logits_process
mindnlp.transformers.generation.logits_process
¶
Logits process
mindnlp.transformers.generation.logits_process.AlternatingCodebooksLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] enforcing alternated generation between the two codebooks of [Bark
]'s fine submodel.
PARAMETER | DESCRIPTION |
---|---|
input_start_len |
The length of the initial input sequence.
TYPE:
|
semantic_vocab_size |
Vocabulary size of the semantic part, i.e number of tokens associated to the semantic vocabulary.
TYPE:
|
codebook_size |
Number of tokens associated to the codebook.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 |
|
mindnlp.transformers.generation.logits_process.AlternatingCodebooksLogitsProcessor.__call__(input_ids, scores)
¶
The 'call' method in the 'AlternatingCodebooksLogitsProcessor' class processes the input tensors to manipulate the scores based on alternating codebooks.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'AlternatingCodebooksLogitsProcessor' class.
|
input_ids |
A tensor containing the input IDs.
TYPE:
|
scores |
A tensor containing the scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor representing the modified scores.
|
Source code in mindnlp/transformers/generation/logits_process.py
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 |
|
mindnlp.transformers.generation.logits_process.AlternatingCodebooksLogitsProcessor.__init__(input_start_len, semantic_vocab_size, codebook_size)
¶
Initializes an instance of the AlternatingCodebooksLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
input_start_len |
The starting length of the input sequence. Must be a non-negative integer.
TYPE:
|
semantic_vocab_size |
The size of the semantic vocabulary.
TYPE:
|
codebook_size |
The size of the codebook.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/generation/logits_process.py
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 |
|
mindnlp.transformers.generation.logits_process.BarkEosPrioritizerLogitsProcessor
¶
Bases: LogitsProcessor
This processor ensures that the EOS token is selected if its probability is greater than the min_eos_p
.
This logits processor is exclusively compatible with Bark. See the model documentation for examples.
PARAMETER | DESCRIPTION |
---|---|
eos_token_id |
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.
TYPE:
|
min_eos_p |
Minimum end of speech threshold.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 |
|
mindnlp.transformers.generation.logits_process.BarkEosPrioritizerLogitsProcessor.__call__(input_ids, scores)
¶
This method processes input logits for early stopping based on a minimum probability threshold for the end-of-sequence token.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the BarkEosPrioritizerLogitsProcessor class. |
input_ids |
A Tensor containing input IDs.
TYPE:
|
scores |
A Tensor containing logits scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Processed logits scores with early stopping applied based on the minimum end-of-sequence probability threshold. |
Source code in mindnlp/transformers/generation/logits_process.py
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 |
|
mindnlp.transformers.generation.logits_process.BarkEosPrioritizerLogitsProcessor.__init__(eos_token_id, min_eos_p)
¶
Initializes an instance of the BarkEosPrioritizerLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
eos_token_id |
An integer or a list of integers representing the end-of-sequence token ID(s). If an integer is provided, it will be converted to a list with that integer as its only element.
TYPE:
|
min_eos_p |
The minimum value for the end-of-sequence probability. Must be a positive float. If not None, it should be greater than 0. Otherwise, a ValueError will be raised.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if min_eos_p is not a positive float or if it is None. |
Source code in mindnlp/transformers/generation/logits_process.py
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 |
|
mindnlp.transformers.generation.logits_process.ClassifierFreeGuidanceLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] for classifier free guidance (CFG). The scores are split over the batch dimension,
where the first half correspond to the conditional logits (predicted from the input prompt) and the second half
correspond to the unconditional logits (predicted from an empty or 'null' prompt). The processor computes a
weighted average across the conditional and unconditional logits, parameterised by the guidance_scale
.
See the paper for more information.
This logits processor is exclusively compatible with MusicGen
PARAMETER | DESCRIPTION |
---|---|
guidance_scale |
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting
TYPE:
|
Example
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
...
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
...
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
Source code in mindnlp/transformers/generation/logits_process.py
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 |
|
mindnlp.transformers.generation.logits_process.ClassifierFreeGuidanceLogitsProcessor.__call__(input_ids, scores)
¶
Performs processing on logits to generate processed scores for a classifier with free guidance.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ClassifierFreeGuidanceLogitsProcessor class. |
input_ids |
A tensor containing input IDs for the classifier.
TYPE:
|
scores |
A tensor containing logits for the classifier.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the processed scores for the classifier. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of the scores tensor does not meet the required conditions. |
The 'call' method processes the logits to generate processed scores for a classifier with free guidance. It expects two parameters: 'input_ids' and 'scores'. The method returns a tensor of type 'mindspore.Tensor' which contains the processed scores.
The 'input_ids' parameter is a tensor that holds the input IDs for the classifier. It is used to determine the batch size and shape of the scores tensor. There are no specific restrictions on this parameter.
The 'scores' parameter is a tensor that holds the logits for the classifier. It is expected to have twice the batch size of the input IDs tensor, with the first half of the batches corresponding to the conditional inputs and the second half corresponding to the unconditional inputs. The shape of the scores tensor should be (2 * input_ids.shape[0], ...). The method raises a ValueError if the shape of the scores tensor does not meet this requirement.
The method splits the scores tensor into two parts: 'cond_logits' and 'uncond_logits'. 'cond_logits' represents the logits for the conditional inputs, while 'uncond_logits' represents the logits for the unconditional inputs. These logits are then processed using the guidance scale specified in the instance of the ClassifierFreeGuidanceLogitsProcessor class. The final processed scores are obtained by adding 'uncond_logits' to the difference between 'cond_logits' and 'uncond_logits', multiplied by the guidance scale.
Note
This method assumes that the 'split' function splits the tensor into two parts along the first dimension (dim=0).
Source code in mindnlp/transformers/generation/logits_process.py
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 |
|
mindnlp.transformers.generation.logits_process.ClassifierFreeGuidanceLogitsProcessor.__init__(guidance_scale)
¶
Initializes a new instance of the ClassifierFreeGuidanceLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
guidance_scale |
The scale of guidance for the classifier-free guidance processor. Must be greater than 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the guidance_scale is not greater than 1, a ValueError is raised indicating the requirement for guidance_scale > 1 to use the classifier-free guidance processor. |
Source code in mindnlp/transformers/generation/logits_process.py
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 |
|
mindnlp.transformers.generation.logits_process.EncoderNoRepeatNGramLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces no repetition of encoder input ids n-grams for the decoder ids. See
ParlAI.
