Skip to content

bartpho

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer

Bases: PreTrainedTokenizer

Adapted from [XLMRobertaTokenizer]. Based on SentencePiece.

This tokenizer inherits from [PreTrainedTokenizer] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

PARAMETER DESCRIPTION
vocab_file

Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types.

TYPE: `str`

monolingual_vocab_file

Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized types extracted from the multilingual vocabulary vocab_file of 250K types.

TYPE: `str`

bos_token

The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the cls_token.

TYPE: `str`, *optional*, defaults to `"<s>"` DEFAULT: '<s>'

eos_token

The end of sequence token.

When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the sep_token.

TYPE: `str`, *optional*, defaults to `"</s>"` DEFAULT: '</s>'

sep_token

The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

TYPE: `str`, *optional*, defaults to `"</s>"` DEFAULT: '</s>'

cls_token

The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

TYPE: `str`, *optional*, defaults to `"<s>"` DEFAULT: '<s>'

unk_token

The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

TYPE: `str`, *optional*, defaults to `"<unk>"` DEFAULT: '<unk>'

pad_token

The token used for padding, for example when batching sequences of different lengths.

TYPE: `str`, *optional*, defaults to `"<pad>"` DEFAULT: '<pad>'

mask_token

The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

TYPE: `str`, *optional*, defaults to `"<mask>"` DEFAULT: '<mask>'

sp_model_kwargs

Will be passed to the SentencePieceProcessor.__init__() method. The Python wrapper for SentencePiece can be used, among other things, to set:

  • enable_sampling: Enable subword regularization.
  • nbest_size: Sampling parameters for unigram. Invalid for BPE-Dropout.
  • nbest_size = {0,1}: No sampling is performed.
  • nbest_size > 1: samples from the nbest_size results.
  • nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
  • alpha: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.

TYPE: `dict`, *optional* DEFAULT: None

ATTRIBUTE DESCRIPTION
sp_model

The SentencePiece processor that is used for every conversion (string, tokens and IDs).

TYPE: `SentencePieceProcessor`

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
class BartphoTokenizer(PreTrainedTokenizer):
    """
    Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece).

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the
            multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types.
        monolingual_vocab_file (`str`):
            Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized
            types extracted from the multilingual vocabulary vocab_file of 250K types.
        bos_token (`str`, *optional*, defaults to `"<s>"`):
            The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the beginning of
            sequence. The token used is the `cls_token`.

            </Tip>

        eos_token (`str`, *optional*, defaults to `"</s>"`):
            The end of sequence token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the end of sequence.
            The token used is the `sep_token`.

            </Tip>

        sep_token (`str`, *optional*, defaults to `"</s>"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        cls_token (`str`, *optional*, defaults to `"<s>"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        unk_token (`str`, *optional*, defaults to `"<unk>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        pad_token (`str`, *optional*, defaults to `"<pad>"`):
            The token used for padding, for example when batching sequences of different lengths.
        mask_token (`str`, *optional*, defaults to `"<mask>"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        sp_model_kwargs (`dict`, *optional*):
            Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
            SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
            to set:

            - `enable_sampling`: Enable subword regularization.
            - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
            - `nbest_size = {0,1}`: No sampling is performed.
            - `nbest_size > 1`: samples from the nbest_size results.
            - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
            using forward-filtering-and-backward-sampling algorithm.
            - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
            BPE-dropout.

    Attributes:
        sp_model (`SentencePieceProcessor`):
            The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
    """
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        vocab_file,
        monolingual_vocab_file,
        bos_token="<s>",
        eos_token="</s>",
        sep_token="</s>",
        cls_token="<s>",
        unk_token="<unk>",
        pad_token="<pad>",
        mask_token="<mask>",
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> None:
        """
        Initializes a new instance of the BartphoTokenizer class.

        Args:
            self: The instance of the class.
            vocab_file (str): The path to the vocabulary file.
            monolingual_vocab_file (str): The path to the monolingual vocabulary file.
            bos_token (str, optional): The beginning of sentence token. Defaults to '<s>'.
            eos_token (str, optional): The end of sentence token. Defaults to '</s>'.
            sep_token (str, optional): The separator token. Defaults to '</s>'.
            cls_token (str, optional): The classification token. Defaults to '<s>'.
            unk_token (str, optional): The unknown token. Defaults to '<unk>'.
            pad_token (str, optional): The padding token. Defaults to '<pad>'.
            mask_token (str, optional): The masking token. Defaults to '<mask>'.
            sp_model_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for the SentencePieceProcessor. Defaults to None.
            **kwargs: Additional keyword arguments.

