst_score = sorted_next_scores[1][0]
        else:
            self.worst_score = min(score, self.worst_score)

mindnlp.transformers.generation.beam_search.BeamHypotheses.is_done(best_sum_logprobs, cur_len)

If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence.

Source code in mindnlp/transformers/generation/beam_search.py
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
def is_done(self, best_sum_logprobs: float, cur_len: int) -> bool:
    """
    If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
    one in the heap, then we are done with this sentence.
    """
    if len(self) < self.num_beams:
        return False

    # `True`: stop as soon as at least `num_beams` hypotheses are finished
    if self.early_stopping is True:
        return True
    # `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate
    #  when `length_penalty` is positive. See the discussion below for more details.
    # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
    if self.early_stopping is False:
        highest_attainable_score = best_sum_logprobs / cur_len**self.length_penalty
        ret = self.worst_score >= highest_attainable_score
        return ret
    # `"never"`: compute the best possible score, depending on the signal of `length_penalty`
    # `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min
    # abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain
    # its max this way
    if self.length_penalty > 0.0:
        highest_attainable_score = best_sum_logprobs / self.max_length**self.length_penalty
    # the opposite logic applies here (max `highest_attainable_score` from `cur_len`)
    else:
        highest_attainable_score = best_sum_logprobs / cur_len**self.length_penalty
    ret = self.worst_score >= highest_attainable_score
    return ret

mindnlp.transformers.generation.beam_search.BeamScorer

Bases: ABC

Abstract base class for all beam scorers that are used for [~PreTrainedModel.beam_search] and [~PreTrainedModel.beam_sample].

Source code in mindnlp/transformers/generation/beam_search.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class BeamScorer(ABC):
    """
    Abstract base class for all beam scorers that are used for [`~PreTrainedModel.beam_search`] and
    [`~PreTrainedModel.beam_sample`].
    """
    def process(
        self,
        input_ids: mindspore.Tensor,
        next_scores: mindspore.Tensor,
        next_tokens: mindspore.Tensor,
        next_indices: mindspore.Tensor,
        **kwargs,
    ) -> Tuple[mindspore.Tensor]:
        r"""
        This method processes the input data to calculate the next scores, tokens, and indices for beam search.

        Args:
            self: The instance of the BeamScorer class.
            input_ids (mindspore.Tensor): The input tensor containing the token IDs.
            next_scores (mindspore.Tensor): The tensor containing the scores for the next tokens.
            next_tokens (mindspore.Tensor): The tensor containing the next token IDs.
            next_indices (mindspore.Tensor): The tensor containing the indices of the next tokens.

        Returns:
            Tuple[mindspore.Tensor]: A tuple containing the updated next tokens tensor.

        Raises:
            NotImplementedError: This exception is raised when the method is called directly as it is an abstract
                method and should be implemented in a subclass.
        """
        raise NotImplementedError("This is an abstract method.")

    def finalize(
        self,
        input_ids: mindspore.Tensor,
        next_scores: mindspore.Tensor,
        next_tokens: mindspore.Tensor,
        next_indices: mindspore.Tensor,
        max_length: int,
        **kwargs,
    ) -> mindspore.Tensor:
        r"""
        Finalizes the beam scoring process.

        Args:
            self (BeamScorer): The instance of the BeamScorer class.
            input_ids (mindspore.Tensor): The input tensor with shape (batch_size, beam_width, sequence_length)
                containing the input token IDs.
            next_scores (mindspore.Tensor): The tensor with shape (batch_size, beam_width) containing the scores
                for the next tokens.
            next_tokens (mindspore.Tensor): The tensor with shape (batch_size, beam_width) containing the IDs of
                the next tokens.
            next_indices (mindspore.Tensor): The tensor with shape (batch_size, beam_width) containing the indices
                of the next tokens.
            max_length (int): The maximum length of the sequence.

        Returns:
            mindspore.Tensor: The tensor with shape (batch_size, beam_width, max_length) representing the final scores.

        Raises:
            NotImplementedError: This exception is raised if the method is called directly as it is an abstract method.
        """
        raise NotImplementedError("This is an abstract method.")

mindnlp.transformers.generation.beam_search.BeamScorer.finalize(input_ids, next_scores, next_tokens, next_indices, max_length, **kwargs)

Finalizes the beam scoring process.

PARAMETER DESCRIPTION
self

The instance of the BeamScorer class.

TYPE: BeamScorer

input_ids

The input tensor with shape (batch_size, beam_width, sequence_length) containing the input token IDs.

TYPE: Tensor

next_scores

The tensor with shape (batch_size, beam_width) containing the scores for the next tokens.

TYPE: Tensor

next_tokens

The tensor with shape (batch_size, beam_width) containing the IDs of the next tokens.

TYPE: Tensor

next_indices

The tensor with shape (batch_size, beam_width) containing the indices of the next tokens.

TYPE: Tensor

max_length

The maximum length of the sequence.

TYPE: int

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The tensor with shape (batch_size, beam_width, max_length) representing the final scores.

RAISES DESCRIPTION
NotImplementedError

This exception is raised if the method is called directly as it is an abstract method.

Source code in mindnlp/transformers/generation/beam_search.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def finalize(
    self,
    input_ids: mindspore.Tensor,
    next_scores: mindspore.Tensor,
    next_tokens: mindspore.Tensor,
    next_indices: mindspore.Tensor,
    max_length: int,
    **kwargs,
) -> mindspore.Tensor:
    r"""
    Finalizes the beam scoring process.

    Args:
        self (BeamScorer): The instance of the BeamScorer class.
        input_ids (mindspore.Tensor): The input tensor with shape (batch_size, beam_width, sequence_length)
            containing the input token IDs.
        next_scores (mindspore.Tensor): The tensor with shape (batch_size, beam_width) containing the scores
            for the next tokens.
        next_tokens (mindspore.Tensor): The tensor with shape (batch_size, beam_width) containing the IDs of
            the next tokens.
        next_indices (mindspore.Tensor): The tensor with shape (batch_size, beam_width) containing the indices
            of the next tokens.
        max_length (int): The maximum length of the sequence.

    Returns:
        mindspore.Tensor: The tensor with shape (batch_size, beam_width, max_length) representing the final scores.

    Raises:
        NotImplementedError: This exception is raised if the method is called directly as it is an abstract method.
    """
    raise NotImplementedError("This is an abstract method.")

mindnlp.transformers.generation.beam_search.BeamScorer.process(input_ids, next_scores, next_tokens, next_indices, **kwargs)

This method processes the input data to calculate the next scores, tokens, and indices for beam search.

PARAMETER DESCRIPTION
self

The instance of the BeamScorer class.

input_ids

The input tensor containing the token IDs.

TYPE: Tensor

next_scores

The tensor containing the scores for the next tokens.

TYPE: Tensor

next_tokens

The tensor containing the next token IDs.

TYPE: Tensor

next_indices

The tensor containing the indices of the next tokens.

TYPE: Tensor

RETURNS DESCRIPTION
Tuple[Tensor]

Tuple[mindspore.Tensor]: A tuple containing the updated next tokens tensor.

RAISES DESCRIPTION
NotImplementedError

This exception is raised when the method is called directly as it is an abstract method and should be implemented in a subclass.

Source code in mindnlp/transformers/generation/beam_search.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def process(
    self,
    input_ids: mindspore.Tensor,
    next_scores: mindspore.Tensor,
    next_tokens: mindspore.Tensor,
    next_indices: mindspore.Tensor,
    **kwargs,
) -> Tuple[mindspore.Tensor]:
    r"""
    This method processes the input data to calculate the next scores, tokens, and indices for beam search.

    Args:
        self: The instance of the BeamScorer class.
        input_ids (mindspore.Tensor): The input tensor containing the token IDs.
        next_scores (mindspore.Tensor): The tensor containing the scores for the next tokens.
        next_tokens (mindspore.Tensor): The tensor containing the next token IDs.
        next_indices (mindspore.Tensor): The tensor containing the indices of the next tokens.

    Returns:
        Tuple[mindspore.Tensor]: A tuple containing the updated next tokens tensor.

    Raises:
        NotImplementedError: This exception is raised when the method is called directly as it is an abstract
            method and should be implemented in a subclass.
    """
    raise NotImplementedError("This is an abstract method.")

mindnlp.transformers.generation.beam_search.BeamSearchScorer

Bases: BeamScorer

[BeamScorer] implementing standard beam search decoding.

Adapted in part from Facebook's XLM beam search code.

Reference for the diverse beam search algorithm and implementation Ashwin Kalyan's DBS implementation

PARAMETER DESCRIPTION
batch_size

Batch Size of input_ids for which standard beam search decoding is run in parallel.

TYPE: `int`

num_beams

Number of beams for beam search.

TYPE: `int`

device

Defines the device type (e.g., "cpu" or "cuda") on which this instance of BeamSearchScorer will be allocated.

TYPE: `torch.device`

length_penalty

Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences.

TYPE: `float`, *optional*, defaults to 1.0 DEFAULT: 1.0

do_early_stopping

Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: True, where the generation stops as soon as there are num_beams complete candidates; False, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; "never", where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm).

TYPE: `bool` or `str`, *optional*, defaults to `False` DEFAULT: False

num_beam_hyps_to_keep

The number of beam hypotheses that shall be returned upon calling [~transformer.BeamSearchScorer.finalize].

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

num_beam_groups

Number of groups to divide num_beams into in order to ensure diversity among different groups of beams. See this paper for more details.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

max_length

The maximum length of the sequence to be generated.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindnlp/transformers/generation/beam_search.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
class BeamSearchScorer(BeamScorer):
    r"""
    [`BeamScorer`] implementing standard beam search decoding.

    Adapted in part from [Facebook's XLM beam search
    code](https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529).

    Reference for the diverse beam search algorithm and implementation [Ashwin Kalyan's DBS
    implementation](https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua)

    Args:
        batch_size (`int`):
            Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
        num_beams (`int`):
            Number of beams for beam search.
        device (`torch.device`):
            Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
            allocated.
        length_penalty (`float`, *optional*, defaults to 1.0):
            Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
            the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
            likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
            `length_penalty` < 0.0 encourages shorter sequences.
        do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
            Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
            `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
            heuristic is applied and the generation stops when is it very unlikely to find better candidates;
            `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
            beam search algorithm).
        num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
            The number of beam hypotheses that shall be returned upon calling
            [`~transformer.BeamSearchScorer.finalize`].
        num_beam_groups (`int`, *optional*, defaults to 1):
            Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
            See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
        max_length (`int`, *optional*):
            The maximum length of the sequence to be generated.
    """
    def __init__(
        self,
        batch_size: int,
        num_beams: int,
        length_penalty: Optional[float] = 1.0,
        do_early_stopping: Optional[Union[bool, str]] = False,
        num_beam_hyps_to_keep: Optional[int] = 1,
        num_beam_groups: Optional[int] = 1,
        max_length: Optional[int] = None,
    ):
        r"""
        Initializes a new instance of the BeamSearchScorer class.