PARAMETER | DESCRIPTION |
---|---|
encoder_ngram_size |
All ngrams of size
TYPE:
|
encoder_input_ids |
The encoder_input_ids that should not be repeated within the decoder ids.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
|
mindnlp.transformers.generation.logits_process.EncoderNoRepeatNGramLogitsProcessor.__call__(input_ids, scores)
¶
This method processes logits to prevent generation of n-grams that have already appeared in the input sequence.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncoderNoRepeatNGramLogitsProcessor class. |
input_ids |
A tensor containing the input token IDs. Shape: (batch_size, sequence_length)
TYPE:
|
scores |
A tensor containing the logits scores for each token. Shape: (num_hypos, vocab_size)
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the updated logits scores after processing. Shape: (num_hypos, vocab_size) |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input_ids or scores parameters are not of type mindspore.Tensor. |
ValueError
|
If the dimensions of input_ids and scores do not match the expected shapes. |
Source code in mindnlp/transformers/generation/logits_process.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
|
mindnlp.transformers.generation.logits_process.EncoderNoRepeatNGramLogitsProcessor.__init__(encoder_ngram_size, encoder_input_ids)
¶
Initializes the EncoderNoRepeatNGramLogitsProcessor.
PARAMETER | DESCRIPTION |
---|---|
encoder_ngram_size |
The size of the n-grams for encoding. Must be a strictly positive integer.
TYPE:
|
encoder_input_ids |
The input tensor for the encoder. If it has shape (N,), it will be unsqueezed to shape (1, N).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/generation/logits_process.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
mindnlp.transformers.generation.logits_process.EncoderRepetitionPenaltyLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] enforcing an exponential penalty on tokens that are not in the original input.
PARAMETER | DESCRIPTION |
---|---|
hallucination_penalty |
The parameter for hallucination penalty. 1.0 means no penalty.
TYPE:
|
encoder_input_ids |
The encoder_input_ids that should not be repeated within the decoder ids.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
mindnlp.transformers.generation.logits_process.EncoderRepetitionPenaltyLogitsProcessor.__call__(input_ids, scores)
¶
This method calculates and applies repetition penalty to the logits based on the input scores.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncoderRepetitionPenaltyLogitsProcessor class. |
input_ids |
The input tensor containing the token ids.
TYPE:
|
scores |
The input tensor containing the original scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns a tensor with repetition penalty applied to the logits. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the dimensions of input_ids and scores do not match. |
TypeError
|
If the input_ids or scores are not instances of mindspore.Tensor. |
RuntimeError
|
If there is an issue with the scatter operation during processing. |
Source code in mindnlp/transformers/generation/logits_process.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
mindnlp.transformers.generation.logits_process.EncoderRepetitionPenaltyLogitsProcessor.__init__(penalty, encoder_input_ids)
¶
Initializes an instance of the EncoderRepetitionPenaltyLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
penalty |
The penalty value for repetition. Must be a strictly positive float.
TYPE:
|
encoder_input_ids |
The input tensor of the encoder.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/generation/logits_process.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
mindnlp.transformers.generation.logits_process.EpsilonLogitsWarper
¶
Bases: LogitsWarper
[LogitsWarper
] that performs epsilon-sampling, i.e. restricting to tokens with prob >= epsilon
. Takes the
largest min_tokens_to_keep tokens if no tokens satisfy this constraint. See Truncation Sampling as Language Model
Desmoothing for more information.
PARAMETER | DESCRIPTION |
---|---|
epsilon |
If set to > 0, only the most tokens with probabilities
TYPE:
|
filter_value |
All filtered values will be set to this float value.
TYPE:
|
min_tokens_to_keep |
Minimum number of tokens that cannot be filtered.
TYPE:
|
Example
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
...
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
...
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
...
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
...
>>> # With epsilon sampling, the output gets restricted to high-probability tokens. Note that this is similar to
>>> # Top P sampling, which restricts tokens based on their cumulative probability.
>>> # Pro tip: The paper recomends using `epsilon_cutoff` values between 3e-4 and 9e-4
>>> outputs = model.generate(**inputs, do_sample=True, epsilon_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
Source code in mindnlp/transformers/generation/logits_process.py
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 |
|
mindnlp.transformers.generation.logits_process.EpsilonLogitsWarper.__call__(input_ids, scores)
¶
This method takes three parameters: Args: self (EpsilonLogitsWarper): The instance of the EpsilonLogitsWarper class. input_ids (mindspore.Tensor): The input tensor containing the IDs. scores (mindspore.Tensor): The input tensor containing the scores.
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the modified scores after applying the epsilon logits warping. |
Source code in mindnlp/transformers/generation/logits_process.py
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 |
|
mindnlp.transformers.generation.logits_process.EpsilonLogitsWarper.__init__(epsilon, filter_value=-float('Inf'), min_tokens_to_keep=1)
¶
Initializes an instance of the EpsilonLogitsWarper class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
epsilon |
The value used for epsilon cutoff. It should be a float greater than 0 and less than 1.
TYPE:
|
filter_value |
The filter value for the warping operation. Defaults to negative infinity.
TYPE:
|
min_tokens_to_keep |
The minimum number of tokens to keep. It should be a strictly positive integer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If epsilon is not within the range (0, 1) or if min_tokens_to_keep is less than 1. |
Source code in mindnlp/transformers/generation/logits_process.py
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 |
|
mindnlp.transformers.generation.logits_process.EtaLogitsWarper
¶
Bases: LogitsWarper
[LogitsWarper
] that performs eta-sampling, a technique to filter out tokens with probabilities below a dynamic
cutoff value, eta
, which is calculated based on a combination of the hyperparameter epsilon
and the entropy of
the token probabilities, i.e. eta := min(epsilon, sqrt(epsilon * e^-entropy(probabilities)))
. Takes the largest
min_tokens_to_keep tokens if no tokens satisfy this constraint. It addresses the issue of poor quality in long
samples of text generated by neural language models leading to more coherent and fluent text. See Truncation
Sampling as Language Model Desmoothing for more information. Note: do_sample
must be set to True
for this LogitsWarper
to work.