        Returns:
            None

        Raises:
            None
        """
        # Mask token behave like a normal word, i.e. include the space before it
        mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token

        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

        self.vocab_file = vocab_file
        self.monolingual_vocab_file = monolingual_vocab_file
        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(str(vocab_file))

        # Load the reduced vocab

        # Keep order of special tokens for backward compatibility
        self.fairseq_tokens_to_ids = {}
        cnt = 0
        for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
            if str(token) not in self.fairseq_tokens_to_ids:
                self.fairseq_tokens_to_ids[str(token)] = cnt
                cnt += 1
        with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
            for line in f.readlines():
                token = line.strip().split()[0]
                self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
        if str(mask_token) not in self.fairseq_tokens_to_ids:
            self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids)

        self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}

        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            sp_model_kwargs=self.sp_model_kwargs,
            **kwargs,
        )

    def __getstate__(self):
        """
        This method '__getstate__' in the class 'BartphoTokenizer' is used to provide the state of the object for pickling.

        Args:
            self: An instance of the BartphoTokenizer class. Represents the current object whose state needs to be retrieved.

        Returns:
            None: This method returns None after setting the 'sp_model' attribute to None and serializing the 'sp_model_proto' attribute.

        Raises:
            None.
        """
        state = self.__dict__.copy()
        state["sp_model"] = None
        state["sp_model_proto"] = self.sp_model.serialized_model_proto()
        return state

    def __setstate__(self, d):
        """
        This method '__setstate__' is defined within the class 'BartphoTokenizer' and is used to restore the 
        object's state from a dictionary representation. 
        It takes two parameters, 'self' which refers to the instance of the class, and 'd' which is a dictionary 
        representing the state to be restored.

        Args:
            self (BartphoTokenizer): The instance of the BartphoTokenizer class.
            d (dict): A dictionary representing the state to be restored. 
                It contains the data necessary to reforward the object's state.

        Returns:
            None.

        Raises:
            None:
                However, potential exceptions that could arise during the execution of this method may include, 
                but are not limited to, those related to the initialization of the 'SentencePieceProcessor' instance or 
                its 'LoadFromSerializedProto' method.
        """
        self.__dict__ = d

        # for backward compatibility
        if not hasattr(self, "sp_model_kwargs"):
            self.sp_model_kwargs = {}

        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.LoadFromSerializedProto(self.sp_model_proto)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. An BARTPho sequence has the following format:

        - single sequence: `<s> X </s>`
        - pair of sequences: `<s> A </s></s> B </s>`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + sep + token_ids_1 + sep

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not
        make use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.

        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

    @property
    def vocab_size(self):
        """
        Returns the size of the vocabulary used by the BartphoTokenizer.

        Args:
            self: An instance of the BartphoTokenizer class.

        Returns:
            None

        Raises:
            None
        """
        return len(self.fairseq_ids_to_tokens)

    def get_vocab(self):
        """
        Retrieves the vocabulary dictionary of the BartphoTokenizer instance.

        Args:
            self (BartphoTokenizer): The instance of the BartphoTokenizer class.

        Returns:
            vocab (dict): A dictionary containing the vocabulary of the tokenizer. The keys represent the tokens,
                and the values represent their associated IDs. The dictionary includes both the original vocabulary
                defined by the tokenizer as well as any additional tokens that have been added.

        Raises:
            None.
        """
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text: str) -> List[str]:
        """
        Tokenizes the input text using the SentencePiece model.

        Args:
            self (BartphoTokenizer): The instance of the BartphoTokenizer class.
            text (str): The input text to be tokenized.

        Returns:
            List[str]: A list of tokenized strings representing the text.

        Raises:
            None
        """
        return self.sp_model.encode(text, out_type=str)

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        if token in self.fairseq_tokens_to_ids:
            return self.fairseq_tokens_to_ids[token]
        else:
            return self.unk_token_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.fairseq_ids_to_tokens[index]

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (strings for sub-words) in a single string."""
        out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
        return out_string

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        """
        Saves the vocabulary files to the specified directory.

        Args:
            self (BartphoTokenizer): An instance of the BartphoTokenizer class.
            save_directory (str): The directory where the vocabulary files will be saved.
            filename_prefix (Optional[str], optional): The prefix to be added to the filenames (default: None).