        Args:
            self: The object itself.
            batch_size (int): The size of the batch.
            num_beams (int): The number of beams to use in the beam search.
            length_penalty (Optional[float], default=1.0): The length penalty factor to apply during beam search.
            do_early_stopping (Optional[Union[bool, str]], default=False): Determines whether to perform early stopping
                during beam search. Can be a boolean value or a string.
            num_beam_hyps_to_keep (Optional[int], default=1): The number of beam hypotheses to keep.
            num_beam_groups (Optional[int], default=1): The number of beam groups to use during beam search.
            max_length (Optional[int]): The maximum length of the generated sequences. If not specified, there is no
                maximum length restriction.

        Returns:
            None.

        Raises:
            ValueError: If the num_beams parameter is not an integer strictly greater than 1, or if num_beams is 1 and
                do_early_stopping is not used.
            ValueError: If the num_beam_groups parameter is not an integer smaller or equal than num_beams, or if
                num_beams is not divisible by num_beam_groups.
        """
        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
        self.num_beam_groups = num_beam_groups
        self.group_size = self.num_beams // self.num_beam_groups

        self._is_init = False
        # self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch.
        # If group_beam_search is not used, the list consists of `batch_size` beam_hyps.
        self._beam_hyps = [
            BeamHypotheses(
                num_beams=self.group_size,
                length_penalty=self.length_penalty,
                early_stopping=self.do_early_stopping,
                max_length=max_length,
            )
            for _ in range(batch_size * self.num_beam_groups)
        ]
        # self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group
        # in the i-th mini-batch is complete.
        self._done = mindspore.tensor(
            [False for _ in range(batch_size * self.num_beam_groups)], dtype=mindspore.bool_
        )

        if not isinstance(num_beams, int) or num_beams <= 1:
            raise ValueError(
                f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
                " one should make use of `greedy_search` instead."
            )

        if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
            raise ValueError(
                "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
                f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
            )

    @property
    def is_done(self) -> bool:
        r"""
        Checks if the BeamSearchScorer instance is done.

        Args:
            self: The instance of the BeamSearchScorer class.

        Returns:
            bool: Returns a boolean value indicating whether the BeamSearchScorer instance is done or not.

        Raises:
            None.

        This method returns True if the internal '_done' attribute, which represents the completion status of the
        BeamSearchScorer instance, is set to True for all elements. Otherwise, it returns False. The '_done' attribute
        is a container that holds the completion status of each element in the BeamSearchScorer instance.

        Note:
            The '_done' attribute is expected to be a container with elements that can be evaluated as boolean values.
            If the '_done' attribute contains non-boolean elements, unexpected behavior may occur.
        """
        return self._done.all()

    def process(
        self,
        input_ids: mindspore.Tensor,
        next_scores: mindspore.Tensor,
        next_tokens: mindspore.Tensor,
        next_indices: mindspore.Tensor,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[mindspore.Tensor] = None,
        group_index: Optional[int] = 0,
    ) -> Dict[str, mindspore.Tensor]:
        r"""
        This method processes input data for beam search scoring in a BeamSearchScorer instance.

        Args:
            self: BeamSearchScorer instance.
            input_ids (mindspore.Tensor): The input tensor containing token IDs.
            next_scores (mindspore.Tensor): The tensor containing scores for next tokens.
            next_tokens (mindspore.Tensor): The tensor containing the IDs of next tokens.
            next_indices (mindspore.Tensor): The tensor containing indices of next tokens.
            pad_token_id (Optional[int]): The ID of the padding token. Default is None.
            eos_token_id (Optional[Union[int, List[int]]]): The ID or list of IDs indicating end-of-sequence tokens.
                Default is None.
            beam_indices (Optional[mindspore.Tensor]): The tensor containing beam indices. Default is None.
            group_index (Optional[int]): The index of the group. Default is 0.

        Returns:
            Dict[str, mindspore.Tensor]: A dictionary containing the processed beam scores, tokens, and indices.

        Raises:
            ValueError: If the input batch size does not match the expected group size.
            ValueError: If the expected group size does not match the group size used by the beam scorer.
            ValueError: If the generated beams are greater than or equal to the specified number of beams
                without defining eos_token_id and pad_token.
            ValueError: If the number of generated beams is less than the specified number of beams.
            ValueError: If an error occurs during beam search processing.
        """
        cur_len = input_ids.shape[-1] + 1  # add up to the length which the next_scores is calculated on
        batch_size = len(self._beam_hyps) // self.num_beam_groups

        if batch_size != (input_ids.shape[0] // self.group_size):
            if self.num_beam_groups > 1:
                raise ValueError(
                    f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
                    f"size of {self.group_size} is expected by the beam scorer."
                )
            raise ValueError(
                f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
                f"{self.group_size} is expected by the beam scorer."
            )

        next_beam_scores = ops.zeros(batch_size, self.group_size, dtype=next_scores.dtype)
        next_beam_tokens = ops.zeros(batch_size, self.group_size, dtype=next_tokens.dtype)
        next_beam_indices = ops.zeros(batch_size, self.group_size, dtype=next_indices.dtype)

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        for batch_idx in range(batch_size):
            batch_group_idx = batch_idx * self.num_beam_groups + group_index
            if self._done[batch_group_idx]:
                if self.num_beams < len(self._beam_hyps[batch_group_idx]):
                    raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
                if eos_token_id is None or pad_token_id is None:
                    raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
                # pad the batch
                next_beam_scores[batch_idx, :] = 0
                next_beam_tokens[batch_idx, :] = pad_token_id
                next_beam_indices[batch_idx, :] = 0
                continue

            # next tokens for this sentence
            beam_idx = 0
            for beam_token_rank, (next_token, next_score, next_index) in enumerate(
                zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
            ):
                batch_beam_idx = batch_idx * self.group_size + next_index
                # add to generated hypotheses if end of sentence
                if (eos_token_id is not None) and (next_token.asnumpy().item() in eos_token_id):
                    # if beam_token does not belong to top num_beams tokens, it should not be added
                    is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
                    if is_beam_token_worse_than_top_num_beams:
                        continue
                    if beam_indices is not None:
                        beam_index = beam_indices[batch_beam_idx]
                        beam_index = beam_index + (batch_beam_idx,)
                    else:
                        beam_index = None

                    self._beam_hyps[batch_group_idx].add(
                        input_ids[batch_beam_idx].copy(),
                        next_score.asnumpy().item(),
                        beam_indices=beam_index,
                    )
                else:
                    # add next predicted token since it is not eos_token
                    next_beam_scores[batch_idx, beam_idx] = next_score
                    next_beam_tokens[batch_idx, beam_idx] = next_token
                    next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
                    beam_idx += 1

                # once the beam for next step is full, don't add more tokens to it.
                if beam_idx == self.group_size:
                    break

            if beam_idx < self.group_size:
                raise ValueError(
                    f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
                    f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
                )

            # Check if we are done so that we can save a pad step if all(done)
            self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done(
                next_scores[batch_idx].max().asnumpy().item(), cur_len
            )

        return UserDict(
            {
                "next_beam_scores": next_beam_scores.view(-1),
                "next_beam_tokens": next_beam_tokens.view(-1),
                "next_beam_indices": next_beam_indices.view(-1),
            }
        )

    def finalize(
        self,
        input_ids: mindspore.Tensor,
        final_beam_scores: mindspore.Tensor,
        final_beam_tokens: mindspore.Tensor,
        final_beam_indices: mindspore.Tensor,
        max_length: int,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[mindspore.Tensor] = None,
    ) -> Tuple[mindspore.Tensor]:
        r"""
        This method finalizes the beam search process by selecting the best beam hypotheses and forwarding the
        final output sequences.

        Args:
            self: The instance of the class BeamSearchScorer.
            input_ids (mindspore.Tensor): The input tensor containing token IDs.
            final_beam_scores (mindspore.Tensor): The final scores of the selected beam hypotheses.
            final_beam_tokens (mindspore.Tensor): The token IDs of the final beam hypotheses.
            final_beam_indices (mindspore.Tensor): The indices of the final beam hypotheses.
            max_length (int): The maximum length of the output sequences.
            pad_token_id (Optional[int]): The token ID used for padding, default is None.
            eos_token_id (Optional[Union[int, List[int]]): The token ID or list of token IDs representing the end of
                sequence, default is None.
            beam_indices (Optional[mindspore.Tensor]): The indices of the beam hypotheses, default is None.

        Returns:
            Tuple[mindspore.Tensor]: A tuple containing the final output sequences ('sequences' key), the scores of
                the sequences ('sequence_scores' key), and the indices of the beam hypotheses ('beam_indices' key).

        Raises:
            ValueError: Raised if 'pad_token_id' is not defined when necessary.
        """
        batch_size = len(self._beam_hyps) // self.num_beam_groups

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        # finalize all open beam hypotheses and add to generated hypotheses
        for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
            if self._done[batch_group_idx]:
                continue

            # all open beam hypotheses are added to the beam hypothesis
            # beam hypothesis class automatically keeps the best beams
            for index_per_group in range(self.group_size):
                batch_beam_idx = batch_group_idx * self.group_size + index_per_group
                final_score = final_beam_scores[batch_beam_idx].asnumpy().item()
                final_tokens = input_ids[batch_beam_idx]
                beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
                beam_hyp.add(final_tokens, final_score, beam_indices=beam_index)

        # select the best hypotheses
        sent_lengths = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=input_ids.dtype)
        best = []
        best_indices = []
        best_scores = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=mindspore.float32)

        # retrieve best hypotheses
        for i in range(batch_size):
            beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups]
            candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams]
            sorted_hyps = sorted(candidate_beams, key=lambda x: x[0])
            for j in range(self.num_beam_hyps_to_keep):
                best_hyp_tuple = sorted_hyps.pop()
                best_score = best_hyp_tuple[0]
                best_hyp = best_hyp_tuple[1]
                best_index = best_hyp_tuple[2]
                sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)

                # append hyp to lists
                best.append(best_hyp)

                # append indices to list
                best_indices.append(best_index)

                best_scores[i * self.num_beam_hyps_to_keep + j] = best_score

        # prepare for adding eos
        sent_lengths_max = sent_lengths.max().asnumpy().item() + 1
        sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
        decoded: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)
        if len(best_indices) > 0 and best_indices[0] is not None:
            indices: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)
        else:
            indices = None

        # shorter batches are padded if needed
        if sent_lengths.min().asnumpy().item() != sent_lengths.max().asnumpy().item():
            if pad_token_id is None:
                raise ValueError("`pad_token_id` has to be defined")
            decoded = decoded.fill(pad_token_id)

        if indices is not None:
            indices = indices.fill(-1)

        # fill with hypotheses and eos_token_id if the latter fits in
        for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
            decoded[i, : sent_lengths[i]] = hypo

            if indices is not None:
                indices[i, : len(best_idx)] = ops.stack(best_idx)

            if sent_lengths[i] < sent_max_len:
                # inserting only the first eos_token_id
                decoded[i, sent_lengths[i]] = eos_token_id[0]

        return UserDict(
            {
                "sequences": decoded,
                "sequence_scores": best_scores,
                "beam_indices": indices,
            }
        )

mindnlp.transformers.generation.beam_search.BeamSearchScorer.is_done: bool property

Checks if the BeamSearchScorer instance is done.

PARAMETER DESCRIPTION
self

The instance of the BeamSearchScorer class.

RETURNS DESCRIPTION
bool

Returns a boolean value indicating whether the BeamSearchScorer instance is done or not.

