Skip to content

modeling_utils

mindnlp.transformers.modeling_utils.PreTrainedModel

Bases: Module, CellUtilMixin, GenerationMixin, PeftAdapterMixin

Abstract class for Pretrained models

Source code in mindnlp/transformers/modeling_utils.py
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
class PreTrainedModel(nn.Module, CellUtilMixin, GenerationMixin, PeftAdapterMixin):
    """
    Abstract class for Pretrained models
    """
    config_class = None
    base_model_prefix = ""
    main_input_name = "input_ids"

    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
    _keys_to_ignore_on_load_missing = None
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
    _keys_to_ignore_on_load_unexpected = None
    _keys_to_ignore_on_save = None

    _tied_weights_keys = None

    _keep_in_fp32_modules = None

    supports_recompute = False

    def __init__(self, config):
        """

        Initializes a new instance of the PreTrainedModel class.

        Args:
            self: The instance of the class.
            config: A dictionary containing the configuration parameters for the model.

        Returns:
            None.

        Raises:
            ValueError: If the config parameter is invalid or missing required fields.
            TypeError: If the config parameter is not of the expected type.
            RuntimeError: If an error occurs during the initialization process.
        """
        super().__init__()
        self._check_and_unset_acl()
        # Save config in model
        self.config = config
        self.name_or_path = config.name_or_path
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None

    def _check_and_unset_acl(self):
        """
        This method '_check_and_unset_acl' is defined within the class 'PreTrainedModel'
        and is used to verify and remove the ACL (Access Control List) settings if certain conditions are met.

        Args:
            self: An instance of the class 'PreTrainedModel'.
                This parameter is used to access the attributes and methods of the class instance.

        Returns:
            None.

        Raises:
            None.
        """
        if "MS" in str(self.__class__.__name__) and \
            'MS_DEV_FORCE_ACL' in os.environ:
            del os.environ['MS_DEV_FORCE_ACL']

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).

        """
        self.init_weights()

    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
        """
        model = cls(config, **kwargs)

        return model

    def init_weights(self):
        """
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
        """
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

        if _init_weights:
            # Initialize weights
            if getattr(self, 'apply', None):
                self.apply(self._initialize_weights)
            else:
                for _, cell in self.name_cells().items():
                    self._initialize_weights(cell)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()

    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.

        Arguments:
            heads_to_prune (`Dict[int, List[int]]`):
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
        """
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
        for layer, heads in heads_to_prune.items():
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

        self.base_model._prune_heads(heads_to_prune)

    def _init_weights(self, cell):
        """
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
        """
    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_initialized", False):
            return
        self._init_weights(module)
        module._is_initialized = True

    @property
    def base_model(self):
        """
        to get base_model
        """
        return getattr(self, self.base_model_prefix, self)

    def get_input_embeddings(self) -> "nn.Module":
        """
        Returns the model's input embeddings.

        Returns:
            :obj:`nn.Module`: A mindspore cell mapping vocabulary to hidden states.
        """
        base_model = getattr(self, self.base_model_prefix, self)
        print(base_model)
        if base_model is not self:
            return base_model.get_input_embeddings()
        raise NotImplementedError

    def set_input_embeddings(self, new_embeddings: nn.Module):
        """
        Set model's input embeddings.

        Args:
            value (:obj:`nn.Module`): A mindspore cell mapping vocabulary to hidden states.
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            return base_model.set_input_embeddings(new_embeddings)
        raise NotImplementedError

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        resize the model position embeddings if necessary
        """
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__}"
        )

    def get_output_embeddings(self):
        """ Get model's output embeddings
            Return None if the model doesn't have output embeddings
        """
        return None  # Overwrite for models with output embeddings

    def set_output_embeddings(self, new_embeddings: nn.Module):
        """
        Set model's output embeddings.

        Args:
            value (:obj:`nn.Module`): A mindspore cell mapping vocabulary to hidden states.
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            return base_model.set_output_embeddings(new_embeddings)
        raise NotImplementedError

    def get_position_embeddings(self):
        """
        get the model position embeddings if necessary
        """
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__}"
        )

    def tie_weights(self):
        """
        Make sure we are sharing the input and output embeddings.
        If you need this feature,
        you need to get it yourself output Add the output you need to add to the embeddings function_ Embedding layer,
        otherwise you cannot
        """
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings() # pylint: disable=assignment-from-none
            if output_embeddings is not None:
                self._tie_or_clone_weights(
                    output_embeddings, self.get_input_embeddings())

        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix) # pylint: disable=self-cls-assignment
            self._tie_encoder_decoder_weights(
                self.encoder, self.decoder, self.base_model_prefix)

        for _, cell in self.cells_and_names():
            if hasattr(cell, "_tie_weights"):
                cell._tie_weights()

    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        """tie encoder decoder weights"""
        uninitialized_encoder_weights: List[str] = []
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
            )

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                encoder_pointer._params['weight'] = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                    encoder_pointer._params['bias'] = decoder_pointer.bias
                return

            encoder_cells = encoder_pointer._cells
            decoder_cells = decoder_pointer._cells
            if len(decoder_cells) > 0:
                assert (
                    len(encoder_cells) > 0
                ), f"Encoder cell {encoder_pointer} does not match decoder cell {decoder_pointer}"

                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_cells.keys()}
                encoder_layer_pos = 0
                for name, _ in decoder_cells.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
                        if not isinstance(decoder_cells[decoder_name], type(encoder_cells[encoder_name])) and len(
                            encoder_cells
                        ) != len(decoder_cells):
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
                            # thus skip this step and subtract one layer pos from encoder
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_cells:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Module` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_cells[decoder_name],
                        encoder_cells[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
        """ Tie or clone module weights depending of weither we are using or not
        """
        if hasattr(output_embeddings, 'weight'):
            output_embeddings.weight = input_embeddings.weight

        if getattr(output_embeddings, "bias", None) is not None:
            if output_embeddings.weight.shape[0] == output_embeddings.bias.shape[0]:
                pass
            else:
                # instantial a new Parameter since mindspore.Parameter do not support assign_value with different shape
                if output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0] > 0:
                    new_bias = F.pad(
                        output_embeddings.bias.data,
                        (0, output_embeddings.weight.shape[0] -
                        output_embeddings.bias.shape[0]),
                        "constant",
                        0,
                    )
                else:
                    new_bias = output_embeddings.bias[:output_embeddings.weight.shape[0]]
                new_bias = Parameter(new_bias, name=output_embeddings.bias.name, requires_grad=output_embeddings.bias.requires_grad)
                output_embeddings.bias = new_bias

        if hasattr(output_embeddings, "out_channels") and hasattr(input_embeddings, "vocab_size"):
            output_embeddings.out_channels = input_embeddings.vocab_size

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.

        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.

        Arguments:
            new_num_tokens (`int`, *optional*):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.

        Returns:
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
        """
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        if new_num_tokens is None and pad_to_multiple_of is None:
            return model_embeds
        # Update base model and current model config
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
        # Tie weights again if needed
        self.tie_weights()

        return model_embeds

    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
        """
        Resize the token embeddings of the PreTrainedModel.

        Args:
            self (PreTrainedModel): The instance of the PreTrainedModel class.
            new_num_tokens (int): The desired number of tokens for the resized embeddings.
            pad_to_multiple_of (int, optional): The value to which the number of tokens should be padded. 
                Defaults to None.

        Returns:
            None: The method modifies the input and output embeddings of the model in-place.

        Raises:
            None.
        """
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)

        self.set_input_embeddings(new_embeddings)
        # self.get_input_embeddings().weight.data_sync(True)
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
            new_num_tokens = new_embeddings.weight.shape[0]
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings() # pylint: disable=assignment-from-none
            new_lm_head = self._get_resized_lm_head(
                old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)
            self.get_output_embeddings().weight.data_sync(True)

        return self.get_input_embeddings()

    def resize_tokenizer_embeddings(self, new_num_tokens):
        """
        Obtain a new embedding layer or use the original one without updating it.
        """
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(
            old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
        return self.get_input_embeddings()

    def _get_resized_embeddings(
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
    ) -> nn.Embedding:
        """
        Build a resized Embedding Module from a provided token Embedding Module.
        Increasing the size will add newly initialized vectors at the end
        Reducing the size will remove vectors from the end

        Args:
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.