PARAMETER | DESCRIPTION |
---|---|
epsilon |
A float value in the range (0, 1). Hyperparameter used to calculate the dynamic cutoff value,
TYPE:
|
filter_value |
All values that are found to be below the dynamic cutoff value,
TYPE:
|
min_tokens_to_keep |
Specifies the minimum number of tokens that must be kept for generation, regardless of their probabilities.
For example, if
TYPE:
|
Example
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
...
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
...
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
...
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
...
>>> # With eta sampling, the output gets restricted to high-probability tokens. You can see it as a dynamic form of
>>> # epsilon sampling that adapts its cutoff probability based on the entropy (high entropy = lower cutoff).
>>> # Pro tip: The paper recomends using `eta_cutoff` values between 3e-4 to 4e-3
>>> outputs = model.generate(**inputs, do_sample=True, eta_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
Source code in mindnlp/transformers/generation/logits_process.py
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 |
|
mindnlp.transformers.generation.logits_process.EtaLogitsWarper.__call__(input_ids, scores)
¶
This method 'call' in the class 'EtaLogitsWarper' takes three parameters:
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
input_ids |
The input tensor containing the IDs.
TYPE:
|
scores |
The input tensor containing the scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns a tensor after applying certain operations on the input scores. |
Source code in mindnlp/transformers/generation/logits_process.py
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 |
|
mindnlp.transformers.generation.logits_process.EtaLogitsWarper.__init__(epsilon, filter_value=-float('Inf'), min_tokens_to_keep=1)
¶
Initialize a new instance of the EtaLogitsWarper class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
epsilon |
The value to be used as epsilon. It should be a float between 0 and 1.
TYPE:
|
filter_value |
The value to be used for filtering. Defaults to -float('Inf').
TYPE:
|
min_tokens_to_keep |
The minimum number of tokens to keep. Defaults to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If epsilon is not a float between 0 and 1. |
ValueError
|
If min_tokens_to_keep is not a positive integer. |
Source code in mindnlp/transformers/generation/logits_process.py
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 |
|
mindnlp.transformers.generation.logits_process.ExponentialDecayLengthPenalty
¶
Bases: LogitsProcessor
[LogitsProcessor
] that exponentially increases the score of the eos_token_id after regulation_start has been
reached.
PARAMETER | DESCRIPTION |
---|---|
exponential_decay_length_penalty |
This tuple shall consist of:
TYPE:
|
eos_token_id |
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.
TYPE:
|
input_ids_seq_length |
The length of the input sequence.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
|
mindnlp.transformers.generation.logits_process.ExponentialDecayLengthPenalty.__call__(input_ids, scores)
¶
This method calculates exponential decay length penalty for input scores based on the length of input_ids.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ExponentialDecayLengthPenalty class. |
input_ids |
A tensor containing input IDs. This tensor represents the input sequence for which the length penalty is to be applied.
TYPE:
|
scores |
A tensor containing scores to be adjusted based on the length of input_ids. The scores represent the probability distribution for each token in the input sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the adjusted scores after applying the exponential decay length penalty. The returned tensor has the same shape as the input 'scores'. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the length of input_ids is not consistent with the shape of scores. |
TypeError
|
If input_ids or scores are not of type mindspore.Tensor. |
Source code in mindnlp/transformers/generation/logits_process.py
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
|
mindnlp.transformers.generation.logits_process.ExponentialDecayLengthPenalty.__init__(exponential_decay_length_penalty, eos_token_id, input_ids_seq_length)
¶
Initializes an instance of the ExponentialDecayLengthPenalty class with the specified parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
exponential_decay_length_penalty |
A tuple containing two elements:
TYPE:
|
eos_token_id |
The ID or list of IDs representing the end-of-sequence token(s).
TYPE:
|
input_ids_seq_length |
The length of the input sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the 'exponential_decay_length_penalty' parameter is not a tuple. |
ValueError
|
If the 'exponential_decay_length_penalty' tuple does not contain exactly two elements. |
ValueError
|
If the 'input_ids_seq_length' parameter is not an integer. |
ValueError
|
If the 'eos_token_id' parameter is not an integer or a list of integers. |
Source code in mindnlp/transformers/generation/logits_process.py
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
|
mindnlp.transformers.generation.logits_process.ForceTokensLogitsProcessor
¶
Bases: LogitsProcessor
This processor takes a list of pairs of integers which indicates a mapping from generation indices to token
indices that will be forced before sampling. The processor will set their log probs to inf
so that they are
sampled at their corresponding index.
Source code in mindnlp/transformers/generation/logits_process.py
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 |
|
mindnlp.transformers.generation.logits_process.ForceTokensLogitsProcessor.__call__(input_ids, scores)
¶
This method modifies the scores of input tokens based on a predefined set of force tokens.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ForceTokensLogitsProcessor class. |
input_ids |
A tensor containing the input token IDs with shape (batch_size, sequence_length).
TYPE:
|
scores |
A tensor containing the scores for each token with shape (batch_size, sequence_length).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/generation/logits_process.py
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 |
|
mindnlp.transformers.generation.logits_process.ForceTokensLogitsProcessor.__init__(force_token_map)
¶
Initializes a new instance of the ForceTokensLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
force_token_map |
A list of lists containing integer values representing the force token map.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/logits_process.py
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 |
|
mindnlp.transformers.generation.logits_process.ForcedBOSTokenLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces the specified token as the first generated token.
PARAMETER | DESCRIPTION |
---|---|
bos_token_id |
The id of the token to force as the first generated token.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
|
mindnlp.transformers.generation.logits_process.ForcedBOSTokenLogitsProcessor.__call__(input_ids, scores)
¶
This method, 'call', is a part of the 'ForcedBOSTokenLogitsProcessor' class. It takes three parameters: self, input_ids, and scores. The method returns a value of type 'mindspore.Tensor'.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the 'ForcedBOSTokenLogitsProcessor' class.
|
input_ids |
The input tensor containing the IDs of the tokens.