TYPE: bool

This method returns True if the internal '_done' attribute, which represents the completion status of the BeamSearchScorer instance, is set to True for all elements. Otherwise, it returns False. The '_done' attribute is a container that holds the completion status of each element in the BeamSearchScorer instance.

Note

The '_done' attribute is expected to be a container with elements that can be evaluated as boolean values. If the '_done' attribute contains non-boolean elements, unexpected behavior may occur.

mindnlp.transformers.generation.beam_search.BeamSearchScorer.__init__(batch_size, num_beams, length_penalty=1.0, do_early_stopping=False, num_beam_hyps_to_keep=1, num_beam_groups=1, max_length=None)

Initializes a new instance of the BeamSearchScorer class.

PARAMETER DESCRIPTION
self

The object itself.

batch_size

The size of the batch.

TYPE: int

num_beams

The number of beams to use in the beam search.

TYPE: int

length_penalty

The length penalty factor to apply during beam search.

TYPE: Optional[float], default=1.0 DEFAULT: 1.0

do_early_stopping

Determines whether to perform early stopping during beam search. Can be a boolean value or a string.

TYPE: Optional[Union[bool, str]], default=False DEFAULT: False

num_beam_hyps_to_keep

The number of beam hypotheses to keep.

TYPE: Optional[int], default=1 DEFAULT: 1

num_beam_groups

The number of beam groups to use during beam search.

TYPE: Optional[int], default=1 DEFAULT: 1

max_length

The maximum length of the generated sequences. If not specified, there is no maximum length restriction.

TYPE: Optional[int] DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the num_beams parameter is not an integer strictly greater than 1, or if num_beams is 1 and do_early_stopping is not used.

ValueError

If the num_beam_groups parameter is not an integer smaller or equal than num_beams, or if num_beams is not divisible by num_beam_groups.

Source code in mindnlp/transformers/generation/beam_search.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def __init__(
    self,
    batch_size: int,
    num_beams: int,
    length_penalty: Optional[float] = 1.0,
    do_early_stopping: Optional[Union[bool, str]] = False,
    num_beam_hyps_to_keep: Optional[int] = 1,
    num_beam_groups: Optional[int] = 1,
    max_length: Optional[int] = None,
):
    r"""
    Initializes a new instance of the BeamSearchScorer class.

    Args:
        self: The object itself.
        batch_size (int): The size of the batch.
        num_beams (int): The number of beams to use in the beam search.
        length_penalty (Optional[float], default=1.0): The length penalty factor to apply during beam search.
        do_early_stopping (Optional[Union[bool, str]], default=False): Determines whether to perform early stopping
            during beam search. Can be a boolean value or a string.
        num_beam_hyps_to_keep (Optional[int], default=1): The number of beam hypotheses to keep.
        num_beam_groups (Optional[int], default=1): The number of beam groups to use during beam search.
        max_length (Optional[int]): The maximum length of the generated sequences. If not specified, there is no
            maximum length restriction.

    Returns:
        None.

    Raises:
        ValueError: If the num_beams parameter is not an integer strictly greater than 1, or if num_beams is 1 and
            do_early_stopping is not used.
        ValueError: If the num_beam_groups parameter is not an integer smaller or equal than num_beams, or if
            num_beams is not divisible by num_beam_groups.
    """
    self.num_beams = num_beams
    self.length_penalty = length_penalty
    self.do_early_stopping = do_early_stopping
    self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
    self.num_beam_groups = num_beam_groups
    self.group_size = self.num_beams // self.num_beam_groups

    self._is_init = False
    # self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch.
    # If group_beam_search is not used, the list consists of `batch_size` beam_hyps.
    self._beam_hyps = [
        BeamHypotheses(
            num_beams=self.group_size,
            length_penalty=self.length_penalty,
            early_stopping=self.do_early_stopping,
            max_length=max_length,
        )
        for _ in range(batch_size * self.num_beam_groups)
    ]
    # self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group
    # in the i-th mini-batch is complete.
    self._done = mindspore.tensor(
        [False for _ in range(batch_size * self.num_beam_groups)], dtype=mindspore.bool_
    )

    if not isinstance(num_beams, int) or num_beams <= 1:
        raise ValueError(
            f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
            " one should make use of `greedy_search` instead."
        )

    if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
        raise ValueError(
            "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
            f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
        )

mindnlp.transformers.generation.beam_search.BeamSearchScorer.finalize(input_ids, final_beam_scores, final_beam_tokens, final_beam_indices, max_length, pad_token_id=None, eos_token_id=None, beam_indices=None)

This method finalizes the beam search process by selecting the best beam hypotheses and forwarding the final output sequences.

PARAMETER DESCRIPTION
self

The instance of the class BeamSearchScorer.

input_ids

The input tensor containing token IDs.

TYPE: Tensor

final_beam_scores

The final scores of the selected beam hypotheses.

TYPE: Tensor

final_beam_tokens

The token IDs of the final beam hypotheses.

TYPE: Tensor

final_beam_indices

The indices of the final beam hypotheses.

TYPE: Tensor

max_length

The maximum length of the output sequences.

TYPE: int

pad_token_id

The token ID used for padding, default is None.

TYPE: Optional[int] DEFAULT: None

eos_token_id

The token ID or list of token IDs representing the end of sequence, default is None.

TYPE: Optional[Union[int, List[int]] DEFAULT: None

beam_indices

The indices of the beam hypotheses, default is None.

TYPE: Optional[Tensor] DEFAULT: None

RETURNS DESCRIPTION
Tuple[Tensor]

Tuple[mindspore.Tensor]: A tuple containing the final output sequences ('sequences' key), the scores of the sequences ('sequence_scores' key), and the indices of the beam hypotheses ('beam_indices' key).

RAISES DESCRIPTION
ValueError

Raised if 'pad_token_id' is not defined when necessary.

Source code in mindnlp/transformers/generation/beam_search.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def finalize(
    self,
    input_ids: mindspore.Tensor,
    final_beam_scores: mindspore.Tensor,
    final_beam_tokens: mindspore.Tensor,
    final_beam_indices: mindspore.Tensor,
    max_length: int,
    pad_token_id: Optional[int] = None,
    eos_token_id: Optional[Union[int, List[int]]] = None,
    beam_indices: Optional[mindspore.Tensor] = None,
) -> Tuple[mindspore.Tensor]:
    r"""
    This method finalizes the beam search process by selecting the best beam hypotheses and forwarding the
    final output sequences.

    Args:
        self: The instance of the class BeamSearchScorer.
        input_ids (mindspore.Tensor): The input tensor containing token IDs.
        final_beam_scores (mindspore.Tensor): The final scores of the selected beam hypotheses.
        final_beam_tokens (mindspore.Tensor): The token IDs of the final beam hypotheses.
        final_beam_indices (mindspore.Tensor): The indices of the final beam hypotheses.
        max_length (int): The maximum length of the output sequences.
        pad_token_id (Optional[int]): The token ID used for padding, default is None.
        eos_token_id (Optional[Union[int, List[int]]): The token ID or list of token IDs representing the end of
            sequence, default is None.
        beam_indices (Optional[mindspore.Tensor]): The indices of the beam hypotheses, default is None.

    Returns:
        Tuple[mindspore.Tensor]: A tuple containing the final output sequences ('sequences' key), the scores of
            the sequences ('sequence_scores' key), and the indices of the beam hypotheses ('beam_indices' key).

    Raises:
        ValueError: Raised if 'pad_token_id' is not defined when necessary.
    """
    batch_size = len(self._beam_hyps) // self.num_beam_groups

    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]

    # finalize all open beam hypotheses and add to generated hypotheses
    for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
        if self._done[batch_group_idx]:
            continue

        # all open beam hypotheses are added to the beam hypothesis
        # beam hypothesis class automatically keeps the best beams
        for index_per_group in range(self.group_size):
            batch_beam_idx = batch_group_idx * self.group_size + index_per_group
            final_score = final_beam_scores[batch_beam_idx].asnumpy().item()
            final_tokens = input_ids[batch_beam_idx]
            beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
            beam_hyp.add(final_tokens, final_score, beam_indices=beam_index)

    # select the best hypotheses
    sent_lengths = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=input_ids.dtype)
    best = []
    best_indices = []
    best_scores = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=mindspore.float32)

    # retrieve best hypotheses
    for i in range(batch_size):
        beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups]
        candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams]
        sorted_hyps = sorted(candidate_beams, key=lambda x: x[0])
        for j in range(self.num_beam_hyps_to_keep):
            best_hyp_tuple = sorted_hyps.pop()
            best_score = best_hyp_tuple[0]
            best_hyp = best_hyp_tuple[1]
            best_index = best_hyp_tuple[2]
            sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)

            # append hyp to lists
            best.append(best_hyp)

            # append indices to list
            best_indices.append(best_index)

            best_scores[i * self.num_beam_hyps_to_keep + j] = best_score

    # prepare for adding eos
    sent_lengths_max = sent_lengths.max().asnumpy().item() + 1
    sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
    decoded: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)
    if len(best_indices) > 0 and best_indices[0] is not None:
        indices: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)
    else:
        indices = None

    # shorter batches are padded if needed
    if sent_lengths.min().asnumpy().item() != sent_lengths.max().asnumpy().item():
        if pad_token_id is None:
            raise ValueError("`pad_token_id` has to be defined")
        decoded = decoded.fill(pad_token_id)

    if indices is not None:
        indices = indices.fill(-1)

    # fill with hypotheses and eos_token_id if the latter fits in
    for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
        decoded[i, : sent_lengths[i]] = hypo

        if indices is not None:
            indices[i, : len(best_idx)] = ops.stack(best_idx)

        if sent_lengths[i] < sent_max_len:
            # inserting only the first eos_token_id
            decoded[i, sent_lengths[i]] = eos_token_id[0]

    return UserDict(
        {
            "sequences": decoded,
            "sequence_scores": best_scores,
            "beam_indices": indices,
        }
    )

mindnlp.transformers.generation.beam_search.BeamSearchScorer.process(input_ids, next_scores, next_tokens, next_indices, pad_token_id=None, eos_token_id=None, beam_indices=None, group_index=0)

This method processes input data for beam search scoring in a BeamSearchScorer instance.

PARAMETER DESCRIPTION
self

BeamSearchScorer instance.

input_ids

The input tensor containing token IDs.

TYPE: Tensor

next_scores

The tensor containing scores for next tokens.

TYPE: Tensor

next_tokens

The tensor containing the IDs of next tokens.

TYPE: Tensor

next_indices

The tensor containing indices of next tokens.

TYPE: Tensor

pad_token_id

The ID of the padding token. Default is None.

TYPE: Optional[int] DEFAULT: None

eos_token_id

The ID or list of IDs indicating end-of-sequence tokens. Default is None.

TYPE: Optional[Union[int, List[int]]] DEFAULT: None

beam_indices

The tensor containing beam indices. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

group_index

The index of the group. Default is 0.

TYPE: Optional[int] DEFAULT: 0

RETURNS DESCRIPTION
Dict[str, Tensor]

Dict[str, mindspore.Tensor]: A dictionary containing the processed beam scores, tokens, and indices.

RAISES DESCRIPTION
ValueError

If the input batch size does not match the expected group size.

ValueError

If the expected group size does not match the group size used by the beam scorer.

ValueError

If the generated beams are greater than or equal to the specified number of beams without defining eos_token_id and pad_token.

ValueError

If the number of generated beams is less than the specified number of beams.