        Returns: ``mindspore.nn.Embeddings``
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
        else:
            logger.info(
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

        if new_num_tokens is None:
            return old_embeddings

        old_num_tokens, old_embedding_dim = old_embeddings.weight.shape
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[
                                                                      :num_tokens_to_copy, :]
        return new_embeddings

    def _get_resized_lm_head(
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
            old_lm_head (`nn.Linear`):
                Old lm head liner layer to be resized.
            new_num_tokens (`int`, *optional*):
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                `nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.

        Returns:
            `nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
                `None`
        """
        if new_num_tokens is None:
            return old_lm_head

        old_num_tokens, old_lm_head_dim = (
            old_lm_head.weight.shape if not transposed else old_lm_head.weight.T.shape
        )

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

        self._copy_lm_head_original_to_resized(
            new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
        )

        return new_lm_head

    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        """
        Copies the original language model head to a resized language model head.

        Args:
            self (PreTrainedModel): The instance of the PreTrainedModel class.
            new_lm_head (torch.nn.Module): The resized language model head to be copied into.
            old_lm_head (torch.nn.Module): The original language model head to be copied from.
            num_tokens_to_copy (int): The number of tokens to copy from the original language model head.
            transposed (bool): Whether the weight tensor of the new language model head is transposed.
            has_new_lm_head_bias (bool): Whether the new language model head has a bias tensor.

        Returns:
            None.

        Raises:
            None.
        """
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

    @classmethod
    def load(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
             *args, **kwargs):
        """
        Load a pre-trained checkpoint from a pre-trained model file or url,
        download and cache the pre-trained model file if model name in model list.

        Params:
            pretrained_model_name_or_path:
        """
        return cls.from_pretrained(pretrained_model_name_or_path, args, kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        use_safetensors: bool = None,
        mirror: str = 'huggingface',
        **kwargs,
    ):
        """from_pretrained"""
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        _ = kwargs.pop("from_pt", True)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        _fast_init = kwargs.pop("_fast_init", True)
        output_loading_info = kwargs.pop("output_loading_info", False)
        subfolder = kwargs.pop("subfolder", "")
        variant = kwargs.pop("variant", None)
        ms_dtype = kwargs.pop("ms_dtype", None)
        _ = kwargs.pop('low_cpu_mem_usage', None)
        revision = kwargs.pop('revision', 'main')

        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False

        is_sharded = False
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
            config, model_kwargs = cls.config_class.from_pretrained(
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                mirror=mirror,
                **kwargs,
            )
        else:
            model_kwargs = kwargs

        # Load model
        if pretrained_model_name_or_path is not None:
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
                if os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, PT_WEIGHTS_NAME)
                ):
                    # Load from a PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, PT_WEIGHTS_NAME)
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
                    # Load from a MindSpore checkpoint
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif use_safetensors is not False and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
                ):
                    # Load from a safetensors checkpoint
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(PT_WEIGHTS_INDEX_NAME, variant))
                ):
                    # Load from a sharded PyTorch checkpoint
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(PT_WEIGHTS_INDEX_NAME, variant)
                    )
                    is_sharded = True
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
                    # Load from a sharded MindSpore checkpoint
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
                    is_sharded = True
                elif use_safetensors is not False and os.path.isfile(
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
                ):
                    # Load from a sharded safetensors checkpoint
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
                    is_sharded = True
                # At this stage we don't have a weight file so we will raise an error.
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
                else:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {PT_WEIGHTS_NAME},"
                        f" found in directory {pretrained_model_name_or_path}."
                    )
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
                archive_file = pretrained_model_name_or_path
                is_local = True
            elif is_remote_url(pretrained_model_name_or_path):
                filename = pretrained_model_name_or_path
                resolved_archive_file = download_url(pretrained_model_name_or_path)
            else:
                if use_safetensors is not False:
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
                else:
                    filename = _add_variant(WEIGHTS_NAME, variant)

                try:
                    # Load from URL or cache if already cached
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        'revision': revision,
                        "token": token,
                        'mirror': mirror
                    }
                    # try safetensors
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
                    use_safetensors = resolved_archive_file is not None

                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
                    # result when internet is up, the repo and revision exist, but the file does not.
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
                            use_safetensors = True

                    if resolved_archive_file is None:
                        filename = _add_variant(WEIGHTS_NAME, variant)
                        resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)

                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True

                    if resolved_archive_file is None:
                        filename = _add_variant(PT_WEIGHTS_NAME, variant)
                        resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)

                    if resolved_archive_file is None and filename == _add_variant(PT_WEIGHTS_NAME, variant):
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path,
                            _add_variant(PT_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True

                    if resolved_archive_file is None:
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named"
                            f" {_add_variant(SAFE_WEIGHTS_NAME, variant)}, {_add_variant(PT_WEIGHTS_NAME, variant)}"
                        )
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
                except Exception as exc:
                    # For any other exception, we throw a generic error.
                    raise EnvironmentError(
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        ", make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)},"
                        f" {_add_variant(PT_WEIGHTS_NAME, variant)}."
                    ) from exc

            if is_local:
                logger.info(f"loading weights file {archive_file}")
                resolved_archive_file = archive_file
            else:
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
        else:
            resolved_archive_file = None

        if is_sharded:
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                token=token,
                subfolder=subfolder,
                revision=revision,
                mirror=mirror,
            )

        if pretrained_model_name_or_path is None and state_dict is None:
            raise ValueError("the argument 'pretrained_model_name_or_path' should be "
                             "a string of model name or checkpoint path, but got 'None'.")

        config.name_or_path = pretrained_model_name_or_path
        # Instantiate model.

        config_dict = config.to_dict()

        dtype_group = {key: getattr(config, key).ms_dtype for key in config_dict.keys() \
                       if isinstance(config_dict[key], dict) and 'ms_dtype' in config_dict[key]}

        if ms_dtype is None or ms_dtype == 'auto':
            ms_dtype = config.ms_dtype

        if ms_dtype is None:
            ms_dtype = mindspore.float32

        use_fp16 = False
        usage_dtype = mindspore.dtype_to_nptype(ms_dtype)
        if ms_dtype == mindspore.bfloat16:
            ms_dtype = mindspore.float16
            usage_dtype = np.float16
            use_fp16 = True

        def empty_initializer(init, shape=None, dtype=mindspore.float32):
            if not isinstance(shape, (tuple, list)):
                shape = (shape,)
            if dtype in (mindspore.float16, mindspore.float32) \
                and ms_dtype is not None:
                dtype = ms_dtype
            return Tensor_(shape=shape, dtype=dtype)

        with no_init_weights(empty_initializer, _fast_init):
            model = cls(config, *model_args, **model_kwargs)

        if is_sharded:
            converted_filenames = resolved_archive_file

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

        ptrs = collections.defaultdict(list)
        for name, tensor in model.parameters_dict().items():
            id_tensor = hash(tensor)
            ptrs[id_tensor].append(name)

