bertweet
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer
¶
Bases: PreTrainedTokenizer
Constructs a BERTweet tokenizer, using Byte-Pair-Encoding.
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
Path to the vocabulary file.
TYPE:
|
merges_file |
Path to the merges file.
TYPE:
|
normalization |
Whether or not to apply a normalization preprocess.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the
TYPE:
|
eos_token |
The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.vocab_size
property
¶
Method to retrieve the vocabulary size of the BertweetTokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the BertweetTokenizer class.
|
RETURNS | DESCRIPTION |
---|---|
The total number of unique tokens in the tokenizer's encoder.
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.__init__(vocab_file, merges_file, normalization=False, bos_token='<s>', eos_token='</s>', sep_token='</s>', cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', **kwargs)
¶
Initialize the BertweetTokenizer class with the provided parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
vocab_file |
The path to the vocabulary file.
TYPE:
|
merges_file |
The path to the merges file.
TYPE:
|
normalization |
Flag indicating whether normalization should be applied (default is False).
TYPE:
|
bos_token |
Beginning of sentence token (default is '
TYPE:
|
eos_token |
End of sentence token (default is '').
TYPE:
|
sep_token |
Separator token (default is '').
TYPE:
|
cls_token |
Class token (default is '
TYPE:
|
unk_token |
Unknown token (default is '
TYPE:
|
pad_token |
Padding token (default is '
TYPE:
|
mask_token |
Mask token (default is '
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ImportError
|
If the 'emoji' library is not installed, a warning is logged, and emoticons or emojis will not be converted to text. To resolve this, install emoji library using 'pip3 install emoji==0.6.0'. |
FileNotFoundError
|
If the vocab_file or merges_file cannot be found or accessed. |
IOError
|
If there is an issue reading the merges_file with UTF-8 encoding. |
Exception
|
Any other unforeseen exceptions that might occur during the initialization process. |
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.add_from_file(f)
¶
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.bpe(token)
¶
This method is part of the BertweetTokenizer class and implements the Byte-Pair Encoding (BPE) algorithm for tokenization.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the BertweetTokenizer class.
TYPE:
|
token |
The input token to be processed by the BPE algorithm.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str or None: The processed token after applying the BPE algorithm.
|
RAISES | DESCRIPTION |
---|---|
None
|
This method does not raise any specific exceptions. |
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERTweet sequence has the following format:
- single sequence:
<s> X </s>
- pair of sequences:
<s> A </s></s> B </s>
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
444 445 446 447 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does not make use of token type ids, therefore a list of zeros is returned.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.get_vocab()
¶
Method to retrieve the combined vocabulary from the encoder and added tokens encoder.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the BertweetTokenizer class. Represents the tokenizer object.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
Returns a dictionary that combines the encoder and added tokens encoder. The keys are word pieces and the values are their corresponding IDs. |
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.normalizeToken(token)
¶
Normalize tokens in a Tweet
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.normalizeTweet(tweet)
¶
Normalize a raw Tweet
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
|
mindnlp.transformers.models.bertweet.tokenization_bertweet.BertweetTokenizer.save_vocabulary(save_directory, filename_prefix=None)
¶
Saves the vocabulary files required for the BertweetTokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the BertweetTokenizer class.
TYPE:
|
save_directory |
The directory where the vocabulary files will be saved.
TYPE:
|
filename_prefix |
A prefix to be added to the filename. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
Tuple[str]: A tuple containing the paths of the saved vocabulary files: out_vocab_file and out_merge_file. |
RAISES | DESCRIPTION |
---|---|
OSError
|
If the provided save_directory is not a valid directory. |
FileNotFoundError
|
If the self.vocab_file does not exist. |
PermissionError
|
If there is a permission error while copying the vocabulary files. |
Source code in mindnlp/transformers/models/bertweet/tokenization_bertweet.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|