ValueError

If an error occurs during beam search processing.

Source code in mindnlp/transformers/generation/beam_search.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def process(
    self,
    input_ids: mindspore.Tensor,
    next_scores: mindspore.Tensor,
    next_tokens: mindspore.Tensor,
    next_indices: mindspore.Tensor,
    pad_token_id: Optional[int] = None,
    eos_token_id: Optional[Union[int, List[int]]] = None,
    beam_indices: Optional[mindspore.Tensor] = None,
    group_index: Optional[int] = 0,
) -> Dict[str, mindspore.Tensor]:
    r"""
    This method processes input data for beam search scoring in a BeamSearchScorer instance.

    Args:
        self: BeamSearchScorer instance.
        input_ids (mindspore.Tensor): The input tensor containing token IDs.
        next_scores (mindspore.Tensor): The tensor containing scores for next tokens.
        next_tokens (mindspore.Tensor): The tensor containing the IDs of next tokens.
        next_indices (mindspore.Tensor): The tensor containing indices of next tokens.
        pad_token_id (Optional[int]): The ID of the padding token. Default is None.
        eos_token_id (Optional[Union[int, List[int]]]): The ID or list of IDs indicating end-of-sequence tokens.
            Default is None.
        beam_indices (Optional[mindspore.Tensor]): The tensor containing beam indices. Default is None.
        group_index (Optional[int]): The index of the group. Default is 0.

    Returns:
        Dict[str, mindspore.Tensor]: A dictionary containing the processed beam scores, tokens, and indices.

    Raises:
        ValueError: If the input batch size does not match the expected group size.
        ValueError: If the expected group size does not match the group size used by the beam scorer.
        ValueError: If the generated beams are greater than or equal to the specified number of beams
            without defining eos_token_id and pad_token.
        ValueError: If the number of generated beams is less than the specified number of beams.
        ValueError: If an error occurs during beam search processing.
    """
    cur_len = input_ids.shape[-1] + 1  # add up to the length which the next_scores is calculated on
    batch_size = len(self._beam_hyps) // self.num_beam_groups

    if batch_size != (input_ids.shape[0] // self.group_size):
        if self.num_beam_groups > 1:
            raise ValueError(
                f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
                f"size of {self.group_size} is expected by the beam scorer."
            )
        raise ValueError(
            f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
            f"{self.group_size} is expected by the beam scorer."
        )

    next_beam_scores = ops.zeros(batch_size, self.group_size, dtype=next_scores.dtype)
    next_beam_tokens = ops.zeros(batch_size, self.group_size, dtype=next_tokens.dtype)
    next_beam_indices = ops.zeros(batch_size, self.group_size, dtype=next_indices.dtype)

    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]

    for batch_idx in range(batch_size):
        batch_group_idx = batch_idx * self.num_beam_groups + group_index
        if self._done[batch_group_idx]:
            if self.num_beams < len(self._beam_hyps[batch_group_idx]):
                raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
            if eos_token_id is None or pad_token_id is None:
                raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
            # pad the batch
            next_beam_scores[batch_idx, :] = 0
            next_beam_tokens[batch_idx, :] = pad_token_id
            next_beam_indices[batch_idx, :] = 0
            continue

        # next tokens for this sentence
        beam_idx = 0
        for beam_token_rank, (next_token, next_score, next_index) in enumerate(
            zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
        ):
            batch_beam_idx = batch_idx * self.group_size + next_index
            # add to generated hypotheses if end of sentence
            if (eos_token_id is not None) and (next_token.asnumpy().item() in eos_token_id):
                # if beam_token does not belong to top num_beams tokens, it should not be added
                is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
                if is_beam_token_worse_than_top_num_beams:
                    continue
                if beam_indices is not None:
                    beam_index = beam_indices[batch_beam_idx]
                    beam_index = beam_index + (batch_beam_idx,)
                else:
                    beam_index = None

                self._beam_hyps[batch_group_idx].add(
                    input_ids[batch_beam_idx].copy(),
                    next_score.asnumpy().item(),
                    beam_indices=beam_index,
                )
            else:
                # add next predicted token since it is not eos_token
                next_beam_scores[batch_idx, beam_idx] = next_score
                next_beam_tokens[batch_idx, beam_idx] = next_token
                next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
                beam_idx += 1

            # once the beam for next step is full, don't add more tokens to it.
            if beam_idx == self.group_size:
                break

        if beam_idx < self.group_size:
            raise ValueError(
                f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
                f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
            )

        # Check if we are done so that we can save a pad step if all(done)
        self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done(
            next_scores[batch_idx].max().asnumpy().item(), cur_len
        )

    return UserDict(
        {
            "next_beam_scores": next_beam_scores.view(-1),
            "next_beam_tokens": next_beam_tokens.view(-1),
            "next_beam_indices": next_beam_indices.view(-1),
        }
    )

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer

Bases: BeamScorer

[BeamScorer] implementing constrained beam search decoding.

PARAMETER DESCRIPTION
batch_size

Batch Size of input_ids for which standard beam search decoding is run in parallel.

TYPE: `int`

num_beams

Number of beams for beam search.

TYPE: `int`

constraints

A list of positive constraints represented as Constraint objects that must be fulfilled in the generation output. For more information, the documentation of [Constraint] should be read.

TYPE: `List[Constraint]`

device

Defines the device type (e.g., "cpu" or "cuda") on which this instance of BeamSearchScorer will be allocated.

TYPE: `torch.device`

length_penalty

Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences.

TYPE: `float`, *optional*, defaults to 1.0 DEFAULT: 1.0

do_early_stopping

Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: True, where the generation stops as soon as there are num_beams complete candidates; False, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; "never", where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm).

TYPE: `bool` or `str`, *optional*, defaults to `False` DEFAULT: False

num_beam_hyps_to_keep

The number of beam hypotheses that shall be returned upon calling [~transformer.BeamSearchScorer.finalize].

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

num_beam_groups

Number of groups to divide num_beams into in order to ensure diversity among different groups of beams. See this paper for more details.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

max_length

The maximum length of the sequence to be generated.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindnlp/transformers/generation/beam_search.py
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
class ConstrainedBeamSearchScorer(BeamScorer):
    r"""
    [`BeamScorer`] implementing constrained beam search decoding.

    Args:
        batch_size (`int`):
            Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
        num_beams (`int`):
            Number of beams for beam search.
        constraints (`List[Constraint]`):
            A list of positive constraints represented as `Constraint` objects that must be fulfilled in the generation
            output. For more information, the documentation of [`Constraint`] should be read.
        device (`torch.device`):
            Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
            allocated.
        length_penalty (`float`, *optional*, defaults to 1.0):
            Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
            the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
            likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
            `length_penalty` < 0.0 encourages shorter sequences.
        do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
            Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
            `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
            heuristic is applied and the generation stops when is it very unlikely to find better candidates;
            `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
            beam search algorithm).
        num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
            The number of beam hypotheses that shall be returned upon calling
            [`~transformer.BeamSearchScorer.finalize`].
        num_beam_groups (`int`, *optional*, defaults to 1):
            Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
            See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
        max_length (`int`, *optional*):
            The maximum length of the sequence to be generated.
    """
    def __init__(
        self,
        batch_size: int,
        num_beams: int,
        constraints: List[Constraint],
        length_penalty: Optional[float] = 1.0,
        do_early_stopping: Optional[Union[bool, str]] = False,
        num_beam_hyps_to_keep: Optional[int] = 1,
        num_beam_groups: Optional[int] = 1,
        max_length: Optional[int] = None,
    ):
        r"""
        Initializes an instance of the ConstrainedBeamSearchScorer class.

        Args:
            self: The instance of the class.
            batch_size (int): The number of examples in a batch.
            num_beams (int): The number of beams to use for beam search.
            constraints (List[Constraint]): A list of constraints to be applied during beam search.
            length_penalty (Optional[float], default=1.0): The length penalty to be applied during beam search.
            do_early_stopping (Optional[Union[bool, str]], default=False): Whether to perform early stopping during beam search.
            num_beam_hyps_to_keep (Optional[int], default=1): The number of beam hypotheses to keep during beam search.
            num_beam_groups (Optional[int], default=1): The number of beam groups to use during beam search.
            max_length (Optional[int], default=None): The maximum length of output sequences.

        Returns:
            None.

        Raises:
            ValueError: If num_beams is not an integer strictly greater than 1 or if num_beam_groups is not an integer
                smaller or equal than num_beams or if num_beam_groups is not divisible by num_beams.

        Note:
            - For `num_beams` == 1, it is recommended to use `greedy_search` instead.
            - The parameter `constraints` is a list of constraints that should be satisfied by the generated sequences.
            - The parameter `length_penalty` is a scalar value that affects the length normalization penalty
            during beam search.
            - The parameter `do_early_stopping` determines whether beam search should stop early if all beam hypotheses
            have reached the end token.
            - The parameter `num_beam_hyps_to_keep` specifies the number of beam hypotheses to keep during beam search.
            - The parameter `num_beam_groups` determines the number of beam groups to use during beam search.
            - The parameter `max_length` specifies the maximum length of the output sequences.
            - The method initializes internal variables and objects required for beam search.
        """
        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
        self.num_beam_groups = num_beam_groups
        self.group_size = self.num_beams // self.num_beam_groups
        self.constraints = constraints

        self._is_init = False
        self._beam_hyps = [
            BeamHypotheses(
                num_beams=self.num_beams,
                length_penalty=self.length_penalty,
                early_stopping=self.do_early_stopping,
                max_length=max_length,
            )
            for _ in range(batch_size)
        ]
        self._done = mindspore.tensor([False for _ in range(batch_size)], dtype=mindspore.bool_)

        if not isinstance(num_beams, int) or num_beams <= 1:
            raise ValueError(
                f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
                " one should make use of `greedy_search` instead."
            )

        if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
            raise ValueError(
                "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
                f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
            )

    @property
    def is_done(self) -> bool:
        r"""
        Method to check if the ConstrainedBeamSearchScorer instance has completed processing.

        Args:
            self (ConstrainedBeamSearchScorer): The instance of ConstrainedBeamSearchScorer on which the method is called.
                This parameter is required to access the internal state of the scorer.

        Returns:
            bool: Returns a boolean value indicating whether the processing is completed (True) or not (False).
                True if all processing is done, False otherwise.

        Raises:
            None.
        """
        return self._done.all()

    def make_constraint_states(self, n):
        r"""
        Generates a list of constraint states for a ConstrainedBeamSearchScorer object.

        Args:
            self (ConstrainedBeamSearchScorer): The instance of the ConstrainedBeamSearchScorer class.
            n (int): The number of constraint states to generate.

        Returns:
            None.

        Raises:
            None.
        """
        return [ConstraintListState([constraint.copy() for constraint in self.constraints]) for _ in range(n)]

    def check_completes_constraints(self, sequence):
        r"""
        This method checks if the given sequence completes constraints in the ConstrainedBeamSearchScorer class.

        Args:
            self (ConstrainedBeamSearchScorer): The instance of the ConstrainedBeamSearchScorer class.
            sequence (list): A list representing the input sequence to be checked for completing constraints.

        Returns:
            None: This method does not return any value explicitly.
                It updates the state of the ConstrainedBeamSearchScorer instance.