        # These are all the pointers of shared tensors.
        tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        def load_ckpt(resolved_archive_file):
            if not resolved_archive_file.endswith('ckpt'):
                if use_safetensors or 'safetensors' in resolved_archive_file:
                    from safetensors.numpy import load_file
                    origin_state_dict = load_file(resolved_archive_file)
                    if use_fp16:
                        logger.warning_once("MindSpore do not support bfloat16 dtype, we will automaticlly convert to float16")
                    state_dict = {k: Parameter(Tensor.from_numpy(v.astype(usage_dtype))) for k, v in origin_state_dict.items()}
                else:
                    state_dict = load(resolved_archive_file)
            else:
                try:
                    state_dict = load_checkpoint(str(resolved_archive_file))
                except Exception as exc:
                    raise OSError(
                        f"Unable to load weights from mindspore checkpoint file '{resolved_archive_file}'. "
                    ) from exc

            state_keys = list(state_dict.keys())
            for key in state_keys:
                new_key = key.replace('gamma', 'weight').replace('beta', 'bias').replace('embedding_table', 'weight')
                if new_key != key:
                    state_dict[new_key] = state_dict.pop(key)
            return state_dict

        keys_missing = list(model.parameters_dict().keys())

        use_keep_in_fp32_modules = False
        if model._keep_in_fp32_modules:
            use_keep_in_fp32_modules = True

        remove_prefix_from_model = None
        add_prefix_to_model = None

        def fix_weight_norm_missing_keys(state_dict_keys: dict, keys_missing:List[str]) -> List[str]:
            ''' if both `weight_g` and `weight_v` are loaded, key `weight` is not missing :) '''
            non_missing_keys = []
            for key in keys_missing:
                if f'{key}_g' in state_dict_keys and f'{key}_v' in state_dict_keys:
                    non_missing_keys.append(key)
            return non_missing_keys

        def load_param_into_net(model: nn.Module, param_dict: dict, prefix: str, dtype_group: dict = None):
            state_dict_keys = list(param_dict.keys())
            keep_in_fp32_modules = model._keep_in_fp32_modules
            keys_unexpected = list(param_dict.keys())

            has_prefix_module = any(s.startswith(prefix) for s in keys_unexpected)
            expects_prefix_module = any(s.startswith(prefix) for s in keys_missing)

            nonlocal remove_prefix_from_model
            nonlocal add_prefix_to_model
            remove_prefix_from_model = not has_prefix_module and expects_prefix_module
            add_prefix_to_model = has_prefix_module and not expects_prefix_module

            for pname_in_net, param in model.state_dict().items():
                if add_prefix_to_model:
                    param_name = prefix + '.' + pname_in_net
                elif remove_prefix_from_model:
                    param_name = pname_in_net.replace(f'{prefix}.', '', 1)
                else:
                    param_name = pname_in_net

                new_param = param_dict.pop(param_name, None)
                module_dtype = None
                for m_name, m_dtype in dtype_group.items():
                    if m_name in param_name:
                        module_dtype = m_dtype
                        break

                if new_param is not None:
                    use_replace = False
                    if new_param.shape != param.shape:
                        if not ignore_mismatched_sizes:
                            raise RuntimeError(f'The shape of parameter `{param.name} is {param.shape}, but got mismatch parameter'
                                            f' `{param_name} with shape {new_param.shape} in checkpoint, '
                                            f'\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method.')
                        logger.warning(f'The shape of parameter `{param.name} is {param.shape}, but got mismatch parameter'
                                        f' `{param_name} with shape {new_param.shape} in checkpoint, ')
                        continue

                    if use_keep_in_fp32_modules and \
                        any(module_to_keep_in_fp32 in pname_in_net.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
                        new_param = new_param.astype(mindspore.float32)
                    elif module_dtype and param.dtype in (mindspore.float32, mindspore.float16):
                        new_param = new_param.astype(module_dtype)
                    elif ms_dtype and param.dtype in (mindspore.float32, mindspore.float16):
                        new_param = new_param.astype(ms_dtype)

                    if new_param.dtype != param.dtype or new_param.shape != param.shape:
                        use_replace = True

                    if use_replace:
                        if isinstance(new_param, Parameter) and isinstance(param, Parameter):
                            new_param.name = param.name
                            new_param.requires_grad = param.requires_grad
                            replace_references(param, new_param)
                        elif isinstance(param, Tensor):
                            param.assign_value(new_param)
                        else:
                            replace_references(param, Parameter(new_param, requires_grad=param.requires_grad))
                    else:
                        param.assign_value(new_param)
                    keys_unexpected.remove(param_name)
                    if pname_in_net in keys_missing:
                        keys_missing.remove(pname_in_net)
                else:
                    # fix missing value parameter dtype cast.
                    if isinstance(param, Parameter) and ms_dtype and ms_dtype != param.dtype:
                        new_param = param.astype(ms_dtype)
                        replace_references(param, Parameter(new_param, requires_grad=param.requires_grad))

            # NOTE: monkey patching weight_norm
            for key in fix_weight_norm_missing_keys(state_dict_keys, keys_missing):
                keys_missing.remove(key)

            return keys_unexpected, keys_missing

        all_keys_unexpected = None
        if state_dict is None:
            if is_sharded:
                all_keys_unexpected = []
                for name in tqdm(converted_filenames, desc="Loading checkpoint shards"):
                    state_dict = load_ckpt(name)
                    keys_unexpected, keys_missing = load_param_into_net(model, state_dict, cls.base_model_prefix, dtype_group)
                    all_keys_unexpected.extend(keys_unexpected)
                    del state_dict
                    gc.collect()
                loaded_keys = sharded_metadata["all_checkpoint_keys"]
            else:
                state_dict = load_ckpt(resolved_archive_file)
                loaded_keys = list(state_dict.keys())
                all_keys_unexpected, keys_missing = load_param_into_net(model, state_dict, cls.base_model_prefix, dtype_group)
        else:
            loaded_keys = list(state_dict.keys())
            all_keys_unexpected, keys_missing = load_param_into_net(model, state_dict, cls.base_model_prefix, dtype_group)

        loaded_add_keys = []
        for group in tied_params:
            missing_in_group = [k for k in keys_missing if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                loaded_add_keys.extend([k for k in keys_missing if k in missing_in_group])
                keys_missing = [k for k in keys_missing if k not in missing_in_group]
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                keys_missing = [k for k in keys_missing if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                all_keys_unexpected = [k for k in all_keys_unexpected if re.search(pat, k) is None]

        # make sure token embedding weights are still tied if needed
        model.tie_weights()

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
        if _fast_init:
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{cls.base_model_prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(cls.base_model_prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys

                _loaded_keys += loaded_add_keys
                _ = set_initialized_submodules(model, _loaded_keys)
            else:
                _ = dict(model.cells_and_names())

            model.apply(model._initialize_weights)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.set_train(False)

        # If it is a model with generation capabilities, attempt to load the generation config
        if model.can_generate() and pretrained_model_name_or_path is not None:
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    subfolder=subfolder,
                    revision=revision,
                    mirror=mirror,
                    **kwargs,
                )
            except OSError:
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )

        if output_loading_info:
            loading_info = {
                "missing_keys": keys_missing,
                "unexpected_keys": all_keys_unexpected,
            }
            return model, loading_info

        if all_keys_unexpected:
            logger.warning(f'The following parameters in checkpoint files are not loaded:\n'
                           f'{all_keys_unexpected}')
        if keys_missing:
            logger.warning(f'The following parameters in models are missing parameter:\n'
                           f'{keys_missing}')
        return model

    def save(self, save_dir):
        """
        Save a model and its configuration file to a directory, so that
        it can be re-loaded using the `:func:`PreTrainedModel.from_pretrained`` class method.

