byt5
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer
¶
Bases: PreTrainedTokenizer
Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding.
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
eos_token |
The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
extra_ids |
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
accessible as "
TYPE:
|
additional_special_tokens |
Additional special tokens used by the tokenizer.
TYPE:
|
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.vocab_size
property
¶
Method to retrieve the vocabulary size of the ByT5Tokenizer instance.
PARAMETER | DESCRIPTION |
---|---|
self |
ByT5Tokenizer instance. The self parameter refers to the instance of the ByT5Tokenizer class.
|
RETURNS | DESCRIPTION |
---|---|
int
|
The vocabulary size of the tokenizer. This value represents the total number of unique tokens in the vocabulary. |
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.__init__(eos_token='</s>', unk_token='<unk>', pad_token='<pad>', extra_ids=125, additional_special_tokens=None, **kwargs)
¶
This method initializes an instance of the ByT5Tokenizer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ByT5Tokenizer class.
|
eos_token |
The end-of-sequence token. Default is ''.
TYPE:
|
unk_token |
The unknown token. Default is '
TYPE:
|
pad_token |
The padding token. Default is '
TYPE:
|
extra_ids |
The number of extra special tokens. Default is 125.
TYPE:
|
additional_special_tokens |
List of additional special tokens. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if both extra_ids and additional_special_tokens are provided and the additional_special_tokens do not include all extra_ids tokens. |
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format:
- single sequence:
X </s>
- pair of sequences:
A </s> B </s>
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not make use of token type ids, therefore a list of zeros is returned.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.get_vocab()
¶
Retrieves the vocabulary of the ByT5Tokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ByT5Tokenizer class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the vocabulary of the tokenizer. The keys are the tokens, and the values are the corresponding token IDs. |
Note
The vocabulary includes both the original vocabulary of the tokenizer and any additional tokens that have been added.
Example
>>> tokenizer = ByT5Tokenizer()
>>> vocab = tokenizer.get_vocab()
>>> print(vocab)
{'<unk>': 0, '<pad>': 1, 'hello': 2, 'world': 3, ...}
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
mindnlp.transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.save_vocabulary(save_directory, filename_prefix=None)
¶
Saves the vocabulary of the ByT5Tokenizer instance to a file.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ByT5Tokenizer class.
TYPE:
|
save_directory |
The directory path where the vocabulary file will be saved.
TYPE:
|
filename_prefix |
The prefix to be added to the filename (default: None).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
Tuple[str]: A tuple containing the absolute path of the saved vocabulary file. |
This method saves the vocabulary of the ByT5Tokenizer instance to a file in the specified save_directory. The filename of the vocabulary file is generated based on the provided filename_prefix, if any. If no filename_prefix is provided, the vocabulary file will be named using the default naming convention. The method returns a tuple containing the absolute path of the saved vocabulary file.
Source code in mindnlp/transformers/models/byt5/tokenization_byt5.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|