        Raises:
            None.
        """
        new_state = self.make_constraint_states(1)[0]
        new_state.reset(sequence)
        return new_state.completed

    def process(
        self,
        input_ids: mindspore.Tensor,
        next_scores: mindspore.Tensor,
        next_tokens: mindspore.Tensor,
        next_indices: mindspore.Tensor,
        scores_for_all_vocab: mindspore.Tensor,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[mindspore.Tensor] = None,
    ) -> Tuple[mindspore.Tensor]:
        r"""
        Args:
            input_ids (`mindspore.Tensor` of shape `(batch_size * num_beams, sequence_length)`):
                Indices of input sequence tokens in the vocabulary.

                Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
                [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            next_scores (`mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`):
                Current scores of the top `2 * num_beams` non-finished beam hypotheses.
            next_tokens (`mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`):
                `input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
            next_indices (`mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`):
                Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
            scores_for_all_vocab (`mindspore.Tensor` of shape `(batch_size * num_beams, sequence_length)`):
                The scores of all tokens in the vocabulary for each of the beam hypotheses.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            beam_indices (`mindspore.Tensor`, *optional*):
                Beam indices indicating to which beam hypothesis each token correspond.

        Returns:
            `UserDict`:
                A dictionary composed of the fields as defined above:

                - **next_beam_scores** (`mindspore.Tensor` of shape `(batch_size * num_beams)`) -- Updated scores of
                all non-finished beams.
                - **next_beam_tokens** (`mindspore.Tensor` of shape `(batch_size * num_beams)`) -- Next tokens to be
                added to the non-finished beam_hypotheses.
                - **next_beam_indices** (`mindspore.Tensor` of shape `(batch_size * num_beams)`) -- Beam indices
                indicating to which beam the next tokens shall be added.
        """
        cur_len = input_ids.shape[-1] + 1  # add up to the length which the next_scores is calculated on
        batch_size = len(self._beam_hyps)
        if batch_size != (input_ids.shape[0] // self.group_size):
            if self.num_beam_groups > 1:
                raise ValueError(
                    f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
                    f"size of {self.group_size} is expected by the beam scorer."
                )
            raise ValueError(
                f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
                f"{self.group_size} is expected by the beam scorer."
            )

        next_beam_scores = ops.zeros(batch_size, self.group_size, dtype=next_scores.dtype)
        next_beam_tokens = ops.zeros(batch_size, self.group_size, dtype=next_tokens.dtype)
        next_beam_indices = ops.zeros(batch_size, self.group_size, dtype=next_indices.dtype)

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        for batch_idx, beam_hyp in enumerate(self._beam_hyps):
            if self._done[batch_idx]:
                if self.num_beams < len(beam_hyp):
                    raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
                if eos_token_id is None or pad_token_id is None:
                    raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
                # pad the batch
                next_beam_scores[batch_idx, :] = 0
                next_beam_tokens[batch_idx, :] = pad_token_id
                next_beam_indices[batch_idx, :] = 0
                continue

            # next tokens for this sentence.
            beam_idx = 0
            for beam_token_rank, (next_token, next_score, next_index) in enumerate(
                zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
            ):
                batch_beam_idx = batch_idx * self.group_size + next_index
                # add to generated hypotheses if end of sentence
                if (eos_token_id is not None) and (next_token.asnumpy().item() in eos_token_id):
                    # if beam_token does not belong to top num_beams tokens, it should not be added
                    is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
                    if is_beam_token_worse_than_top_num_beams:
                        continue

                    completes_constraint = self.check_completes_constraints(input_ids[batch_beam_idx].asnumpy().tolist())
                    if completes_constraint:
                        if beam_indices is not None:
                            beam_index = beam_indices[batch_beam_idx]
                            beam_index = beam_index + (batch_beam_idx,)
                        else:
                            beam_index = None

                        beam_hyp.add(
                            input_ids[batch_beam_idx].clone(),
                            next_score.asnumpy().item(),
                            beam_indices=beam_index,
                        )
                else:
                    # add next predicted token since it is not eos_token
                    next_beam_scores[batch_idx, beam_idx] = next_score
                    next_beam_tokens[batch_idx, beam_idx] = next_token
                    next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
                    beam_idx += 1

                # once the beam for next step is full, don't add more tokens to it.
                if beam_idx == self.group_size:
                    break

            new_scores, new_tokens, new_indices = self.step_sentence_constraint(
                batch_idx,
                input_ids,
                scores_for_all_vocab,
                next_beam_scores[batch_idx],
                next_beam_tokens[batch_idx],
                next_beam_indices[batch_idx],
            )

            next_beam_scores[batch_idx] = new_scores
            next_beam_tokens[batch_idx] = new_tokens
            next_beam_indices[batch_idx] = new_indices

            if beam_idx < self.group_size:
                raise ValueError(
                    f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
                    f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
                )

            # Check if we are done so that we can save a pad step if all(done)
            self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done(
                next_scores[batch_idx].max().asnumpy().item(), cur_len
            )

        return UserDict(
            {
                "next_beam_scores": next_beam_scores.view(-1),
                "next_beam_tokens": next_beam_tokens.view(-1),
                "next_beam_indices": next_beam_indices.view(-1),
            }
        )

    def step_sentence_constraint(
        self,
        batch_idx: int,
        input_ids: mindspore.Tensor,
        vocab_scores: mindspore.Tensor,
        sent_beam_scores: mindspore.Tensor,
        sent_beam_tokens: mindspore.Tensor,
        sent_beam_indices: mindspore.Tensor,
        push_progress: bool = False,
    ):
        r"""
        This method performs a step in the constrained beam search process to generate new sequences based on
        the input constraints.

        Args:
            self: The instance of the ConstrainedBeamSearchScorer class.
            batch_idx (int): The index of the batch being processed.
            input_ids (mindspore.Tensor): The input token ids for the current batch.
            vocab_scores (mindspore.Tensor): The scores for the vocabulary tokens.
            sent_beam_scores (mindspore.Tensor): The scores of the current beam hypotheses.
            sent_beam_tokens (mindspore.Tensor): The tokens of the current beam hypotheses.
            sent_beam_indices (mindspore.Tensor): The indices of the current beam hypotheses.
            push_progress (bool, optional): A flag indicating whether to push progress. Defaults to False.

        Returns:
            None: This method does not return any value. Instead, it updates the sent_beam_scores, sent_beam_tokens,
                and sent_beam_indices in place.

        Raises:
            None.
        """
        # sent_beam_tokens are the next {num_beams} number of tokens that are under consideration for this beam
        # (candidate next tokens)

        # 1. Adding "advance_tokens"
        #     using ConstraintStateList.advance(), we propose new tokens to be added into this "candidate list" that will
        #     advance us in fulfilling the constraints.

        # 2. Selecting best candidates such that we end up with highest probable candidates
        #     that fulfill our constraints.

        orig_len = sent_beam_indices.shape[0]

        # initialize states
        topk_contraint_states = self.make_constraint_states(orig_len)
        advance_constraint_states = self.make_constraint_states(orig_len)

        sidx, eidx = batch_idx * orig_len, (batch_idx + 1) * orig_len
        this_batch_input_ids = input_ids[sidx:eidx]
        this_batch_token_scores = vocab_scores[sidx:eidx]
        full_hypotheses = ops.cat((input_ids[sent_beam_indices], sent_beam_tokens.unsqueeze(-1)), dim=-1)

        # need to make new hypothesis that advance the constraints
        track_new = {
            "new_seqs": full_hypotheses.tolist(),
            "new_states": [],
            "new_indices": [],
            "new_tokens": [],
            "new_scores": [],
        }
        for seq_idx, pre_seq in enumerate(this_batch_input_ids):
            # pre_seq = ith sequence generated before this step.

            # input_ids -> (topk) generic beam search best model next tokens
            #           -> (advance) constraints forcing the next token
            # either way, we need to sort them into "banks" later, so store a "ConstraintListState" for all types of
            # hypotheses.

            topk_state = topk_contraint_states[seq_idx]
            topk_state.reset(full_hypotheses[seq_idx].asnumpy().tolist())

            advance_state = advance_constraint_states[seq_idx]
            advance_state.reset(pre_seq.asnumpy().tolist())

            if not advance_state.completed:
                advance_tokens = mindspore.Tensor(advance_state.advance())
                for advance_token in advance_tokens:
                    # since adding each `advance_token` leads to a different hypothesis, create new state instance.
                    new_state = advance_state.copy(stateful=True)
                    new_state.add(advance_token.asnumpy().tolist())

                    advance_seq = ops.cat((pre_seq, advance_token.unsqueeze(0)), -1).asnumpy().tolist()
                    if advance_seq not in track_new["new_seqs"]:
                        # prevent duplicates, which are basically bound to happen in this process.
                        track_new["new_seqs"].append(advance_seq)
                        track_new["new_indices"].append(sidx + seq_idx)  # idx -> global idx across all the batches
                        track_new["new_tokens"].append(advance_token)
                        track_new["new_scores"].append(this_batch_token_scores[seq_idx].take(advance_token))
                        track_new["new_states"].append(new_state)
            elif push_progress:
                # Basically, `sent_beam_indices` often chooses very little among `input_ids` the generated sequences that
                # actually fulfill our constraints. For example, let constraints == ["loves pies"] and

                #     pre_seq_1 = "The child loves pies and" pre_seq_2 = "The child plays in the playground and"

                # Without this step, if `sent_beam_indices` is something like [1,1], then
                #     1. `pre_seq_1` won't be added to the list of (topk) hypothesis since it's not in the indices and
                #     2.  it won't be added to the list of (advance) hypothesis since it's completed already. (this is
                #         the else part of `if constraints_completed[seq_idx]`)
                #     3. it ends up simply getting removed from consideration.

                # #3 might be fine and actually desired, since it's likely that it's a low-probability output anyways,
                # especially if it's not in the list of `sent_beam_indices`. But this often leads to lengthened beam
                # search times, since completed sequences keep getting removed after all this effort for constrained
                # generation.

                # Here, we basically take `pre_seq_1` and to "push" it into the considered list of hypotheses, by simply
                # appending the next likely token in the vocabulary and adding it to the list of hypotheses.

                new_score, new_token = ops.max(this_batch_token_scores[seq_idx], 0)  # some next probable token
                advance_seq = ops.cat((pre_seq, new_token.unsqueeze(0)), -1)

                advance_state = advance_constraint_states[seq_idx]

                advance_seq = advance_seq.asnumpy().tolist()

                advance_state.reset(advance_seq)
                if advance_seq not in track_new["new_seqs"]:
                    # but still don't want to have duplicates
                    track_new["new_seqs"].append(advance_seq)
                    track_new["new_indices"].append(seq_idx)
                    track_new["new_tokens"].append(new_token)
                    track_new["new_scores"].append(new_score)
                    track_new["new_states"].append(advance_state)

        if len(track_new["new_indices"]) > 0:
            new_indices = mindspore.tensor(track_new["new_indices"])
            new_tokens = ops.stack(track_new["new_tokens"])
            new_scores = ops.stack(track_new["new_scores"])

            all_states = topk_contraint_states + track_new["new_states"]
            all_tokens = ops.cat((sent_beam_tokens, new_tokens), -1)
            all_scores = ops.cat((sent_beam_scores, new_scores), -1)
            all_banks = mindspore.tensor([one.get_bank() for one in all_states])

            zipped = all_banks * 100 + all_scores
            indices = zipped.sort(descending=True)[1]
            sorted_banks = all_banks[indices]

            # Then we end up with {sorted among bank C}, {sorted among bank C-1}, ..., {sorted among bank 0}

            counter = -1
            cur_bank = sorted_banks[0]
            increments = []
            for bank in sorted_banks:
                if bank == cur_bank:
                    counter += 1
                else:
                    counter = 0
                    cur_bank = bank
                increments.append(counter)
            rearrangers = mindspore.tensor(np.argsort(increments, kind="mergesort"))

            indices = indices[rearrangers][:orig_len]

            sent_beam_scores = all_scores[indices]
            sent_beam_tokens = all_tokens[indices]
            sent_beam_indices = ops.cat((sent_beam_indices, new_indices))[indices]

        return sent_beam_scores, sent_beam_tokens, sent_beam_indices

    def finalize(
        self,
        input_ids: mindspore.Tensor,
        final_beam_scores: mindspore.Tensor,
        final_beam_tokens: mindspore.Tensor,
        final_beam_indices: mindspore.Tensor,
        max_length: int,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[mindspore.Tensor] = None,
    ) -> Tuple[mindspore.Tensor]:
        r"""
        This method finalizes the beam search process in the ConstrainedBeamSearchScorer class.