        Arguments:
            save_dir: directory to which to save.
        """
        if os.path.isfile(save_dir):
            logger.error(f"Provided path ({save_dir}) should be a directory, not a file")
            return
        os.makedirs(save_dir, exist_ok=True)

        # Only save the model itself if we are using distributed training
        model_to_save = self.cell if hasattr(self, "cell") else self

        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_dir, WEIGHTS_NAME)
        save_checkpoint(model_to_save, output_model_file)

        logger.info(f"Model weights saved in {output_model_file}")

    @classmethod
    def can_generate(cls) -> bool:
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
            return False
        return True

    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        # if self.config.pad_token_id in input_ids[:, [-1, 0]]:
        if ops.contains(input_ids[:, [-1, 0]], self.config.pad_token_id):
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning(warn_string)

    def num_parameters(self, only_trainable=False):
        """return parameters count"""
        total = 0
        for param in self.get_parameters():
            if (only_trainable or param.requires_grad):
                total += param.size
        return total

    def trainable_params(self, recurse=True):
        """
        fix duplicated weights
        """
        return list(set(filter(lambda x: x.requires_grad, self.get_parameters(expand=recurse))))

    def check_names_and_refresh_name(self):
        """
        fix ignore tied weights
        """
        if not hasattr(self, "_params"):
            return
        all_name = dict(self.parameters_and_names()).keys()

        if len(set(all_name)) < len(all_name):
            self.update_parameters_name()
            self.check_names()

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = mindspore.save_checkpoint,
        max_shard_size: Union[int, str] = "5GB",
        safe_serialization: bool = True,
        variant: Optional[str] = None,
        **kwargs,
    ):
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        [`~PreTrainedModel.from_pretrained`] class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
            state_dict (nested dictionary of `torch.Tensor`):
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace `torch.save` by another method.
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

        # Only save the model itself if we are using distributed training
        model_to_save = self

        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.ms_dtype = str(dtype).lower()

        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

        # Save the config
        if is_main_process:
            model_to_save.config.save_pretrained(save_directory)
            if self.can_generate():
                model_to_save.generation_config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.parameters_dict()

        # Handle the case where some state_dict keys shouldn't be saved
        if self._keys_to_ignore_on_save is not None:
            for ignore_key in self._keys_to_ignore_on_save:
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]

        # Shard the model if it is too big.
        # weights_name = _add_variant(WEIGHTS_NAME, variant)
        weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME

        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")

            if (
                filename.startswith(weights_no_suffix)
                and os.path.isfile(full_filename)
                and filename not in shards
                and is_main_process
                and reg.fullmatch(filename_no_suffix) is not None
            ):
                os.remove(full_filename)

        # Save the model
        for shard_file, shard in shards.items():
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "np"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))

        if index is None:
            path_to_weights = os.path.join(save_directory, _add_variant(WEIGHTS_NAME, variant))
            logger.info(f"Model weights saved in {path_to_weights}")
        else:
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )

    def enable_recompute(self):
        """Activates recompute (aka gradient checkpointing) for the current model."""
        if not self.supports_recompute:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")

        for _, cell in self.cells_and_names():
            if hasattr(cell, "_set_recompute"):
                cell._set_recompute()

    def check_names(self):
        """
        This method checks the names in the PreTrainedModel class.

        Args:
            self: The instance of the PreTrainedModel class.

        Returns:
            None.

        Raises:
            None.
        """

mindnlp.transformers.modeling_utils.PreTrainedModel.base_model property

to get base_model

mindnlp.transformers.modeling_utils.PreTrainedModel.__init__(config)

Initializes a new instance of the PreTrainedModel class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

A dictionary containing the configuration parameters for the model.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the config parameter is invalid or missing required fields.

TypeError

If the config parameter is not of the expected type.

RuntimeError

If an error occurs during the initialization process.

Source code in mindnlp/transformers/modeling_utils.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def __init__(self, config):
    """

    Initializes a new instance of the PreTrainedModel class.

    Args:
        self: The instance of the class.
        config: A dictionary containing the configuration parameters for the model.

    Returns:
        None.

    Raises:
        ValueError: If the config parameter is invalid or missing required fields.
        TypeError: If the config parameter is not of the expected type.
        RuntimeError: If an error occurs during the initialization process.
    """
    super().__init__()
    self._check_and_unset_acl()
    # Save config in model
    self.config = config
    self.name_or_path = config.name_or_path
    self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None

mindnlp.transformers.modeling_utils.PreTrainedModel.can_generate() classmethod

Returns whether this model can generate sequences with .generate().

RETURNS DESCRIPTION
bool

bool: Whether this model can generate sequences with .generate().

Source code in mindnlp/transformers/modeling_utils.py
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
@classmethod
def can_generate(cls) -> bool:
    """
    Returns whether this model can generate sequences with `.generate()`.

    Returns:
        `bool`: Whether this model can generate sequences with `.generate()`.
    """
    # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
    # Alternativelly, the model can also have a custom `generate` function.
    if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
        return False
    return True

mindnlp.transformers.modeling_utils.PreTrainedModel.check_names()

This method checks the names in the PreTrainedModel class.

PARAMETER DESCRIPTION
self

The instance of the PreTrainedModel class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/modeling_utils.py
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
def check_names(self):
    """
    This method checks the names in the PreTrainedModel class.

    Args:
        self: The instance of the PreTrainedModel class.

    Returns:
        None.

    Raises:
        None.
    """

mindnlp.transformers.modeling_utils.PreTrainedModel.check_names_and_refresh_name()

fix ignore tied weights

Source code in mindnlp/transformers/modeling_utils.py
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
def check_names_and_refresh_name(self):
    """
    fix ignore tied weights
    """
    if not hasattr(self, "_params"):
        return
    all_name = dict(self.parameters_and_names()).keys()

    if len(set(all_name)) < len(all_name):
        self.update_parameters_name()
        self.check_names()

mindnlp.transformers.modeling_utils.PreTrainedModel.enable_recompute()

Activates recompute (aka gradient checkpointing) for the current model.

Source code in mindnlp/transformers/modeling_utils.py
1552
1553
1554
1555
1556
1557
1558
1559
def enable_recompute(self):
    """Activates recompute (aka gradient checkpointing) for the current model."""
    if not self.supports_recompute:
        raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")

    for _, cell in self.cells_and_names():
        if hasattr(cell, "_set_recompute"):
            cell._set_recompute()

mindnlp.transformers.modeling_utils.PreTrainedModel.from_pretrained(pretrained_model_name_or_path, *model_args, config=None, cache_dir=None, ignore_mismatched_sizes=False, force_download=False, local_files_only=False, token=None, use_safetensors=None, mirror='huggingface', **kwargs) classmethod

from_pretrained

Source code in mindnlp/transformers/modeling_utils.py
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
@classmethod
def from_pretrained(
    cls,
    pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
    *model_args,
    config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    ignore_mismatched_sizes: bool = False,
    force_download: bool = False,
    local_files_only: bool = False,
    token: Optional[Union[str, bool]] = None,
    use_safetensors: bool = None,
    mirror: str = 'huggingface',
    **kwargs,
):
    """from_pretrained"""
    state_dict = kwargs.pop("state_dict", None)
    cache_dir = kwargs.pop("cache_dir", None)
    _ = kwargs.pop("from_pt", True)
    force_download = kwargs.pop("force_download", False)
    resume_download = kwargs.pop("resume_download", False)
    proxies = kwargs.pop("proxies", None)
    local_files_only = kwargs.pop("local_files_only", False)
    _fast_init = kwargs.pop("_fast_init", True)
    output_loading_info = kwargs.pop("output_loading_info", False)
    subfolder = kwargs.pop("subfolder", "")
    variant = kwargs.pop("variant", None)
    ms_dtype = kwargs.pop("ms_dtype", None)
    _ = kwargs.pop('low_cpu_mem_usage', None)
    revision = kwargs.pop('revision', 'main')

    if use_safetensors is None and not is_safetensors_available():
        use_safetensors = False

    is_sharded = False
    # Load config if we don't provide a configuration
    if not isinstance(config, PretrainedConfig):
        config_path = config if config is not None else pretrained_model_name_or_path
        config, model_kwargs = cls.config_class.from_pretrained(
            config_path,
            *model_args,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            mirror=mirror,
            **kwargs,
        )
    else:
        model_kwargs = kwargs