TYPE:
|
scores |
The tensor containing the scores for each token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The tensor containing the modified scores. |
This method modifies the scores tensor by adjusting the scores based on the input IDs. If the length of the input_ids tensor is 1, the scores for all tokens except the 'bos_token_id' are set to negative infinity, and the score for the 'bos_token_id' is set to 0. The modified scores tensor is then returned.
Source code in mindnlp/transformers/generation/logits_process.py
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
|
mindnlp.transformers.generation.logits_process.ForcedBOSTokenLogitsProcessor.__init__(bos_token_id)
¶
Initializes a new instance of the ForcedBOSTokenLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
bos_token_id |
The token ID for the beginning of sentence (BOS) token. This ID is used to identify the BOS token in the input sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/logits_process.py
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
|
mindnlp.transformers.generation.logits_process.ForcedEOSTokenLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces the specified token as the last generated token when max_length
is reached.
PARAMETER | DESCRIPTION |
---|---|
max_length |
The maximum length of the sequence to be generated.
TYPE:
|
eos_token_id |
The id of the token to force as the last generated token when
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
|
mindnlp.transformers.generation.logits_process.ForcedEOSTokenLogitsProcessor.__call__(input_ids, scores)
¶
This method processes the logits by forcing end-of-sequence (EOS) tokens and returns the updated scores.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ForcedEOSTokenLogitsProcessor class. |
input_ids |
The input tensor containing token IDs.
TYPE:
|
scores |
The tensor containing the scores/logits for each token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns the updated scores after processing. |
Source code in mindnlp/transformers/generation/logits_process.py
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
|
mindnlp.transformers.generation.logits_process.ForcedEOSTokenLogitsProcessor.__init__(max_length, eos_token_id)
¶
Initializes a ForcedEOSTokenLogitsProcessor object with the specified parameters.
PARAMETER | DESCRIPTION |
---|---|
max_length |
The maximum length for processing logits. Must be a positive integer.
TYPE:
|
eos_token_id |
The end-of-sequence token ID(s) to be considered. If a single integer is provided, it will be converted to a list.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/logits_process.py
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
|
mindnlp.transformers.generation.logits_process.HammingDiversityLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces diverse beam search. Note that this logits processor is only effective for
[PreTrainedModel.group_beam_search
]. See Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence
Models for more details.
PARAMETER | DESCRIPTION |
---|---|
diversity_penalty |
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
particular time. Note that
TYPE:
|
num_beams |
Number of beams used for group beam search. See this paper for more details.
TYPE:
|
num_beam_groups |
Number of groups to divide
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
mindnlp.transformers.generation.logits_process.HammingDiversityLogitsProcessor.__call__(input_ids, scores, current_tokens, beam_group_idx)
¶
This method calculates the diversity penalty and updates the input scores based on the previous group tokens.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the HammingDiversityLogitsProcessor class.
|
input_ids |
The input tensor representing the tokenized input.
TYPE:
|
scores |
The tensor containing scores for each token.
TYPE:
|
current_tokens |
The tensor containing the current tokens.
TYPE:
|
beam_group_idx |
The index of the beam group.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns the updated scores tensor after applying the diversity penalty. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids, scores, current_tokens, or beam_group_idx are of incorrect or incompatible types. |
IndexError
|
If the beam_group_idx is out of range. |
RuntimeError
|
If there is an issue with the calculation or update process. |
Source code in mindnlp/transformers/generation/logits_process.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
mindnlp.transformers.generation.logits_process.HammingDiversityLogitsProcessor.__init__(diversity_penalty, num_beams, num_beam_groups)
¶
Initializes a new instance of the HammingDiversityLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
diversity_penalty |
The penalty factor for diversity. It should be a positive floating-point number.
TYPE:
|
num_beams |
The number of beams to use in the beam search. It should be an integer greater than 1.
TYPE:
|
num_beam_groups |
The number of beam groups. It should be an integer greater than 1 and less than or equal to num_beams.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If diversity_penalty is not a float or is not strictly larger than 0. |
ValueError
|
If num_beams is not an integer or is not strictly larger than 1. |
ValueError
|
If num_beam_groups is not an integer or is not strictly larger than 1. |
ValueError
|
If num_beam_groups is larger than num_beams. |
Source code in mindnlp/transformers/generation/logits_process.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
mindnlp.transformers.generation.logits_process.InfNanRemoveLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that removes all nan
and inf
values to avoid the generation method to fail. Note that using
the logits processor should only be used if necessary since it can slow down the generation method. max_length
is
reached.
Source code in mindnlp/transformers/generation/logits_process.py
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 |
|
mindnlp.transformers.generation.logits_process.InfNanRemoveLogitsProcessor.__call__(input_ids, scores)
¶
This method 'call' in the class 'InfNanRemoveLogitsProcessor' processes input scores by replacing infinite and NaN values.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InfNanRemoveLogitsProcessor class.
|
input_ids |
A tensor containing the input IDs.
TYPE:
|
scores |
A tensor containing the scores to be processed. Any NaN values in the scores will be replaced with 0.0, and any infinite values will be replaced with the maximum value for the data type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the processed scores after replacing NaN and infinite values. |
Source code in mindnlp/transformers/generation/logits_process.py
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 |
|
mindnlp.transformers.generation.logits_process.LogitNormalization
¶
Bases: LogitsProcessor
, LogitsWarper
[LogitsWarper
] and [LogitsProcessor
] for normalizing the scores using log-softmax. It's important to normalize
the scores during beam search, after applying the logits processors or warpers, since the search algorithm used in
this library doesn't do it (it only does it before, but they may need re-normalization) but it still supposes that
the scores are normalized when comparing the hypotheses.
Source code in mindnlp/transformers/generation/logits_process.py
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 |
|
mindnlp.transformers.generation.logits_process.LogitNormalization.__call__(input_ids, scores)
¶
Description
This class provides a method for logit normalization.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LogitNormalization class.
TYPE:
|
input_ids |
The input tensor containing the IDs. This tensor is used as an input to calculate the log softmax.
TYPE:
|
scores |
The tensor containing the scores to be normalized. The scores are normalized using log softmax along the last dimension.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns the normalized scores in the form of a Tensor. The normalized scores are obtained by applying log softmax to the input scores. |
Source code in mindnlp/transformers/generation/logits_process.py
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 |
|
mindnlp.transformers.generation.logits_process.LogitsProcessor
¶
Abstract base class for all logit processors that can be applied during generation.