        Returns:
            Tuple[str]: A tuple containing the paths of the saved vocabulary files.

        Raises:
            FileNotFoundError: If the save_directory does not exist.
            IsADirectoryError: If the specified save_directory is not a directory.
        """
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )
        out_monolingual_vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, "wb") as fi:
                content_spiece_model = self.sp_model.serialized_model_proto()
                fi.write(content_spiece_model)

        if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
            out_monolingual_vocab_file
        ) and os.path.isfile(self.monolingual_vocab_file):
            copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
        elif not os.path.isfile(self.monolingual_vocab_file):
            with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp:
                for token in self.fairseq_tokens_to_ids:
                    if token not in self.all_special_tokens:
                        fp.write(f"{str(token)} \n")

        return out_vocab_file, out_monolingual_vocab_file

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.vocab_size property

Returns the size of the vocabulary used by the BartphoTokenizer.

PARAMETER DESCRIPTION
self

An instance of the BartphoTokenizer class.

RETURNS DESCRIPTION

None

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.__getstate__()

This method 'getstate' in the class 'BartphoTokenizer' is used to provide the state of the object for pickling.

PARAMETER DESCRIPTION
self

An instance of the BartphoTokenizer class. Represents the current object whose state needs to be retrieved.

RETURNS DESCRIPTION
None

This method returns None after setting the 'sp_model' attribute to None and serializing the 'sp_model_proto' attribute.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
def __getstate__(self):
    """
    This method '__getstate__' in the class 'BartphoTokenizer' is used to provide the state of the object for pickling.

    Args:
        self: An instance of the BartphoTokenizer class. Represents the current object whose state needs to be retrieved.

    Returns:
        None: This method returns None after setting the 'sp_model' attribute to None and serializing the 'sp_model_proto' attribute.

    Raises:
        None.
    """
    state = self.__dict__.copy()
    state["sp_model"] = None
    state["sp_model_proto"] = self.sp_model.serialized_model_proto()
    return state

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.__init__(vocab_file, monolingual_vocab_file, bos_token='<s>', eos_token='</s>', sep_token='</s>', cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', sp_model_kwargs=None, **kwargs)

Initializes a new instance of the BartphoTokenizer class.

PARAMETER DESCRIPTION
self

The instance of the class.

vocab_file

The path to the vocabulary file.

TYPE: str

monolingual_vocab_file

The path to the monolingual vocabulary file.

TYPE: str

bos_token

The beginning of sentence token. Defaults to ''.

TYPE: str DEFAULT: '<s>'

eos_token

The end of sentence token. Defaults to ''.

TYPE: str DEFAULT: '</s>'

sep_token

The separator token. Defaults to ''.

TYPE: str DEFAULT: '</s>'

cls_token

The classification token. Defaults to ''.

TYPE: str DEFAULT: '<s>'

unk_token

The unknown token. Defaults to ''.

TYPE: str DEFAULT: '<unk>'

pad_token

The padding token. Defaults to ''.

TYPE: str DEFAULT: '<pad>'

mask_token

The masking token. Defaults to ''.

TYPE: str DEFAULT: '<mask>'

sp_model_kwargs

Additional keyword arguments for the SentencePieceProcessor. Defaults to None.

TYPE: Optional[Dict[str, Any]] DEFAULT: None

**kwargs

Additional keyword arguments.

DEFAULT: {}

RETURNS DESCRIPTION
None

None

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def __init__(
    self,
    vocab_file,
    monolingual_vocab_file,
    bos_token="<s>",
    eos_token="</s>",
    sep_token="</s>",
    cls_token="<s>",
    unk_token="<unk>",
    pad_token="<pad>",
    mask_token="<mask>",
    sp_model_kwargs: Optional[Dict[str, Any]] = None,
    **kwargs,
) -> None:
    """
    Initializes a new instance of the BartphoTokenizer class.

    Args:
        self: The instance of the class.
        vocab_file (str): The path to the vocabulary file.
        monolingual_vocab_file (str): The path to the monolingual vocabulary file.
        bos_token (str, optional): The beginning of sentence token. Defaults to '<s>'.
        eos_token (str, optional): The end of sentence token. Defaults to '</s>'.
        sep_token (str, optional): The separator token. Defaults to '</s>'.
        cls_token (str, optional): The classification token. Defaults to '<s>'.
        unk_token (str, optional): The unknown token. Defaults to '<unk>'.
        pad_token (str, optional): The padding token. Defaults to '<pad>'.
        mask_token (str, optional): The masking token. Defaults to '<mask>'.
        sp_model_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for the SentencePieceProcessor. Defaults to None.
        **kwargs: Additional keyword arguments.