    # Load model
    if pretrained_model_name_or_path is not None:
        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        is_local = os.path.isdir(pretrained_model_name_or_path)
        if is_local:
            if os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, PT_WEIGHTS_NAME)
            ):
                # Load from a PyTorch checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, subfolder, PT_WEIGHTS_NAME)
            elif os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
            ):
                # Load from a MindSpore checkpoint
                archive_file = os.path.join(
                    pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                )
            elif use_safetensors is not False and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
            ):
                # Load from a safetensors checkpoint
                archive_file = os.path.join(
                    pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                )
            elif os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(PT_WEIGHTS_INDEX_NAME, variant))
            ):
                # Load from a sharded PyTorch checkpoint
                archive_file = os.path.join(
                    pretrained_model_name_or_path, subfolder, _add_variant(PT_WEIGHTS_INDEX_NAME, variant)
                )
                is_sharded = True
            elif os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
            ):
                # Load from a sharded MindSpore checkpoint
                archive_file = os.path.join(
                    pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                )
                is_sharded = True
            elif use_safetensors is not False and os.path.isfile(
                os.path.join(
                    pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                )
            ):
                # Load from a sharded safetensors checkpoint
                archive_file = os.path.join(
                    pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                )
                is_sharded = True
            # At this stage we don't have a weight file so we will raise an error.
            elif use_safetensors:
                raise EnvironmentError(
                    f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                    f" {pretrained_model_name_or_path}."
                )
            else:
                raise EnvironmentError(
                    f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {PT_WEIGHTS_NAME},"
                    f" found in directory {pretrained_model_name_or_path}."
                )
        elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
            archive_file = pretrained_model_name_or_path
            is_local = True
        elif is_remote_url(pretrained_model_name_or_path):
            filename = pretrained_model_name_or_path
            resolved_archive_file = download_url(pretrained_model_name_or_path)
        else:
            if use_safetensors is not False:
                filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
            else:
                filename = _add_variant(WEIGHTS_NAME, variant)

            try:
                # Load from URL or cache if already cached
                cached_file_kwargs = {
                    "cache_dir": cache_dir,
                    "force_download": force_download,
                    "proxies": proxies,
                    "resume_download": resume_download,
                    "local_files_only": local_files_only,
                    "subfolder": subfolder,
                    "_raise_exceptions_for_missing_entries": False,
                    'revision': revision,
                    "token": token,
                    'mirror': mirror
                }
                # try safetensors
                resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
                use_safetensors = resolved_archive_file is not None

                # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
                # result when internet is up, the repo and revision exist, but the file does not.
                if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
                    # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                    resolved_archive_file = cached_file(
                        pretrained_model_name_or_path,
                        _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                        **cached_file_kwargs,
                    )
                    if resolved_archive_file is not None:
                        is_sharded = True
                        use_safetensors = True

                if resolved_archive_file is None:
                    filename = _add_variant(WEIGHTS_NAME, variant)
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)

                if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
                    # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                    resolved_archive_file = cached_file(
                        pretrained_model_name_or_path,
                        _add_variant(WEIGHTS_INDEX_NAME, variant),
                        **cached_file_kwargs,
                    )
                    if resolved_archive_file is not None:
                        is_sharded = True

                if resolved_archive_file is None:
                    filename = _add_variant(PT_WEIGHTS_NAME, variant)
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)

                if resolved_archive_file is None and filename == _add_variant(PT_WEIGHTS_NAME, variant):
                    # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                    resolved_archive_file = cached_file(
                        pretrained_model_name_or_path,
                        _add_variant(PT_WEIGHTS_INDEX_NAME, variant),
                        **cached_file_kwargs,
                    )
                    if resolved_archive_file is not None:
                        is_sharded = True

                if resolved_archive_file is None:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named"
                        f" {_add_variant(SAFE_WEIGHTS_NAME, variant)}, {_add_variant(PT_WEIGHTS_NAME, variant)}"
                    )
            except EnvironmentError:
                # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                # to the original exception.
                raise
            except Exception as exc:
                # For any other exception, we throw a generic error.
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                    ", make sure you don't have a local directory with the"
                    f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                    f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)},"
                    f" {_add_variant(PT_WEIGHTS_NAME, variant)}."
                ) from exc

        if is_local:
            logger.info(f"loading weights file {archive_file}")
            resolved_archive_file = archive_file
        else:
            logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
    else:
        resolved_archive_file = None

    if is_sharded:
        # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
        resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
            pretrained_model_name_or_path,
            resolved_archive_file,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            local_files_only=local_files_only,
            token=token,
            subfolder=subfolder,
            revision=revision,
            mirror=mirror,
        )

    if pretrained_model_name_or_path is None and state_dict is None:
        raise ValueError("the argument 'pretrained_model_name_or_path' should be "
                         "a string of model name or checkpoint path, but got 'None'.")

    config.name_or_path = pretrained_model_name_or_path
    # Instantiate model.

    config_dict = config.to_dict()

    dtype_group = {key: getattr(config, key).ms_dtype for key in config_dict.keys() \
                   if isinstance(config_dict[key], dict) and 'ms_dtype' in config_dict[key]}

    if ms_dtype is None or ms_dtype == 'auto':
        ms_dtype = config.ms_dtype

    if ms_dtype is None:
        ms_dtype = mindspore.float32

    use_fp16 = False
    usage_dtype = mindspore.dtype_to_nptype(ms_dtype)
    if ms_dtype == mindspore.bfloat16:
        ms_dtype = mindspore.float16
        usage_dtype = np.float16
        use_fp16 = True

    def empty_initializer(init, shape=None, dtype=mindspore.float32):
        if not isinstance(shape, (tuple, list)):
            shape = (shape,)
        if dtype in (mindspore.float16, mindspore.float32) \
            and ms_dtype is not None:
            dtype = ms_dtype
        return Tensor_(shape=shape, dtype=dtype)

    with no_init_weights(empty_initializer, _fast_init):
        model = cls(config, *model_args, **model_kwargs)

    if is_sharded:
        converted_filenames = resolved_archive_file

    # tie the model weights before retrieving the state_dict
    model.tie_weights()

    ptrs = collections.defaultdict(list)
    for name, tensor in model.parameters_dict().items():
        id_tensor = hash(tensor)
        ptrs[id_tensor].append(name)

    # These are all the pointers of shared tensors.
    tied_params = [names for _, names in ptrs.items() if len(names) > 1]
    def load_ckpt(resolved_archive_file):
        if not resolved_archive_file.endswith('ckpt'):
            if use_safetensors or 'safetensors' in resolved_archive_file:
                from safetensors.numpy import load_file
                origin_state_dict = load_file(resolved_archive_file)
                if use_fp16:
                    logger.warning_once("MindSpore do not support bfloat16 dtype, we will automaticlly convert to float16")
                state_dict = {k: Parameter(Tensor.from_numpy(v.astype(usage_dtype))) for k, v in origin_state_dict.items()}
            else:
                state_dict = load(resolved_archive_file)
        else:
            try:
                state_dict = load_checkpoint(str(resolved_archive_file))
            except Exception as exc:
                raise OSError(
                    f"Unable to load weights from mindspore checkpoint file '{resolved_archive_file}'. "
                ) from exc

        state_keys = list(state_dict.keys())
        for key in state_keys:
            new_key = key.replace('gamma', 'weight').replace('beta', 'bias').replace('embedding_table', 'weight')
            if new_key != key:
                state_dict[new_key] = state_dict.pop(key)
        return state_dict

    keys_missing = list(model.parameters_dict().keys())

    use_keep_in_fp32_modules = False
    if model._keep_in_fp32_modules:
        use_keep_in_fp32_modules = True

    remove_prefix_from_model = None
    add_prefix_to_model = None

    def fix_weight_norm_missing_keys(state_dict_keys: dict, keys_missing:List[str]) -> List[str]:
        ''' if both `weight_g` and `weight_v` are loaded, key `weight` is not missing :) '''
        non_missing_keys = []
        for key in keys_missing:
            if f'{key}_g' in state_dict_keys and f'{key}_v' in state_dict_keys:
                non_missing_keys.append(key)
        return non_missing_keys

    def load_param_into_net(model: nn.Module, param_dict: dict, prefix: str, dtype_group: dict = None):
        state_dict_keys = list(param_dict.keys())
        keep_in_fp32_modules = model._keep_in_fp32_modules
        keys_unexpected = list(param_dict.keys())