Source code in mindnlp/transformers/generation/logits_process.py
30 31 32 33 34 35 36 |
|
mindnlp.transformers.generation.logits_process.LogitsProcessor.__call__(input_ids, scores)
¶
Torch method for processing logits.
Source code in mindnlp/transformers/generation/logits_process.py
32 33 34 35 36 |
|
mindnlp.transformers.generation.logits_process.LogitsProcessorList
¶
Bases: list
This class can be used to create a list of [LogitsProcessor
] or [LogitsWarper
] to subsequently process a
scores
input tensor. This class inherits from list and adds a specific call method to apply each
[LogitsProcessor
] or [LogitsWarper
] to the inputs.
Source code in mindnlp/transformers/generation/logits_process.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
mindnlp.transformers.generation.logits_process.LogitsProcessorList.__call__(input_ids, scores, **kwargs)
¶
This method processes input_ids and scores using a list of processors.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LogitsProcessorList class.
TYPE:
|
input_ids |
The input tensor containing the IDs of tokens to be processed.
TYPE:
|
scores |
The input tensor containing the scores to be processed.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The processed scores tensor. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If not all the required parameters for a processor are passed to the logits processor. |
Source code in mindnlp/transformers/generation/logits_process.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
mindnlp.transformers.generation.logits_process.LogitsWarper
¶
Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.
Source code in mindnlp/transformers/generation/logits_process.py
39 40 41 42 43 44 45 |
|
mindnlp.transformers.generation.logits_process.LogitsWarper.__call__(input_ids, scores)
¶
Torch method for warping logits.
Source code in mindnlp/transformers/generation/logits_process.py
41 42 43 44 45 |
|
mindnlp.transformers.generation.logits_process.MinLengthLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] enforcing a min-length by setting EOS probability to 0.
PARAMETER | DESCRIPTION |
---|---|
min_length |
The minimum length below which the score of
TYPE:
|
eos_token_id |
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
|
mindnlp.transformers.generation.logits_process.MinLengthLogitsProcessor.__call__(input_ids, scores)
¶
The 'call' method processes the scores of a given input and applies a minimum length constraint to the logits. It takes three parameters: self, input_ids, and scores.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MinLengthLogitsProcessor class.
|
input_ids |
The input tensor representing the tokenized input sequence.
TYPE:
|
scores |
The tensor containing the logits scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The processed scores tensor after applying the minimum length constraint. |
Source code in mindnlp/transformers/generation/logits_process.py
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
|
mindnlp.transformers.generation.logits_process.MinLengthLogitsProcessor.__init__(min_length, eos_token_id)
¶
Initializes an instance of the MinLengthLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the MinLengthLogitsProcessor class.
TYPE:
|
min_length |
The minimum length of the processed logits. It must be a positive integer.
TYPE:
|
eos_token_id |
The end-of-sequence token ID or a list of end-of-sequence token IDs. If an integer is provided, it will be converted to a list. It must be a list of positive integers.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
ValueError
|
If |
Source code in mindnlp/transformers/generation/logits_process.py
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
|
mindnlp.transformers.generation.logits_process.MinNewTokensLengthLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0.
PARAMETER | DESCRIPTION |
---|---|
prompt_length_to_skip |
The input tokens length.
TYPE:
|
min_new_tokens |
The minimum new tokens length below which the score of
TYPE:
|
eos_token_id |
The id of the end-of-sequence token.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
|
mindnlp.transformers.generation.logits_process.MinNewTokensLengthLogitsProcessor.__call__(input_ids, scores)
¶
This method 'call' in the class 'MinNewTokensLengthLogitsProcessor' processes input_ids and scores to adjust scores based on the length of new tokens.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MinNewTokensLengthLogitsProcessor class. |
input_ids |
The input tensor containing token IDs.
TYPE:
|
scores |
The input tensor containing the scores associated with each token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns the updated scores tensor after processing based on the input_ids and prompt_length_to_skip attribute. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the new_tokens_length is calculated to be less than the min_new_tokens threshold. |
Source code in mindnlp/transformers/generation/logits_process.py
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
|
mindnlp.transformers.generation.logits_process.MinNewTokensLengthLogitsProcessor.__init__(prompt_length_to_skip, min_new_tokens, eos_token_id)
¶
init
PARAMETER | DESCRIPTION |
---|---|
prompt_length_to_skip |
The length of prompt to skip for processing.
TYPE:
|
min_new_tokens |
The minimum number of new tokens to consider for processing.
TYPE:
|
eos_token_id |
The ID of the end-of-sequence token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If prompt_length_to_skip, min_new_tokens, or eos_token_id is not a positive integer. |
Source code in mindnlp/transformers/generation/logits_process.py
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
|
mindnlp.transformers.generation.logits_process.NoBadWordsLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces that specified sequences will never be sampled.
PARAMETER | DESCRIPTION |
---|---|
bad_words_ids |
List of list of token ids that are not allowed to be generated. In order to get the token ids of the words
that should not appear in the generated text, use
TYPE:
|
eos_token_id |
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
|
mindnlp.transformers.generation.logits_process.NoBadWordsLogitsProcessor.__call__(input_ids, scores)
¶
This method is a part of the 'NoBadWordsLogitsProcessor' class and is called 'call'. It processes the input tensors and applies the 'No Bad Words' logic to the scores.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'NoBadWordsLogitsProcessor' class.
|
input_ids |
A tensor containing the input IDs.
TYPE:
|
scores |
A tensor containing the scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the processed scores.
|
Source code in mindnlp/transformers/generation/logits_process.py
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
|
mindnlp.transformers.generation.logits_process.NoBadWordsLogitsProcessor.__init__(bad_words_ids, eos_token_id)
¶
This method initializes an instance of the NoBadWordsLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
bad_words_ids |
A list of lists containing the IDs of bad words. Each inner list represents a sequence of bad word IDs. The outer list contains multiple sequences of bad word IDs. The parameter is expected to be a non-empty list of lists of positive integers.