        Args:
            self: The instance of the class.
            input_ids (mindspore.Tensor): The input tensor containing token IDs.
            final_beam_scores (mindspore.Tensor): The final scores of the beams.
            final_beam_tokens (mindspore.Tensor): The final tokens of the beams.
            final_beam_indices (mindspore.Tensor): The final indices of the beams.
            max_length (int): The maximum length of the output sequences.
            pad_token_id (Optional[int]): The token ID used for padding. Default is None.
            eos_token_id (Optional[Union[int, List[int]]): The token ID or list of token IDs representing the
                end of sequence. Default is None.
            beam_indices (Optional[mindspore.Tensor]): The indices of the beams. Default is None.

        Returns:
            Tuple[mindspore.Tensor]: A tuple containing the final sequences, sequence scores, and beam indices.

        Raises:
            ValueError: Raised if 'pad_token_id' is not defined.
        """
        batch_size = len(self._beam_hyps)

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        # finalize all open beam hypotheses and add to generated hypotheses
        for batch_idx, beam_hyp in enumerate(self._beam_hyps):
            if self._done[batch_idx]:
                continue

            # all open beam hypotheses are added to the beam hypothesis
            # beam hypothesis class automatically keeps the best beams

            ids_collect = []
            for beam_id in range(self.num_beams):
                batch_beam_idx = batch_idx * self.num_beams + beam_id
                final_score = final_beam_scores[batch_beam_idx].asnumpy().item()
                final_tokens = input_ids[batch_beam_idx]

                completes_constraint = self.check_completes_constraints(final_tokens.asnumpy().tolist())
                if completes_constraint:
                    beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
                    beam_hyp.add(final_tokens, final_score, beam_indices=beam_index)
                    ids_collect.append(beam_id)

            # due to overly complex constraints or other factors, sometimes we can't gaurantee a successful
            # generation. In these cases we simply return the highest scoring outputs.
            if len(ids_collect) < self.num_beam_hyps_to_keep:
                for beam_id in range(self.num_beams):
                    if beam_id not in ids_collect:
                        batch_beam_idx = batch_idx * self.num_beams + beam_id
                        final_score = final_beam_scores[batch_beam_idx].asnumpy().item()
                        final_tokens = input_ids[batch_beam_idx]
                        beam_hyp.add(final_tokens, final_score)
                    if len(ids_collect) >= self.num_beam_hyps_to_keep:
                        break

        # select the best hypotheses
        sent_lengths = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=input_ids.dtype)
        best = []
        best_indices = []
        best_scores = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=mindspore.float32)

        # retrieve best hypotheses
        for i, beam_hyp in enumerate(self._beam_hyps):
            sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0])
            for j in range(self.num_beam_hyps_to_keep):
                best_hyp_tuple = sorted_hyps.pop()
                best_score = best_hyp_tuple[0]
                best_hyp = best_hyp_tuple[1]
                best_index = best_hyp_tuple[2]
                sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)

                # append to lists
                best.append(best_hyp)

                # append indices to list
                best_indices.append(best_index)

                best_scores[i * self.num_beam_hyps_to_keep + j] = best_score

        # prepare for adding eos
        sent_lengths_max = sent_lengths.max().asnumpy().item() + 1

        sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
        decoded: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)

        if len(best_indices) > 0 and best_indices[0] is not None:
            indices: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)
        else:
            indices = None

        # shorter batches are padded if needed
        if sent_lengths.min().asnumpy().item() != sent_lengths.max().asnumpy().item():
            if pad_token_id is None:
                raise ValueError("`pad_token_id` has to be defined")
            decoded = decoded.fill(pad_token_id)

        if indices is not None:
            indices = indices.fill(-1)

        # fill with hypotheses and eos_token_id if the latter fits in
        for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
            decoded[i, : sent_lengths[i]] = hypo

            if indices is not None:
                indices[i, : len(best_idx)] = ops.stack(best_idx)

            if sent_lengths[i] < sent_max_len:
                # inserting only the first eos_token_id
                decoded[i, sent_lengths[i]] = eos_token_id[0]

        return UserDict(
            {
                "sequences": decoded,
                "sequence_scores": best_scores,
                "beam_indices": indices,
            }
        )

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.is_done: bool property

Method to check if the ConstrainedBeamSearchScorer instance has completed processing.

PARAMETER DESCRIPTION
self

The instance of ConstrainedBeamSearchScorer on which the method is called. This parameter is required to access the internal state of the scorer.

TYPE: ConstrainedBeamSearchScorer

RETURNS DESCRIPTION
bool

Returns a boolean value indicating whether the processing is completed (True) or not (False). True if all processing is done, False otherwise.

TYPE: bool

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.__init__(batch_size, num_beams, constraints, length_penalty=1.0, do_early_stopping=False, num_beam_hyps_to_keep=1, num_beam_groups=1, max_length=None)

Initializes an instance of the ConstrainedBeamSearchScorer class.

PARAMETER DESCRIPTION
self

The instance of the class.

batch_size

The number of examples in a batch.

TYPE: int

num_beams

The number of beams to use for beam search.

TYPE: int

constraints

A list of constraints to be applied during beam search.

TYPE: List[Constraint]

length_penalty

The length penalty to be applied during beam search.

TYPE: Optional[float], default=1.0 DEFAULT: 1.0

do_early_stopping

Whether to perform early stopping during beam search.

TYPE: Optional[Union[bool, str]], default=False DEFAULT: False

num_beam_hyps_to_keep

The number of beam hypotheses to keep during beam search.

TYPE: Optional[int], default=1 DEFAULT: 1

num_beam_groups

The number of beam groups to use during beam search.

TYPE: Optional[int], default=1 DEFAULT: 1

max_length

The maximum length of output sequences.

TYPE: Optional[int], default=None DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If num_beams is not an integer strictly greater than 1 or if num_beam_groups is not an integer smaller or equal than num_beams or if num_beam_groups is not divisible by num_beams.

Note
  • For num_beams == 1, it is recommended to use greedy_search instead.
  • The parameter constraints is a list of constraints that should be satisfied by the generated sequences.
  • The parameter length_penalty is a scalar value that affects the length normalization penalty during beam search.
  • The parameter do_early_stopping determines whether beam search should stop early if all beam hypotheses have reached the end token.
  • The parameter num_beam_hyps_to_keep specifies the number of beam hypotheses to keep during beam search.
  • The parameter num_beam_groups determines the number of beam groups to use during beam search.
  • The parameter max_length specifies the maximum length of the output sequences.
  • The method initializes internal variables and objects required for beam search.
Source code in mindnlp/transformers/generation/beam_search.py
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
def __init__(
    self,
    batch_size: int,
    num_beams: int,
    constraints: List[Constraint],
    length_penalty: Optional[float] = 1.0,
    do_early_stopping: Optional[Union[bool, str]] = False,
    num_beam_hyps_to_keep: Optional[int] = 1,
    num_beam_groups: Optional[int] = 1,
    max_length: Optional[int] = None,
):
    r"""
    Initializes an instance of the ConstrainedBeamSearchScorer class.

    Args:
        self: The instance of the class.
        batch_size (int): The number of examples in a batch.
        num_beams (int): The number of beams to use for beam search.
        constraints (List[Constraint]): A list of constraints to be applied during beam search.
        length_penalty (Optional[float], default=1.0): The length penalty to be applied during beam search.
        do_early_stopping (Optional[Union[bool, str]], default=False): Whether to perform early stopping during beam search.
        num_beam_hyps_to_keep (Optional[int], default=1): The number of beam hypotheses to keep during beam search.
        num_beam_groups (Optional[int], default=1): The number of beam groups to use during beam search.
        max_length (Optional[int], default=None): The maximum length of output sequences.

    Returns:
        None.

    Raises:
        ValueError: If num_beams is not an integer strictly greater than 1 or if num_beam_groups is not an integer
            smaller or equal than num_beams or if num_beam_groups is not divisible by num_beams.

    Note:
        - For `num_beams` == 1, it is recommended to use `greedy_search` instead.
        - The parameter `constraints` is a list of constraints that should be satisfied by the generated sequences.
        - The parameter `length_penalty` is a scalar value that affects the length normalization penalty
        during beam search.
        - The parameter `do_early_stopping` determines whether beam search should stop early if all beam hypotheses
        have reached the end token.
        - The parameter `num_beam_hyps_to_keep` specifies the number of beam hypotheses to keep during beam search.
        - The parameter `num_beam_groups` determines the number of beam groups to use during beam search.
        - The parameter `max_length` specifies the maximum length of the output sequences.
        - The method initializes internal variables and objects required for beam search.
    """
    self.num_beams = num_beams
    self.length_penalty = length_penalty
    self.do_early_stopping = do_early_stopping
    self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
    self.num_beam_groups = num_beam_groups
    self.group_size = self.num_beams // self.num_beam_groups
    self.constraints = constraints

    self._is_init = False
    self._beam_hyps = [
        BeamHypotheses(
            num_beams=self.num_beams,
            length_penalty=self.length_penalty,
            early_stopping=self.do_early_stopping,
            max_length=max_length,
        )
        for _ in range(batch_size)
    ]
    self._done = mindspore.tensor([False for _ in range(batch_size)], dtype=mindspore.bool_)

    if not isinstance(num_beams, int) or num_beams <= 1:
        raise ValueError(
            f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
            " one should make use of `greedy_search` instead."
        )

    if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
        raise ValueError(
            "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
            f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
        )

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.check_completes_constraints(sequence)

This method checks if the given sequence completes constraints in the ConstrainedBeamSearchScorer class.

PARAMETER DESCRIPTION
self

The instance of the ConstrainedBeamSearchScorer class.

TYPE: ConstrainedBeamSearchScorer

sequence

A list representing the input sequence to be checked for completing constraints.

TYPE: list

RETURNS DESCRIPTION
None

This method does not return any value explicitly. It updates the state of the ConstrainedBeamSearchScorer instance.

Source code in mindnlp/transformers/generation/beam_search.py
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def check_completes_constraints(self, sequence):
    r"""
    This method checks if the given sequence completes constraints in the ConstrainedBeamSearchScorer class.