        has_prefix_module = any(s.startswith(prefix) for s in keys_unexpected)
        expects_prefix_module = any(s.startswith(prefix) for s in keys_missing)

        nonlocal remove_prefix_from_model
        nonlocal add_prefix_to_model
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module

        for pname_in_net, param in model.state_dict().items():
            if add_prefix_to_model:
                param_name = prefix + '.' + pname_in_net
            elif remove_prefix_from_model:
                param_name = pname_in_net.replace(f'{prefix}.', '', 1)
            else:
                param_name = pname_in_net

            new_param = param_dict.pop(param_name, None)
            module_dtype = None
            for m_name, m_dtype in dtype_group.items():
                if m_name in param_name:
                    module_dtype = m_dtype
                    break

            if new_param is not None:
                use_replace = False
                if new_param.shape != param.shape:
                    if not ignore_mismatched_sizes:
                        raise RuntimeError(f'The shape of parameter `{param.name} is {param.shape}, but got mismatch parameter'
                                        f' `{param_name} with shape {new_param.shape} in checkpoint, '
                                        f'\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method.')
                    logger.warning(f'The shape of parameter `{param.name} is {param.shape}, but got mismatch parameter'
                                    f' `{param_name} with shape {new_param.shape} in checkpoint, ')
                    continue

                if use_keep_in_fp32_modules and \
                    any(module_to_keep_in_fp32 in pname_in_net.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
                    new_param = new_param.astype(mindspore.float32)
                elif module_dtype and param.dtype in (mindspore.float32, mindspore.float16):
                    new_param = new_param.astype(module_dtype)
                elif ms_dtype and param.dtype in (mindspore.float32, mindspore.float16):
                    new_param = new_param.astype(ms_dtype)

                if new_param.dtype != param.dtype or new_param.shape != param.shape:
                    use_replace = True

                if use_replace:
                    if isinstance(new_param, Parameter) and isinstance(param, Parameter):
                        new_param.name = param.name
                        new_param.requires_grad = param.requires_grad
                        replace_references(param, new_param)
                    elif isinstance(param, Tensor):
                        param.assign_value(new_param)
                    else:
                        replace_references(param, Parameter(new_param, requires_grad=param.requires_grad))
                else:
                    param.assign_value(new_param)
                keys_unexpected.remove(param_name)
                if pname_in_net in keys_missing:
                    keys_missing.remove(pname_in_net)
            else:
                # fix missing value parameter dtype cast.
                if isinstance(param, Parameter) and ms_dtype and ms_dtype != param.dtype:
                    new_param = param.astype(ms_dtype)
                    replace_references(param, Parameter(new_param, requires_grad=param.requires_grad))

        # NOTE: monkey patching weight_norm
        for key in fix_weight_norm_missing_keys(state_dict_keys, keys_missing):
            keys_missing.remove(key)

        return keys_unexpected, keys_missing

    all_keys_unexpected = None
    if state_dict is None:
        if is_sharded:
            all_keys_unexpected = []
            for name in tqdm(converted_filenames, desc="Loading checkpoint shards"):
                state_dict = load_ckpt(name)
                keys_unexpected, keys_missing = load_param_into_net(model, state_dict, cls.base_model_prefix, dtype_group)
                all_keys_unexpected.extend(keys_unexpected)
                del state_dict
                gc.collect()
            loaded_keys = sharded_metadata["all_checkpoint_keys"]
        else:
            state_dict = load_ckpt(resolved_archive_file)
            loaded_keys = list(state_dict.keys())
            all_keys_unexpected, keys_missing = load_param_into_net(model, state_dict, cls.base_model_prefix, dtype_group)
    else:
        loaded_keys = list(state_dict.keys())
        all_keys_unexpected, keys_missing = load_param_into_net(model, state_dict, cls.base_model_prefix, dtype_group)

    loaded_add_keys = []
    for group in tied_params:
        missing_in_group = [k for k in keys_missing if k in group]
        if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
            loaded_add_keys.extend([k for k in keys_missing if k in missing_in_group])
            keys_missing = [k for k in keys_missing if k not in missing_in_group]
    if cls._keys_to_ignore_on_load_missing is not None:
        for pat in cls._keys_to_ignore_on_load_missing:
            keys_missing = [k for k in keys_missing if re.search(pat, k) is None]

    if cls._keys_to_ignore_on_load_unexpected is not None:
        for pat in cls._keys_to_ignore_on_load_unexpected:
            all_keys_unexpected = [k for k in all_keys_unexpected if re.search(pat, k) is None]

    # make sure token embedding weights are still tied if needed
    model.tie_weights()

    # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
    if _fast_init:
        if not ignore_mismatched_sizes:
            if remove_prefix_from_model:
                _loaded_keys = [f"{cls.base_model_prefix}.{k}" for k in loaded_keys]
            elif add_prefix_to_model:
                _loaded_keys = [k[len(cls.base_model_prefix) + 1 :] for k in loaded_keys]
            else:
                _loaded_keys = loaded_keys

            _loaded_keys += loaded_add_keys
            _ = set_initialized_submodules(model, _loaded_keys)
        else:
            _ = dict(model.cells_and_names())

        model.apply(model._initialize_weights)

    # Set model in evaluation mode to deactivate DropOut modules by default
    model.set_train(False)

    # If it is a model with generation capabilities, attempt to load the generation config
    if model.can_generate() and pretrained_model_name_or_path is not None:
        try:
            model.generation_config = GenerationConfig.from_pretrained(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                subfolder=subfolder,
                revision=revision,
                mirror=mirror,
                **kwargs,
            )
        except OSError:
            logger.info(
                "Generation config file not found, using a generation config created from the model config."
            )

    if output_loading_info:
        loading_info = {
            "missing_keys": keys_missing,
            "unexpected_keys": all_keys_unexpected,
        }
        return model, loading_info

    if all_keys_unexpected:
        logger.warning(f'The following parameters in checkpoint files are not loaded:\n'
                       f'{all_keys_unexpected}')
    if keys_missing:
        logger.warning(f'The following parameters in models are missing parameter:\n'
                       f'{keys_missing}')
    return model

mindnlp.transformers.modeling_utils.PreTrainedModel.get_input_embeddings()

Returns the model's input embeddings.

RETURNS DESCRIPTION
Module
Source code in mindnlp/transformers/modeling_utils.py
415
416
417
418
419
420
421
422
423
424
425
426
def get_input_embeddings(self) -> "nn.Module":
    """
    Returns the model's input embeddings.

    Returns:
        :obj:`nn.Module`: A mindspore cell mapping vocabulary to hidden states.
    """
    base_model = getattr(self, self.base_model_prefix, self)
    print(base_model)
    if base_model is not self:
        return base_model.get_input_embeddings()
    raise NotImplementedError

mindnlp.transformers.modeling_utils.PreTrainedModel.get_output_embeddings()

Get model's output embeddings Return None if the model doesn't have output embeddings

Source code in mindnlp/transformers/modeling_utils.py
449
450
451
452
453
def get_output_embeddings(self):
    """ Get model's output embeddings
        Return None if the model doesn't have output embeddings
    """
    return None  # Overwrite for models with output embeddings

mindnlp.transformers.modeling_utils.PreTrainedModel.get_position_embeddings()

get the model position embeddings if necessary

Source code in mindnlp/transformers/modeling_utils.py
467
468
469
470
471
472
473
474
def get_position_embeddings(self):
    """
    get the model position embeddings if necessary
    """
    raise NotImplementedError(
        f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
        f"overwrite this method in the class {self.__class__}"
    )

mindnlp.transformers.modeling_utils.PreTrainedModel.init_weights()

If needed prunes and maybe initializes weights. If using a custom PreTrainedModel, you need to implement any initialization logic in _init_weights.