TYPE:
|
eos_token_id |
An integer or a list of integers representing the end-of-sequence token ID(s). If a single integer is provided, it is converted to a list with a single element. If this parameter is None, it is automatically assigned an empty list. It is expected to be a positive integer or a list of positive integers.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
|
Source code in mindnlp/transformers/generation/logits_process.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|
mindnlp.transformers.generation.logits_process.NoRepeatNGramLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces no repetition of n-grams. See
Fairseq.
PARAMETER | DESCRIPTION |
---|---|
ngram_size |
All ngrams of size
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
mindnlp.transformers.generation.logits_process.NoRepeatNGramLogitsProcessor.__call__(input_ids, scores)
¶
This method processes the logits for generating token sequences without repeating n-grams.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the NoRepeatNGramLogitsProcessor class. |
input_ids |
A tensor containing input token IDs for the current batch. The shape of the tensor should be compatible with the model's input requirements.
TYPE:
|
scores |
A tensor containing the logits scores for each token in the vocabulary. The shape of the tensor should be compatible with the model's output logits.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the modified logits scores after applying the no repeat n-gram processing. The modified scores ensure that tokens forming prohibited n-grams have their logits set to negative infinity. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of input_ids or scores is incompatible. |
TypeError
|
If input_ids or scores are not of type mindspore.Tensor. |
Source code in mindnlp/transformers/generation/logits_process.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
mindnlp.transformers.generation.logits_process.NoRepeatNGramLogitsProcessor.__init__(ngram_size)
¶
Initializes a NoRepeatNGramLogitsProcessor object with the specified ngram size.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
ngram_size |
The size of the n-gram to be used for processing the logits. It should be a strictly positive integer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the ngram_size is not an integer or is less than or equal to 0, a ValueError is raised with a descriptive error message. |
Source code in mindnlp/transformers/generation/logits_process.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
mindnlp.transformers.generation.logits_process.PrefixConstrainedLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that enforces constrained generation and is useful for prefix-conditioned constrained
generation. See Autoregressive Entity Retrieval for more information.
PARAMETER | DESCRIPTION |
---|---|
prefix_allowed_tokens_fn |
(
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
|
mindnlp.transformers.generation.logits_process.PrefixConstrainedLogitsProcessor.__call__(input_ids, scores)
¶
Method 'call' in the class 'PrefixConstrainedLogitsProcessor'.
This method takes 3 parameters:
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
input_ids |
The input tensor containing token IDs. It is used to identify the batch and beam ID.
TYPE:
|
scores |
The input tensor containing scores for each token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: Returns the processed tensor with added mask values. |
Source code in mindnlp/transformers/generation/logits_process.py
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
|
mindnlp.transformers.generation.logits_process.PrefixConstrainedLogitsProcessor.__init__(prefix_allowed_tokens_fn, num_beams)
¶
Initialize the PrefixConstrainedLogitsProcessor object.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
prefix_allowed_tokens_fn |
A function that defines the allowed tokens for a given prefix. It takes an integer representing the batch size and a Tensor as input, and returns a list of integers representing the allowed tokens.
TYPE:
|
num_beams |
The number of beams to use during processing.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If prefix_allowed_tokens_fn is not a callable object or if num_beams is not an integer. |
ValueError
|
If num_beams is less than or equal to zero. |
Source code in mindnlp/transformers/generation/logits_process.py
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
|
mindnlp.transformers.generation.logits_process.RepetitionPenaltyLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] enforcing an exponential penalty on repeated sequences.
PARAMETER | DESCRIPTION |
---|---|
repetition_penalty |
The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
mindnlp.transformers.generation.logits_process.RepetitionPenaltyLogitsProcessor.__call__(input_ids, scores)
¶
This method applies repetition penalty to the input logits based on the given input_ids and scores.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the RepetitionPenaltyLogitsProcessor class. |
input_ids |
A Tensor representing the input ids for which repetition penalty is applied.
TYPE:
|
scores |
A Tensor containing the scores used for applying repetition penalty.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A Tensor with repetition penalty applied to the input logits. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids and scores are not of the expected shape or type. |
IndexError
|
If there is an indexing error while processing the input_ids or scores. |
RuntimeError
|
If there is any runtime issue during the processing of the repetition penalty. |
Note
The repetition penalty factor is controlled by the 'penalty' attribute of the RepetitionPenaltyLogitsProcessor instance.
Source code in mindnlp/transformers/generation/logits_process.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
mindnlp.transformers.generation.logits_process.RepetitionPenaltyLogitsProcessor.__init__(penalty)
¶
Initializes a new RepetitionPenaltyLogitsProcessor with the specified penalty.
PARAMETER | DESCRIPTION |
---|---|
penalty |
The penalty value to be applied to logits. It should be a strictly positive float.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the penalty is not a float or if it is less than or equal to 0, a ValueError is raised. |
Source code in mindnlp/transformers/generation/logits_process.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
mindnlp.transformers.generation.logits_process.SequenceBiasLogitsProcessor
¶
Bases: LogitsProcessor
[LogitsProcessor
] that applies an additive bias on sequences. The bias is applied to the last token of a sequence
when the next generated token can complete it. Consequently, to take the most of biasing sequences with more than
one token, consider using beam methods (to gracefully work around partially completed sequences that have a
negative bias) and applying the bias to their prefixes (to ensure the bias is applied earlier).
In order to get the token ids of the sequences that you want to bias, make sure to set add_prefix_space=True
when
initializing the tokenizer, and use tokenizer(bad_words, add_special_tokens=False).input_ids
. The
add_prefix_space
argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours
come from pre tokenizers
. Read more here.
PARAMETER | DESCRIPTION |
---|---|
sequence_bias |
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias will always be applied. Otherwise, the bias will only be applied if the sequence in question is about to be completed (in the token selection step after this processor is applied).
TYPE:
|
Example
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
...
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["The full name of Donald is Donald"], return_tensors="pt")
...
>>> summary_ids = model.generate(inputs["input_ids"], max_new_tokens=4)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Trump Jr
...
>>> # Now let's control generation through a bias. Please note that the tokenizer is initialized differently!
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)
...
...
>>> def get_tokens_as_tuple(word):
... return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0])
...
...