    Returns:
        None

    Raises:
        None
    """
    # Mask token behave like a normal word, i.e. include the space before it
    mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token

    self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

    self.vocab_file = vocab_file
    self.monolingual_vocab_file = monolingual_vocab_file
    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
    self.sp_model.Load(str(vocab_file))

    # Load the reduced vocab

    # Keep order of special tokens for backward compatibility
    self.fairseq_tokens_to_ids = {}
    cnt = 0
    for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
        if str(token) not in self.fairseq_tokens_to_ids:
            self.fairseq_tokens_to_ids[str(token)] = cnt
            cnt += 1
    with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
        for line in f.readlines():
            token = line.strip().split()[0]
            self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
    if str(mask_token) not in self.fairseq_tokens_to_ids:
        self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids)

    self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}

    super().__init__(
        bos_token=bos_token,
        eos_token=eos_token,
        unk_token=unk_token,
        sep_token=sep_token,
        cls_token=cls_token,
        pad_token=pad_token,
        mask_token=mask_token,
        sp_model_kwargs=self.sp_model_kwargs,
        **kwargs,
    )

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.__setstate__(d)

This method 'setstate' is defined within the class 'BartphoTokenizer' and is used to restore the object's state from a dictionary representation. It takes two parameters, 'self' which refers to the instance of the class, and 'd' which is a dictionary representing the state to be restored.

PARAMETER DESCRIPTION
self

The instance of the BartphoTokenizer class.

TYPE: BartphoTokenizer

d

A dictionary representing the state to be restored. It contains the data necessary to reforward the object's state.

TYPE: dict

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
None

However, potential exceptions that could arise during the execution of this method may include, but are not limited to, those related to the initialization of the 'SentencePieceProcessor' instance or its 'LoadFromSerializedProto' method.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def __setstate__(self, d):
    """
    This method '__setstate__' is defined within the class 'BartphoTokenizer' and is used to restore the 
    object's state from a dictionary representation. 
    It takes two parameters, 'self' which refers to the instance of the class, and 'd' which is a dictionary 
    representing the state to be restored.

    Args:
        self (BartphoTokenizer): The instance of the BartphoTokenizer class.
        d (dict): A dictionary representing the state to be restored. 
            It contains the data necessary to reforward the object's state.

    Returns:
        None.

    Raises:
        None:
            However, potential exceptions that could arise during the execution of this method may include, 
            but are not limited to, those related to the initialization of the 'SentencePieceProcessor' instance or 
            its 'LoadFromSerializedProto' method.
    """
    self.__dict__ = d

    # for backward compatibility
    if not hasattr(self, "sp_model_kwargs"):
        self.sp_model_kwargs = {}

    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
    self.sp_model.LoadFromSerializedProto(self.sp_model_proto)

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An BARTPho sequence has the following format:

  • single sequence: <s> X </s>
  • pair of sequences: <s> A </s></s> B </s>
PARAMETER DESCRIPTION
token_ids_0

List of IDs to which the special tokens will be added.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

RETURNS DESCRIPTION
List[int]

List[int]: List of input IDs with the appropriate special tokens.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def build_inputs_with_special_tokens(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
    """
    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
    adding special tokens. An BARTPho sequence has the following format:

    - single sequence: `<s> X </s>`
    - pair of sequences: `<s> A </s></s> B </s>`

    Args:
        token_ids_0 (`List[int]`):
            List of IDs to which the special tokens will be added.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.

    Returns:
        `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
    """
    if token_ids_1 is None:
        return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
    cls = [self.cls_token_id]
    sep = [self.sep_token_id]
    return cls + token_ids_0 + sep + sep + token_ids_1 + sep

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.convert_tokens_to_string(tokens)

Converts a sequence of tokens (strings for sub-words) in a single string.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
381
382
383
384
def convert_tokens_to_string(self, tokens):
    """Converts a sequence of tokens (strings for sub-words) in a single string."""
    out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
    return out_string

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)

Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not make use of token type ids, therefore a list of zeros is returned.