Source code in mindnlp/transformers/modeling_utils.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def init_weights(self):
    """
    If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
    initialization logic in `_init_weights`.
    """
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    if _init_weights:
        # Initialize weights
        if getattr(self, 'apply', None):
            self.apply(self._initialize_weights)
        else:
            for _, cell in self.name_cells().items():
                self._initialize_weights(cell)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()

mindnlp.transformers.modeling_utils.PreTrainedModel.load(pretrained_model_name_or_path, *args, **kwargs) classmethod

Load a pre-trained checkpoint from a pre-trained model file or url, download and cache the pre-trained model file if model name in model list.

PARAMETER DESCRIPTION
pretrained_model_name_or_path

TYPE: Optional[Union[str, PathLike]]

Source code in mindnlp/transformers/modeling_utils.py
826
827
828
829
830
831
832
833
834
835
836
@classmethod
def load(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
         *args, **kwargs):
    """
    Load a pre-trained checkpoint from a pre-trained model file or url,
    download and cache the pre-trained model file if model name in model list.

    Params:
        pretrained_model_name_or_path:
    """
    return cls.from_pretrained(pretrained_model_name_or_path, args, kwargs)

mindnlp.transformers.modeling_utils.PreTrainedModel.num_parameters(only_trainable=False)

return parameters count

Source code in mindnlp/transformers/modeling_utils.py
1392
1393
1394
1395
1396
1397
1398
def num_parameters(self, only_trainable=False):
    """return parameters count"""
    total = 0
    for param in self.get_parameters():
        if (only_trainable or param.requires_grad):
            total += param.size
    return total

mindnlp.transformers.modeling_utils.PreTrainedModel.post_init()

A method executed at the end of each Transformer model initialization, to execute code that needs the model's modules properly initialized (such as weight initialization).

Source code in mindnlp/transformers/modeling_utils.py
333
334
335
336
337
338
339
def post_init(self):
    """
    A method executed at the end of each Transformer model initialization, to execute code that needs the model's
    modules properly initialized (such as weight initialization).

    """
    self.init_weights()

mindnlp.transformers.modeling_utils.PreTrainedModel.prune_heads(heads_to_prune)

Prunes heads of the base model.

PARAMETER DESCRIPTION
heads_to_prune

Dictionary with keys being selected layer indices (int) and associated values being the list of heads to prune in said layer (list of int). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.

TYPE: `Dict[int, List[int]]`

Source code in mindnlp/transformers/modeling_utils.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
    """
    Prunes heads of the base model.

    Arguments:
        heads_to_prune (`Dict[int, List[int]]`):
            Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
            to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
            layer 1 and heads 2 and 3 on layer 2.
    """
    # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
    for layer, heads in heads_to_prune.items():
        union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
        self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

    self.base_model._prune_heads(heads_to_prune)

mindnlp.transformers.modeling_utils.PreTrainedModel.resize_position_embeddings(new_num_position_embeddings)

resize the model position embeddings if necessary

Source code in mindnlp/transformers/modeling_utils.py
440
441
442
443
444
445
446
447
def resize_position_embeddings(self, new_num_position_embeddings: int):
    """
    resize the model position embeddings if necessary
    """
    raise NotImplementedError(
        f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
        f"overwrite this method in the class {self.__class__}"
    )

mindnlp.transformers.modeling_utils.PreTrainedModel.resize_token_embeddings(new_num_tokens=None, pad_to_multiple_of=None)

Resizes input token embeddings matrix of the model if new_num_tokens != config.vocab_size.

Takes care of tying weights embeddings afterwards if the model class has a tie_weights() method.

PARAMETER DESCRIPTION
new_num_tokens

The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None, just returns a pointer to the input tokens torch.nn.Embedding module of the model without doing anything.

TYPE: `int`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Embedding

torch.nn.Embedding: Pointer to the input tokens Embeddings Module of the model.

Source code in mindnlp/transformers/modeling_utils.py
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def resize_token_embeddings(
    self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
) -> nn.Embedding:
    """
    Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.

    Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.

    Arguments:
        new_num_tokens (`int`, *optional*):
            The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
            vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
            returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.

    Returns:
        `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
    """
    model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
    if new_num_tokens is None and pad_to_multiple_of is None:
        return model_embeds
    # Update base model and current model config
    self.config.vocab_size = model_embeds.weight.shape[0]
    self.vocab_size = model_embeds.weight.shape[0]
    # Tie weights again if needed
    self.tie_weights()

    return model_embeds

mindnlp.transformers.modeling_utils.PreTrainedModel.resize_tokenizer_embeddings(new_num_tokens)

Obtain a new embedding layer or use the original one without updating it.

Source code in mindnlp/transformers/modeling_utils.py
666
667
668
669
670
671
672
673
674
def resize_tokenizer_embeddings(self, new_num_tokens):
    """
    Obtain a new embedding layer or use the original one without updating it.
    """
    old_embeddings = self.get_input_embeddings()
    new_embeddings = self._get_resized_embeddings(
        old_embeddings, new_num_tokens)
    self.set_input_embeddings(new_embeddings)
    return self.get_input_embeddings()

mindnlp.transformers.modeling_utils.PreTrainedModel.save(save_dir)

Save a model and its configuration file to a directory, so that it can be re-loaded using the :func:PreTrainedModel.from_pretrained`` class method.

PARAMETER DESCRIPTION
save_dir

directory to which to save.

Source code in mindnlp/transformers/modeling_utils.py
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
def save(self, save_dir):
    """
    Save a model and its configuration file to a directory, so that
    it can be re-loaded using the `:func:`PreTrainedModel.from_pretrained`` class method.

    Arguments:
        save_dir: directory to which to save.
    """
    if os.path.isfile(save_dir):
        logger.error(f"Provided path ({save_dir}) should be a directory, not a file")
        return
    os.makedirs(save_dir, exist_ok=True)

    # Only save the model itself if we are using distributed training
    model_to_save = self.cell if hasattr(self, "cell") else self

    # Attach architecture to the config
    model_to_save.config.architectures = [model_to_save.__class__.__name__]

    # If we save using the predefined names, we can load using `from_pretrained`
    output_model_file = os.path.join(save_dir, WEIGHTS_NAME)
    save_checkpoint(model_to_save, output_model_file)

    logger.info(f"Model weights saved in {output_model_file}")

mindnlp.transformers.modeling_utils.PreTrainedModel.save_pretrained(save_directory, is_main_process=True, state_dict=None, save_function=mindspore.save_checkpoint, max_shard_size='5GB', safe_serialization=True, variant=None, **kwargs)

Save a model and its configuration file to a directory, so that it can be re-loaded using the [~PreTrainedModel.from_pretrained] class method.

PARAMETER DESCRIPTION
save_directory

Directory to which to save. Will be created if it doesn't exist.

TYPE: `str` or `os.PathLike`

is_main_process

Whether the process calling this is the main process or not. Useful when in distributed training like TPUs and need to call this function on all processes. In this case, set is_main_process=True only on the main process to avoid race conditions.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

state_dict

The state dictionary of the model to save. Will default to self.state_dict(), but can be used to only save parts of the model or if special precautions need to be taken when recovering the state dictionary of a model (like when using model parallelism).

TYPE: nested dictionary of `torch.Tensor` DEFAULT: None

save_function

The function to use to save the state dictionary. Useful on distributed training like TPUs when one need to replace torch.save by another method.

TYPE: `Callable` DEFAULT: save_checkpoint

max_shard_size

The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like "5MB"). We default it to 5GB in order for models to be able to run easily on free-tier google colab instances without CPU OOM issues.

If a single weight of the model is bigger than max_shard_size, it will be in its own checkpoint shard which will be bigger than max_shard_size.

TYPE: `int` or `str`, *optional*, defaults to `"5GB"` DEFAULT: '5GB'

variant

If specified, weights are saved in the format pytorch_model..bin.

TYPE: `str`, *optional* DEFAULT: None

save_peft_format

For backward compatibility with PEFT library, in case adapter weights are attached to the model, all keys of the state dict of adapters needs to be pre-pended with base_model.model. Advanced users can disable this behaviours by setting save_peft_format to False.