>>> # If we add a negative bias without beam search, it may become "stuck" in a prefix without good continuations
>>> sequence_bias = {get_tokens_as_tuple("Trump"): -10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Donald,
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Rumsfeld,
>>> # We can also add a positive bias to nudge the model towards specific tokens or continuations
>>> sequence_bias = {get_tokens_as_tuple("Donald Duck"): 10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Duck.
Source code in mindnlp/transformers/generation/logits_process.py
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 |
|
mindnlp.transformers.generation.logits_process.SequenceBiasLogitsProcessor.__call__(input_ids, scores)
¶
call
This method processes the input_ids and scores to apply sequence bias to the logits.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the SequenceBiasLogitsProcessor class. |
input_ids |
The input tensor containing the tokenized input sequence.
TYPE:
|
scores |
The input tensor containing the scores/logits to be processed.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The processed scores/logits after applying sequence bias. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids or scores are not of type mindspore.Tensor. |
ValueError
|
If the input_ids and scores do not have compatible shapes for processing. |
Source code in mindnlp/transformers/generation/logits_process.py
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 |
|
mindnlp.transformers.generation.logits_process.SequenceBiasLogitsProcessor.__init__(sequence_bias)
¶
Initializes an instance of the SequenceBiasLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
sequence_bias |
A dictionary containing the sequence bias values. The keys are tuples of integers representing the sequence positions, and the values are floats representing the bias for each position.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/logits_process.py
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 |
|
mindnlp.transformers.generation.logits_process.SuppressTokensAtBeginLogitsProcessor
¶
Bases: LogitsProcessor
[SuppressTokensAtBeginLogitsProcessor
] supresses a list of tokens as soon as the generate
function starts
generating using begin_index
tokens. This should ensure that the tokens defined by begin_suppress_tokens
at not
sampled at the begining of the generation.
Source code in mindnlp/transformers/generation/logits_process.py
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
|
mindnlp.transformers.generation.logits_process.SuppressTokensAtBeginLogitsProcessor.__call__(input_ids, scores)
¶
This method call is a part of the class SuppressTokensAtBeginLogitsProcessor and is used to process input_ids and scores by suppressing certain tokens at the beginning.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class SuppressTokensAtBeginLogitsProcessor.
TYPE:
|
input_ids |
The input token IDs, expected to be a 2D array.
TYPE:
|
scores |
The input logits scores, expected to be a 2D array.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method directly modifies the 'scores' array in place. |
Source code in mindnlp/transformers/generation/logits_process.py
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
|
mindnlp.transformers.generation.logits_process.SuppressTokensAtBeginLogitsProcessor.__init__(begin_suppress_tokens, begin_index)
¶
Initializes a new instance of the SuppressTokensAtBeginLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the class. |
begin_suppress_tokens |
A list of tokens to suppress at the beginning of the logits.
TYPE:
|
begin_index |
The index indicating the beginning of the logits.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/generation/logits_process.py
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 |
|
mindnlp.transformers.generation.logits_process.SuppressTokensLogitsProcessor
¶
Bases: LogitsProcessor
This processor can be used to suppress a list of tokens. The processor will set their log probs to -inf
so that they are not sampled.
Source code in mindnlp/transformers/generation/logits_process.py
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 |
|
mindnlp.transformers.generation.logits_process.SuppressTokensLogitsProcessor.__call__(input_ids, scores)
¶
The 'call' method in the 'SuppressTokensLogitsProcessor' class modifies the 'scores' array by setting the values of specific tokens to negative infinity. It takes three parameters: 'self', 'input_ids', and 'scores'. The method does not return any value.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'SuppressTokensLogitsProcessor' class. |
input_ids |
A tensor containing the input token IDs.
TYPE:
|
scores |
A tensor containing the scores for each token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method modifies the 'scores' array in-place. |
Source code in mindnlp/transformers/generation/logits_process.py
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 |
|
mindnlp.transformers.generation.logits_process.SuppressTokensLogitsProcessor.__init__(suppress_tokens)
¶
Initializes an instance of the SuppressTokensLogitsProcessor class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
suppress_tokens |
A list of tokens to be suppressed.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the suppress_tokens parameter is not an iterable. |
Source code in mindnlp/transformers/generation/logits_process.py
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 |
|
mindnlp.transformers.generation.logits_process.TemperatureLogitsWarper
¶
Bases: LogitsWarper
[TemperatureLogitsWarper
] for temperature (exponential scaling output probability distribution).
Args:
temperature (:obj:float
):
The value used to module the logits distribution.
Source code in mindnlp/transformers/generation/logits_process.py
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
|
mindnlp.transformers.generation.logits_process.TemperatureLogitsWarper.__call__(input_ids, scores)
¶
This method adjusts the input 'scores' by dividing them by a temperature value and returns the adjusted scores.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the TemperatureLogitsWarper class.
TYPE:
|
input_ids |
The input tensor containing the IDs of the input data.
TYPE:
|
scores |
The input tensor containing the scores to be adjusted.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the adjusted scores after dividing them by the temperature value. |
Source code in mindnlp/transformers/generation/logits_process.py
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
|
mindnlp.transformers.generation.logits_process.TemperatureLogitsWarper.__init__(temperature)
¶
Initializes a TemperatureLogitsWarper object with the provided temperature.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance itself.
|
temperature |
The temperature value to be set for the TemperatureLogitsWarper object. Must be a strictly positive float.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the provided temperature is not a float or is not strictly greater than 0. |
Source code in mindnlp/transformers/generation/logits_process.py
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
|
mindnlp.transformers.generation.logits_process.TopKLogitsWarper
¶
Bases: LogitsWarper
[LogitsWarper
] that performs top-k, i.e. restricting to the k highest probability elements.
PARAMETER | DESCRIPTION |
---|---|
top_k |
The number of highest probability vocabulary tokens to keep for top-k-filtering.
TYPE:
|
filter_value |
All filtered values will be set to this float value.
TYPE:
|
min_tokens_to_keep |
Minimum number of tokens that cannot be filtered.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
|
mindnlp.transformers.generation.logits_process.TopKLogitsWarper.__call__(input_ids, scores)
¶
This method, named 'call', is defined within the 'TopKLogitsWarper' class and is used to process input_ids and scores to obtain a mindspore.Tensor result.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the 'TopKLogitsWarper' class.
|
input_ids |
The input tensor containing the input IDs.