PARAMETER DESCRIPTION
token_ids_0

List of IDs.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

RETURNS DESCRIPTION
List[int]

List[int]: List of zeros.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def create_token_type_ids_from_sequences(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
    """
    Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not
    make use of token type ids, therefore a list of zeros is returned.

    Args:
        token_ids_0 (`List[int]`):
            List of IDs.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.

    Returns:
        `List[int]`: List of zeros.

    """
    sep = [self.sep_token_id]
    cls = [self.cls_token_id]

    if token_ids_1 is None:
        return len(cls + token_ids_0 + sep) * [0]
    return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

PARAMETER DESCRIPTION
token_ids_0

List of IDs.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

already_has_special_tokens

Whether or not the token list is already formatted with special tokens for the model.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
List[int]

List[int]: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def get_special_tokens_mask(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
    """
    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
    special tokens using the tokenizer `prepare_for_model` method.

    Args:
        token_ids_0 (`List[int]`):
            List of IDs.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.
        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
            Whether or not the token list is already formatted with special tokens for the model.

    Returns:
        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
    """
    if already_has_special_tokens:
        return super().get_special_tokens_mask(
            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
        )

    if token_ids_1 is None:
        return [1] + ([0] * len(token_ids_0)) + [1]
    return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.get_vocab()

Retrieves the vocabulary dictionary of the BartphoTokenizer instance.

PARAMETER DESCRIPTION
self

The instance of the BartphoTokenizer class.

TYPE: BartphoTokenizer

RETURNS DESCRIPTION
vocab

A dictionary containing the vocabulary of the tokenizer. The keys represent the tokens, and the values represent their associated IDs. The dictionary includes both the original vocabulary defined by the tokenizer as well as any additional tokens that have been added.

TYPE: dict

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def get_vocab(self):
    """
    Retrieves the vocabulary dictionary of the BartphoTokenizer instance.

    Args:
        self (BartphoTokenizer): The instance of the BartphoTokenizer class.

    Returns:
        vocab (dict): A dictionary containing the vocabulary of the tokenizer. The keys represent the tokens,
            and the values represent their associated IDs. The dictionary includes both the original vocabulary
            defined by the tokenizer as well as any additional tokens that have been added.

    Raises:
        None.
    """
    vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
    vocab.update(self.added_tokens_encoder)
    return vocab

mindnlp.transformers.models.bartpho.tokenization_bartpho.BartphoTokenizer.save_vocabulary(save_directory, filename_prefix=None)

Saves the vocabulary files to the specified directory.

PARAMETER DESCRIPTION
self

An instance of the BartphoTokenizer class.

TYPE: BartphoTokenizer

save_directory

The directory where the vocabulary files will be saved.

TYPE: str

filename_prefix

The prefix to be added to the filenames (default: None).

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Tuple[str]

Tuple[str]: A tuple containing the paths of the saved vocabulary files.

RAISES DESCRIPTION
FileNotFoundError

If the save_directory does not exist.

IsADirectoryError

If the specified save_directory is not a directory.

Source code in mindnlp/transformers/models/bartpho/tokenization_bartpho.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
    """
    Saves the vocabulary files to the specified directory.

    Args:
        self (BartphoTokenizer): An instance of the BartphoTokenizer class.
        save_directory (str): The directory where the vocabulary files will be saved.
        filename_prefix (Optional[str], optional): The prefix to be added to the filenames (default: None).

    Returns:
        Tuple[str]: A tuple containing the paths of the saved vocabulary files.

    Raises:
        FileNotFoundError: If the save_directory does not exist.
        IsADirectoryError: If the specified save_directory is not a directory.
    """
    if not os.path.isdir(save_directory):
        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
        return
    out_vocab_file = os.path.join(
        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
    )
    out_monolingual_vocab_file = os.path.join(
        save_directory,
        (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
    )

    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
        copyfile(self.vocab_file, out_vocab_file)
    elif not os.path.isfile(self.vocab_file):
        with open(out_vocab_file, "wb") as fi:
            content_spiece_model = self.sp_model.serialized_model_proto()
            fi.write(content_spiece_model)

    if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
        out_monolingual_vocab_file
    ) and os.path.isfile(self.monolingual_vocab_file):
        copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
    elif not os.path.isfile(self.monolingual_vocab_file):
        with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp:
            for token in self.fairseq_tokens_to_ids:
                if token not in self.all_special_tokens:
                    fp.write(f"{str(token)} \n")

    return out_vocab_file, out_monolingual_vocab_file