TYPE: `bool`, *optional*, defaults to `True`

kwargs

Additional key word arguments passed along to the [~utils.PushToHubMixin.push_to_hub] method.

TYPE: `Dict[str, Any]`, *optional* DEFAULT: {}

Source code in mindnlp/transformers/modeling_utils.py
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
def save_pretrained(
    self,
    save_directory: Union[str, os.PathLike],
    is_main_process: bool = True,
    state_dict: Optional[dict] = None,
    save_function: Callable = mindspore.save_checkpoint,
    max_shard_size: Union[int, str] = "5GB",
    safe_serialization: bool = True,
    variant: Optional[str] = None,
    **kwargs,
):
    """
    Save a model and its configuration file to a directory, so that it can be re-loaded using the
    [`~PreTrainedModel.from_pretrained`] class method.

    Arguments:
        save_directory (`str` or `os.PathLike`):
            Directory to which to save. Will be created if it doesn't exist.
        is_main_process (`bool`, *optional*, defaults to `True`):
            Whether the process calling this is the main process or not. Useful when in distributed training like
            TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
            the main process to avoid race conditions.
        state_dict (nested dictionary of `torch.Tensor`):
            The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
            save parts of the model or if special precautions need to be taken when recovering the state dictionary
            of a model (like when using model parallelism).
        save_function (`Callable`):
            The function to use to save the state dictionary. Useful on distributed training like TPUs when one
            need to replace `torch.save` by another method.
        max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
            The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
            lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
            We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
            without CPU OOM issues.

            <Tip warning={true}>

            If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
            which will be bigger than `max_shard_size`.

            </Tip>
        variant (`str`, *optional*):
            If specified, weights are saved in the format pytorch_model.<variant>.bin.
        save_peft_format (`bool`, *optional*, defaults to `True`):
            For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
            keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
            disable this behaviours by setting `save_peft_format` to `False`.
        kwargs (`Dict[str, Any]`, *optional*):
            Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
    """
    if os.path.isfile(save_directory):
        logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
        return

    os.makedirs(save_directory, exist_ok=True)

    # Only save the model itself if we are using distributed training
    model_to_save = self

    # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
    # we currently don't use this setting automatically, but may start to use with v5
    dtype = get_parameter_dtype(model_to_save)
    model_to_save.config.ms_dtype = str(dtype).lower()

    # Attach architecture to the config
    model_to_save.config.architectures = [model_to_save.__class__.__name__]

    # Save the config
    if is_main_process:
        model_to_save.config.save_pretrained(save_directory)
        if self.can_generate():
            model_to_save.generation_config.save_pretrained(save_directory)

    # Save the model
    if state_dict is None:
        state_dict = model_to_save.parameters_dict()

    # Handle the case where some state_dict keys shouldn't be saved
    if self._keys_to_ignore_on_save is not None:
        for ignore_key in self._keys_to_ignore_on_save:
            if ignore_key in state_dict.keys():
                del state_dict[ignore_key]

    # Shard the model if it is too big.
    # weights_name = _add_variant(WEIGHTS_NAME, variant)
    weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME

    shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)

    # Clean the folder from a previous save
    for filename in os.listdir(save_directory):
        full_filename = os.path.join(save_directory, filename)
        # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
        # in distributed settings to avoid race conditions.
        weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")

        # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
        filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
        reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")

        if (
            filename.startswith(weights_no_suffix)
            and os.path.isfile(full_filename)
            and filename not in shards
            and is_main_process
            and reg.fullmatch(filename_no_suffix) is not None
        ):
            os.remove(full_filename)

    # Save the model
    for shard_file, shard in shards.items():
        if safe_serialization:
            # At some point we will need to deal better with save_function (used for TPU and other distributed
            # joyfulness), but for now this enough.
            safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "np"})
        else:
            save_function(shard, os.path.join(save_directory, shard_file))

    if index is None:
        path_to_weights = os.path.join(save_directory, _add_variant(WEIGHTS_NAME, variant))
        logger.info(f"Model weights saved in {path_to_weights}")
    else:
        save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
        save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
        # Save the index as well
        with open(save_index_file, "w", encoding="utf-8") as f:
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)
        logger.info(
            f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
            f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
            f"index located at {save_index_file}."
        )

mindnlp.transformers.modeling_utils.PreTrainedModel.set_input_embeddings(new_embeddings)

Set model's input embeddings.

PARAMETER DESCRIPTION
value

Source code in mindnlp/transformers/modeling_utils.py
428
429
430
431
432
433
434
435
436
437
438
def set_input_embeddings(self, new_embeddings: nn.Module):
    """
    Set model's input embeddings.

    Args:
        value (:obj:`nn.Module`): A mindspore cell mapping vocabulary to hidden states.
    """
    base_model = getattr(self, self.base_model_prefix, self)
    if base_model is not self:
        return base_model.set_input_embeddings(new_embeddings)
    raise NotImplementedError

mindnlp.transformers.modeling_utils.PreTrainedModel.set_output_embeddings(new_embeddings)

Set model's output embeddings.

PARAMETER DESCRIPTION
value

Source code in mindnlp/transformers/modeling_utils.py
455
456
457
458
459
460
461
462
463
464
465
def set_output_embeddings(self, new_embeddings: nn.Module):
    """
    Set model's output embeddings.

    Args:
        value (:obj:`nn.Module`): A mindspore cell mapping vocabulary to hidden states.
    """
    base_model = getattr(self, self.base_model_prefix, self)
    if base_model is not self:
        return base_model.set_output_embeddings(new_embeddings)
    raise NotImplementedError

mindnlp.transformers.modeling_utils.PreTrainedModel.tie_weights()

Make sure we are sharing the input and output embeddings. If you need this feature, you need to get it yourself output Add the output you need to add to the embeddings function_ Embedding layer, otherwise you cannot

Source code in mindnlp/transformers/modeling_utils.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
def tie_weights(self):
    """
    Make sure we are sharing the input and output embeddings.
    If you need this feature,
    you need to get it yourself output Add the output you need to add to the embeddings function_ Embedding layer,
    otherwise you cannot
    """
    if getattr(self.config, "tie_word_embeddings", True):
        output_embeddings = self.get_output_embeddings() # pylint: disable=assignment-from-none
        if output_embeddings is not None:
            self._tie_or_clone_weights(
                output_embeddings, self.get_input_embeddings())

    if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
        if hasattr(self, self.base_model_prefix):
            self = getattr(self, self.base_model_prefix) # pylint: disable=self-cls-assignment
        self._tie_encoder_decoder_weights(
            self.encoder, self.decoder, self.base_model_prefix)

    for _, cell in self.cells_and_names():
        if hasattr(cell, "_tie_weights"):
            cell._tie_weights()

mindnlp.transformers.modeling_utils.PreTrainedModel.trainable_params(recurse=True)

fix duplicated weights

Source code in mindnlp/transformers/modeling_utils.py
1400
1401
1402
1403
1404
def trainable_params(self, recurse=True):
    """
    fix duplicated weights
    """
    return list(set(filter(lambda x: x.requires_grad, self.get_parameters(expand=recurse))))

mindnlp.transformers.modeling_utils.PreTrainedModel.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)

Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.

Source code in mindnlp/transformers/modeling_utils.py
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
    """
    Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
    """
    if (attention_mask is not None) or (self.config.pad_token_id is None):
        return

    # Check only the first and last input IDs to reduce overhead.
    # if self.config.pad_token_id in input_ids[:, [-1, 0]]:
    if ops.contains(input_ids[:, [-1, 0]], self.config.pad_token_id):
        warn_string = (
            "We strongly recommend passing in an `attention_mask` since your input_ids may be padded."
        )

        # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
        # attention_mask or not. In this case, we should still show a warning because this is a rare case.
        if (
            (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
            or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
            or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
        ):
            warn_string += (
                f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
            )

        logger.warning(warn_string)