TYPE:
|
scores |
The tensor containing the scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the processed scores after applying the top-k warping. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the filter_value is not set to -float('Inf'). |
TypeError
|
If the input_ids or scores are not of type mindspore.Tensor. |
RuntimeError
|
If an error occurs during the execution of the method. |
Source code in mindnlp/transformers/generation/logits_process.py
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
|
mindnlp.transformers.generation.logits_process.TopKLogitsWarper.__init__(top_k, filter_value=-float('Inf'), min_tokens_to_keep=1)
¶
Initialize the TopKLogitsWarper object.
PARAMETER | DESCRIPTION |
---|---|
top_k |
The number of top logits to keep. Must be a positive integer.
TYPE:
|
filter_value |
The value used to filter logits. Defaults to negative infinity.
TYPE:
|
min_tokens_to_keep |
The minimum number of tokens to keep. Defaults to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If top_k is not a positive integer. |
Source code in mindnlp/transformers/generation/logits_process.py
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 |
|
mindnlp.transformers.generation.logits_process.TopPLogitsWarper
¶
Bases: LogitsWarper
[LogitsWarper
] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.
PARAMETER | DESCRIPTION |
---|---|
top_p |
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to
TYPE:
|
filter_value |
All filtered values will be set to this float value.
TYPE:
|
min_tokens_to_keep |
Minimum number of tokens that cannot be filtered.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 |
|
mindnlp.transformers.generation.logits_process.TopPLogitsWarper.__call__(input_ids, scores)
¶
This method 'call' in the class 'TopPLogitsWarper' applies the Top-p sampling strategy to filter out low probability tokens from the input scores tensor.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the TopPLogitsWarper class.
|
input_ids |
The input tensor containing the token IDs.
TYPE:
|
scores |
The input tensor containing the model scores for each token.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor representing the filtered scores after applying the Top-p sampling strategy. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the filter_value is set to negative infinity. |
TypeError
|
If the input tensors are not of type mindspore.Tensor. |
RuntimeError
|
If an error occurs during the sorting, softmax calculation, or masking of scores. |
Source code in mindnlp/transformers/generation/logits_process.py
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 |
|
mindnlp.transformers.generation.logits_process.TopPLogitsWarper.__init__(top_p, filter_value=-float('Inf'), min_tokens_to_keep=1)
¶
Initializes an instance of the TopPLogitsWarper class.
PARAMETER | DESCRIPTION |
---|---|
top_p |
The value representing the top cumulative probability for truncation. Must be a float greater than 0 and less than 1.
TYPE:
|
filter_value |
The filter value used for truncation. Defaults to negative infinity.
TYPE:
|
min_tokens_to_keep |
The minimum number of tokens to keep after truncation. Must be a positive integer greater than or equal to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
|
Source code in mindnlp/transformers/generation/logits_process.py
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
|
mindnlp.transformers.generation.logits_process.TypicalLogitsWarper
¶
Bases: LogitsWarper
[LogitsWarper
] that performs typical decoding. See Typical Decoding for Natural Language
Generation for more information.
PARAMETER | DESCRIPTION |
---|---|
mass |
Value of typical_p between 0 and 1 inclusive, defaults to 0.9.
TYPE:
|
filter_value |
All filtered values will be set to this float value.
TYPE:
|
min_tokens_to_keep |
Minimum number of tokens that cannot be filtered.
TYPE:
|
Source code in mindnlp/transformers/generation/logits_process.py
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 |
|
mindnlp.transformers.generation.logits_process.TypicalLogitsWarper.__call__(input_ids, scores)
¶
This method applies a warping function to the input scores to filter out low-confidence tokens based on their probability distribution.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the TypicalLogitsWarper class.
TYPE:
|
input_ids |
The input tensor containing the token IDs.
TYPE:
|
scores |
The input tensor containing the logits.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor containing the warped scores after filtering out low-confidence tokens. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids and scores have incompatible shapes or types. |
RuntimeError
|
If an error occurs during the warping process. |
Source code in mindnlp/transformers/generation/logits_process.py
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 |
|
mindnlp.transformers.generation.logits_process.TypicalLogitsWarper.__init__(mass=0.9, filter_value=-float('Inf'), min_tokens_to_keep=1)
¶
Initializes an instance of TypicalLogitsWarper.
PARAMETER | DESCRIPTION |
---|---|
mass |
The mass parameter representing the typicality weight. It should be a float between 0 and 1 exclusive. Defaults to 0.9.
TYPE:
|
filter_value |
The filter value for logits. Defaults to negative infinity.
TYPE:
|
min_tokens_to_keep |
The minimum number of tokens to keep. Should be a positive integer greater than or equal to 1. Defaults to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
|
Source code in mindnlp/transformers/generation/logits_process.py
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 |
|
mindnlp.transformers.generation.logits_process.UnbatchedClassifierFreeGuidanceLogitsProcessor
¶
Bases: LogitsProcessor
Logits processor for Classifier-Free Guidance (CFG). The processors
computes a weighted average across scores from prompt conditional and prompt unconditional (or negative) logits,
parameterized by the guidance_scale
. The unconditional scores are computed internally by prompting model
with
the unconditional_ids
branch.
See the paper for more information.
PARAMETER | DESCRIPTION |
---|---|
guidance_scale |
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting
TYPE:
|
model |
The model computing the unconditional scores. Supposedly the same as the one computing the conditional scores. Both models must use the same tokenizer.
TYPE:
|
unconditional_ids |
Indices of input sequence tokens in the vocabulary for the unconditional branch. If unset, will default to the last token of the prompt.
TYPE:
|
unconditional_attention_mask |
Attention mask for unconditional_ids.
TYPE:
|
use_cache |
Whether to cache key/values during the negative prompt forward pass.
TYPE:
|
Example
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
...
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> inputs = tokenizer(["Today, a dragon flew over Paris, France,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=1.5)
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 50 people and injuring more than 100'
>>> # with a negative prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=2, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 130 people. French media reported that'
>>> # with a positive prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=0, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Today, a dragon flew over Paris, France, and I'm very happy to be here. I"
Source code in mindnlp/transformers/generation/logits_process.py
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 |
|