    Args:
        self (ConstrainedBeamSearchScorer): The instance of the ConstrainedBeamSearchScorer class.
        sequence (list): A list representing the input sequence to be checked for completing constraints.

    Returns:
        None: This method does not return any value explicitly.
            It updates the state of the ConstrainedBeamSearchScorer instance.

    Raises:
        None.
    """
    new_state = self.make_constraint_states(1)[0]
    new_state.reset(sequence)
    return new_state.completed

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.finalize(input_ids, final_beam_scores, final_beam_tokens, final_beam_indices, max_length, pad_token_id=None, eos_token_id=None, beam_indices=None)

This method finalizes the beam search process in the ConstrainedBeamSearchScorer class.

PARAMETER DESCRIPTION
self

The instance of the class.

input_ids

The input tensor containing token IDs.

TYPE: Tensor

final_beam_scores

The final scores of the beams.

TYPE: Tensor

final_beam_tokens

The final tokens of the beams.

TYPE: Tensor

final_beam_indices

The final indices of the beams.

TYPE: Tensor

max_length

The maximum length of the output sequences.

TYPE: int

pad_token_id

The token ID used for padding. Default is None.

TYPE: Optional[int] DEFAULT: None

eos_token_id

The token ID or list of token IDs representing the end of sequence. Default is None.

TYPE: Optional[Union[int, List[int]] DEFAULT: None

beam_indices

The indices of the beams. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

RETURNS DESCRIPTION
Tuple[Tensor]

Tuple[mindspore.Tensor]: A tuple containing the final sequences, sequence scores, and beam indices.

RAISES DESCRIPTION
ValueError

Raised if 'pad_token_id' is not defined.

Source code in mindnlp/transformers/generation/beam_search.py
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
def finalize(
    self,
    input_ids: mindspore.Tensor,
    final_beam_scores: mindspore.Tensor,
    final_beam_tokens: mindspore.Tensor,
    final_beam_indices: mindspore.Tensor,
    max_length: int,
    pad_token_id: Optional[int] = None,
    eos_token_id: Optional[Union[int, List[int]]] = None,
    beam_indices: Optional[mindspore.Tensor] = None,
) -> Tuple[mindspore.Tensor]:
    r"""
    This method finalizes the beam search process in the ConstrainedBeamSearchScorer class.

    Args:
        self: The instance of the class.
        input_ids (mindspore.Tensor): The input tensor containing token IDs.
        final_beam_scores (mindspore.Tensor): The final scores of the beams.
        final_beam_tokens (mindspore.Tensor): The final tokens of the beams.
        final_beam_indices (mindspore.Tensor): The final indices of the beams.
        max_length (int): The maximum length of the output sequences.
        pad_token_id (Optional[int]): The token ID used for padding. Default is None.
        eos_token_id (Optional[Union[int, List[int]]): The token ID or list of token IDs representing the
            end of sequence. Default is None.
        beam_indices (Optional[mindspore.Tensor]): The indices of the beams. Default is None.

    Returns:
        Tuple[mindspore.Tensor]: A tuple containing the final sequences, sequence scores, and beam indices.

    Raises:
        ValueError: Raised if 'pad_token_id' is not defined.
    """
    batch_size = len(self._beam_hyps)

    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]

    # finalize all open beam hypotheses and add to generated hypotheses
    for batch_idx, beam_hyp in enumerate(self._beam_hyps):
        if self._done[batch_idx]:
            continue

        # all open beam hypotheses are added to the beam hypothesis
        # beam hypothesis class automatically keeps the best beams

        ids_collect = []
        for beam_id in range(self.num_beams):
            batch_beam_idx = batch_idx * self.num_beams + beam_id
            final_score = final_beam_scores[batch_beam_idx].asnumpy().item()
            final_tokens = input_ids[batch_beam_idx]

            completes_constraint = self.check_completes_constraints(final_tokens.asnumpy().tolist())
            if completes_constraint:
                beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
                beam_hyp.add(final_tokens, final_score, beam_indices=beam_index)
                ids_collect.append(beam_id)

        # due to overly complex constraints or other factors, sometimes we can't gaurantee a successful
        # generation. In these cases we simply return the highest scoring outputs.
        if len(ids_collect) < self.num_beam_hyps_to_keep:
            for beam_id in range(self.num_beams):
                if beam_id not in ids_collect:
                    batch_beam_idx = batch_idx * self.num_beams + beam_id
                    final_score = final_beam_scores[batch_beam_idx].asnumpy().item()
                    final_tokens = input_ids[batch_beam_idx]
                    beam_hyp.add(final_tokens, final_score)
                if len(ids_collect) >= self.num_beam_hyps_to_keep:
                    break

    # select the best hypotheses
    sent_lengths = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=input_ids.dtype)
    best = []
    best_indices = []
    best_scores = ops.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=mindspore.float32)

    # retrieve best hypotheses
    for i, beam_hyp in enumerate(self._beam_hyps):
        sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0])
        for j in range(self.num_beam_hyps_to_keep):
            best_hyp_tuple = sorted_hyps.pop()
            best_score = best_hyp_tuple[0]
            best_hyp = best_hyp_tuple[1]
            best_index = best_hyp_tuple[2]
            sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)

            # append to lists
            best.append(best_hyp)

            # append indices to list
            best_indices.append(best_index)

            best_scores[i * self.num_beam_hyps_to_keep + j] = best_score

    # prepare for adding eos
    sent_lengths_max = sent_lengths.max().asnumpy().item() + 1

    sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
    decoded: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)

    if len(best_indices) > 0 and best_indices[0] is not None:
        indices: mindspore.Tensor = ops.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=input_ids.dtype)
    else:
        indices = None

    # shorter batches are padded if needed
    if sent_lengths.min().asnumpy().item() != sent_lengths.max().asnumpy().item():
        if pad_token_id is None:
            raise ValueError("`pad_token_id` has to be defined")
        decoded = decoded.fill(pad_token_id)

    if indices is not None:
        indices = indices.fill(-1)

    # fill with hypotheses and eos_token_id if the latter fits in
    for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
        decoded[i, : sent_lengths[i]] = hypo

        if indices is not None:
            indices[i, : len(best_idx)] = ops.stack(best_idx)

        if sent_lengths[i] < sent_max_len:
            # inserting only the first eos_token_id
            decoded[i, sent_lengths[i]] = eos_token_id[0]

    return UserDict(
        {
            "sequences": decoded,
            "sequence_scores": best_scores,
            "beam_indices": indices,
        }
    )

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.make_constraint_states(n)

Generates a list of constraint states for a ConstrainedBeamSearchScorer object.

PARAMETER DESCRIPTION
self

The instance of the ConstrainedBeamSearchScorer class.

TYPE: ConstrainedBeamSearchScorer

n

The number of constraint states to generate.

TYPE: int

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/generation/beam_search.py
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
def make_constraint_states(self, n):
    r"""
    Generates a list of constraint states for a ConstrainedBeamSearchScorer object.

    Args:
        self (ConstrainedBeamSearchScorer): The instance of the ConstrainedBeamSearchScorer class.
        n (int): The number of constraint states to generate.

    Returns:
        None.

    Raises:
        None.
    """
    return [ConstraintListState([constraint.copy() for constraint in self.constraints]) for _ in range(n)]

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.process(input_ids, next_scores, next_tokens, next_indices, scores_for_all_vocab, pad_token_id=None, eos_token_id=None, beam_indices=None)

PARAMETER DESCRIPTION
input_ids

Indices of input sequence tokens in the vocabulary.

Indices can be obtained using any class inheriting from [PreTrainedTokenizer]. See [PreTrainedTokenizer.encode] and [PreTrainedTokenizer.__call__] for details.

What are input IDs?

TYPE: `mindspore.Tensor` of shape `(batch_size * num_beams, sequence_length)`

next_scores

Current scores of the top 2 * num_beams non-finished beam hypotheses.

TYPE: `mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`

next_tokens

input_ids of the tokens corresponding to the top 2 * num_beams non-finished beam hypotheses.

TYPE: `mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`

next_indices

Beam indices indicating to which beam hypothesis the next_tokens correspond.

TYPE: `mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`

scores_for_all_vocab

The scores of all tokens in the vocabulary for each of the beam hypotheses.

TYPE: `mindspore.Tensor` of shape `(batch_size * num_beams, sequence_length)`

pad_token_id

The id of the padding token.

TYPE: `int`, *optional* DEFAULT: None

eos_token_id

The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.

TYPE: `Union[int, List[int]]`, *optional* DEFAULT: None

beam_indices

Beam indices indicating to which beam hypothesis each token correspond.

TYPE: `mindspore.Tensor`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Tuple[Tensor]

UserDict: A dictionary composed of the fields as defined above:

  • next_beam_scores (mindspore.Tensor of shape (batch_size * num_beams)) -- Updated scores of all non-finished beams.
  • next_beam_tokens (mindspore.Tensor of shape (batch_size * num_beams)) -- Next tokens to be added to the non-finished beam_hypotheses.
  • next_beam_indices (mindspore.Tensor of shape (batch_size * num_beams)) -- Beam indices indicating to which beam the next tokens shall be added.
Source code in mindnlp/transformers/generation/beam_search.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
def process(
    self,
    input_ids: mindspore.Tensor,
    next_scores: mindspore.Tensor,
    next_tokens: mindspore.Tensor,
    next_indices: mindspore.Tensor,
    scores_for_all_vocab: mindspore.Tensor,
    pad_token_id: Optional[int] = None,
    eos_token_id: Optional[Union[int, List[int]]] = None,
    beam_indices: Optional[mindspore.Tensor] = None,
) -> Tuple[mindspore.Tensor]:
    r"""
    Args:
        input_ids (`mindspore.Tensor` of shape `(batch_size * num_beams, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        next_scores (`mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`):
            Current scores of the top `2 * num_beams` non-finished beam hypotheses.
        next_tokens (`mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`):
            `input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
        next_indices (`mindspore.Tensor` of shape `(batch_size, 2 * num_beams)`):
            Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
        scores_for_all_vocab (`mindspore.Tensor` of shape `(batch_size * num_beams, sequence_length)`):
            The scores of all tokens in the vocabulary for each of the beam hypotheses.
        pad_token_id (`int`, *optional*):
            The id of the *padding* token.
        eos_token_id (`Union[int, List[int]]`, *optional*):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        beam_indices (`mindspore.Tensor`, *optional*):
            Beam indices indicating to which beam hypothesis each token correspond.

    Returns:
        `UserDict`:
            A dictionary composed of the fields as defined above:

            - **next_beam_scores** (`mindspore.Tensor` of shape `(batch_size * num_beams)`) -- Updated scores of
            all non-finished beams.
            - **next_beam_tokens** (`mindspore.Tensor` of shape `(batch_size * num_beams)`) -- Next tokens to be
            added to the non-finished beam_hypotheses.
            - **next_beam_indices** (`mindspore.Tensor` of shape `(batch_size * num_beams)`) -- Beam indices
            indicating to which beam the next tokens shall be added.
    """
    cur_len = input_ids.shape[-1] + 1  # add up to the length which the next_scores is calculated on
    batch_size = len(self._beam_hyps)
    if batch_size != (input_ids.shape[0] // self.group_size):
        if self.num_beam_groups > 1:
            raise ValueError(
                f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
                f"size of {self.group_size} is expected by the beam scorer."
            )
        raise ValueError(
            f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
            f"{self.group_size} is expected by the beam scorer."
        )

    next_beam_scores = ops.zeros(batch_size, self.group_size, dtype=next_scores.dtype)
    next_beam_tokens = ops.zeros(batch_size, self.group_size, dtype=next_tokens.dtype)
    next_beam_indices = ops.zeros(batch_size, self.group_size, dtype=next_indices.dtype)

    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]

    for batch_idx, beam_hyp in enumerate(self._beam_hyps):
        if self._done[batch_idx]:
            if self.num_beams < len(beam_hyp):
                raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
            if eos_token_id is None or pad_token_id is None:
                raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
            # pad the batch
            next_beam_scores[batch_idx, :] = 0
            next_beam_tokens[batch_idx, :] = pad_token_id
            next_beam_indices[batch_idx, :] = 0
            continue

        # next tokens for this sentence.
        beam_idx = 0
        for beam_token_rank, (next_token, next_score, next_index) in enumerate(
            zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
        ):
            batch_beam_idx = batch_idx * self.group_size + next_index
            # add to generated hypotheses if end of sentence
            if (eos_token_id is not None) and (next_token.asnumpy().item() in eos_token_id):
                # if beam_token does not belong to top num_beams tokens, it should not be added
                is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
                if is_beam_token_worse_than_top_num_beams:
                    continue

                completes_constraint = self.check_completes_constraints(input_ids[batch_beam_idx].asnumpy().tolist())
                if completes_constraint:
                    if beam_indices is not None:
                        beam_index = beam_indices[batch_beam_idx]
                        beam_index = beam_index + (batch_beam_idx,)
                    else:
                        beam_index = None

                    beam_hyp.add(
                        input_ids[batch_beam_idx].clone(),
                        next_score.asnumpy().item(),
                        beam_indices=beam_index,
                    )
            else:
                # add next predicted token since it is not eos_token
                next_beam_scores[batch_idx, beam_idx] = next_score
                next_beam_tokens[batch_idx, beam_idx] = next_token
                next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
                beam_idx += 1

            # once the beam for next step is full, don't add more tokens to it.
            if beam_idx == self.group_size:
                break

        new_scores, new_tokens, new_indices = self.step_sentence_constraint(
            batch_idx,
            input_ids,
            scores_for_all_vocab,
            next_beam_scores[batch_idx],
            next_beam_tokens[batch_idx],
            next_beam_indices[batch_idx],
        )

        next_beam_scores[batch_idx] = new_scores
        next_beam_tokens[batch_idx] = new_tokens
        next_beam_indices[batch_idx] = new_indices

        if beam_idx < self.group_size:
            raise ValueError(
                f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
                f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
            )

        # Check if we are done so that we can save a pad step if all(done)
        self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done(
            next_scores[batch_idx].max().asnumpy().item(), cur_len
        )

    return UserDict(
        {
            "next_beam_scores": next_beam_scores.view(-1),
            "next_beam_tokens": next_beam_tokens.view(-1),
            "next_beam_indices": next_beam_indices.view(-1),
        }
    )

mindnlp.transformers.generation.beam_search.ConstrainedBeamSearchScorer.step_sentence_constraint(batch_idx, input_ids, vocab_scores, sent_beam_scores, sent_beam_tokens, sent_beam_indices, push_progress=False)

This method performs a step in the constrained beam search process to generate new sequences based on the input constraints.

PARAMETER DESCRIPTION
self

The instance of the ConstrainedBeamSearchScorer class.

batch_idx

The index of the batch being processed.

TYPE: int

input_ids

The input token ids for the current batch.

TYPE: Tensor

vocab_scores

The scores for the vocabulary tokens.

TYPE: Tensor

sent_beam_scores

The scores of the current beam hypotheses.

TYPE: Tensor

sent_beam_tokens

The tokens of the current beam hypotheses.

TYPE: Tensor

sent_beam_indices

The indices of the current beam hypotheses.

TYPE: Tensor

push_progress

A flag indicating whether to push progress. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
None

This method does not return any value. Instead, it updates the sent_beam_scores, sent_beam_tokens, and sent_beam_indices in place.

Source code in mindnlp/transformers/generation/beam_search.py
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
def step_sentence_constraint(
    self,
    batch_idx: int,
    input_ids: mindspore.Tensor,
    vocab_scores: mindspore.Tensor,
    sent_beam_scores: mindspore.Tensor,
    sent_beam_tokens: mindspore.Tensor,
    sent_beam_indices: mindspore.Tensor,
    push_progress: bool = False,
):
    r"""
    This method performs a step in the constrained beam search process to generate new sequences based on
    the input constraints.

    Args:
        self: The instance of the ConstrainedBeamSearchScorer class.
        batch_idx (int): The index of the batch being processed.
        input_ids (mindspore.Tensor): The input token ids for the current batch.
        vocab_scores (mindspore.Tensor): The scores for the vocabulary tokens.
        sent_beam_scores (mindspore.Tensor): The scores of the current beam hypotheses.
        sent_beam_tokens (mindspore.Tensor): The tokens of the current beam hypotheses.
        sent_beam_indices (mindspore.Tensor): The indices of the current beam hypotheses.
        push_progress (bool, optional): A flag indicating whether to push progress. Defaults to False.

    Returns:
        None: This method does not return any value. Instead, it updates the sent_beam_scores, sent_beam_tokens,
            and sent_beam_indices in place.

    Raises:
        None.
    """
    # sent_beam_tokens are the next {num_beams} number of tokens that are under consideration for this beam
    # (candidate next tokens)

    # 1. Adding "advance_tokens"
    #     using ConstraintStateList.advance(), we propose new tokens to be added into this "candidate list" that will
    #     advance us in fulfilling the constraints.

    # 2. Selecting best candidates such that we end up with highest probable candidates
    #     that fulfill our constraints.

    orig_len = sent_beam_indices.shape[0]

    # initialize states
    topk_contraint_states = self.make_constraint_states(orig_len)
    advance_constraint_states = self.make_constraint_states(orig_len)

    sidx, eidx = batch_idx * orig_len, (batch_idx + 1) * orig_len
    this_batch_input_ids = input_ids[sidx:eidx]
    this_batch_token_scores = vocab_scores[sidx:eidx]
    full_hypotheses = ops.cat((input_ids[sent_beam_indices], sent_beam_tokens.unsqueeze(-1)), dim=-1)

    # need to make new hypothesis that advance the constraints
    track_new = {
        "new_seqs": full_hypotheses.tolist(),
        "new_states": [],
        "new_indices": [],
        "new_tokens": [],
        "new_scores": [],
    }
    for seq_idx, pre_seq in enumerate(this_batch_input_ids):
        # pre_seq = ith sequence generated before this step.

        # input_ids -> (topk) generic beam search best model next tokens
        #           -> (advance) constraints forcing the next token
        # either way, we need to sort them into "banks" later, so store a "ConstraintListState" for all types of
        # hypotheses.

        topk_state = topk_contraint_states[seq_idx]
        topk_state.reset(full_hypotheses[seq_idx].asnumpy().tolist())

        advance_state = advance_constraint_states[seq_idx]
        advance_state.reset(pre_seq.asnumpy().tolist())

        if not advance_state.completed:
            advance_tokens = mindspore.Tensor(advance_state.advance())
            for advance_token in advance_tokens:
                # since adding each `advance_token` leads to a different hypothesis, create new state instance.
                new_state = advance_state.copy(stateful=True)
                new_state.add(advance_token.asnumpy().tolist())

                advance_seq = ops.cat((pre_seq, advance_token.unsqueeze(0)), -1).asnumpy().tolist()
                if advance_seq not in track_new["new_seqs"]:
                    # prevent duplicates, which are basically bound to happen in this process.
                    track_new["new_seqs"].append(advance_seq)
                    track_new["new_indices"].append(sidx + seq_idx)  # idx -> global idx across all the batches
                    track_new["new_tokens"].append(advance_token)
                    track_new["new_scores"].append(this_batch_token_scores[seq_idx].take(advance_token))
                    track_new["new_states"].append(new_state)
        elif push_progress:
            # Basically, `sent_beam_indices` often chooses very little among `input_ids` the generated sequences that
            # actually fulfill our constraints. For example, let constraints == ["loves pies"] and

            #     pre_seq_1 = "The child loves pies and" pre_seq_2 = "The child plays in the playground and"

            # Without this step, if `sent_beam_indices` is something like [1,1], then
            #     1. `pre_seq_1` won't be added to the list of (topk) hypothesis since it's not in the indices and
            #     2.  it won't be added to the list of (advance) hypothesis since it's completed already. (this is
            #         the else part of `if constraints_completed[seq_idx]`)
            #     3. it ends up simply getting removed from consideration.

            # #3 might be fine and actually desired, since it's likely that it's a low-probability output anyways,
            # especially if it's not in the list of `sent_beam_indices`. But this often leads to lengthened beam
            # search times, since completed sequences keep getting removed after all this effort for constrained
            # generation.

            # Here, we basically take `pre_seq_1` and to "push" it into the considered list of hypotheses, by simply
            # appending the next likely token in the vocabulary and adding it to the list of hypotheses.

            new_score, new_token = ops.max(this_batch_token_scores[seq_idx], 0)  # some next probable token
            advance_seq = ops.cat((pre_seq, new_token.unsqueeze(0)), -1)

            advance_state = advance_constraint_states[seq_idx]

            advance_seq = advance_seq.asnumpy().tolist()

            advance_state.reset(advance_seq)
            if advance_seq not in track_new["new_seqs"]:
                # but still don't want to have duplicates
                track_new["new_seqs"].append(advance_seq)
                track_new["new_indices"].append(seq_idx)
                track_new["new_tokens"].append(new_token)
                track_new["new_scores"].append(new_score)
                track_new["new_states"].append(advance_state)

    if len(track_new["new_indices"]) > 0:
        new_indices = mindspore.tensor(track_new["new_indices"])
        new_tokens = ops.stack(track_new["new_tokens"])
        new_scores = ops.stack(track_new["new_scores"])

        all_states = topk_contraint_states + track_new["new_states"]
        all_tokens = ops.cat((sent_beam_tokens, new_tokens), -1)
        all_scores = ops.cat((sent_beam_scores, new_scores), -1)
        all_banks = mindspore.tensor([one.get_bank() for one in all_states])

        zipped = all_banks * 100 + all_scores
        indices = zipped.sort(descending=True)[1]
        sorted_banks = all_banks[indices]

        # Then we end up with {sorted among bank C}, {sorted among bank C-1}, ..., {sorted among bank 0}

        counter = -1
        cur_bank = sorted_banks[0]
        increments = []
        for bank in sorted_banks:
            if bank == cur_bank:
                counter += 1
            else:
                counter = 0
                cur_bank = bank
            increments.append(counter)
        rearrangers = mindspore.tensor(np.argsort(increments, kind="mergesort"))

        indices = indices[rearrangers][:orig_len]

        sent_beam_scores = all_scores[indices]
        sent_beam_tokens = all_tokens[indices]
        sent_beam_indices = ops.cat((sent_beam_indices, new_indices))[indices]

    return sent_beam_scores, sent_beam_tokens, sent_beam_indices