Skip to content

canine

mindnlp.transformers.models.canine.configuration_canine

CANINE model configuration

mindnlp.transformers.models.canine.configuration_canine.CanineConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [CanineModel]. It is used to instantiate an CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CANINE google/canine-s architecture.

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
hidden_size

Dimension of the encoder layers and the pooler layer.

TYPE: `int`, *optional*, defaults to 768 DEFAULT: 768

num_hidden_layers

Number of hidden layers in the deep Transformer encoder.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

num_attention_heads

Number of attention heads for each attention layer in the Transformer encoders.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

intermediate_size

Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.

TYPE: `int`, *optional*, defaults to 3072 DEFAULT: 3072

hidden_act

The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

TYPE: `str` or `function`, *optional*, defaults to `"gelu"` DEFAULT: 'gelu'

hidden_dropout_prob

The dropout probability for all fully connected layers in the embeddings, encoders, and pooler.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

attention_probs_dropout_prob

The dropout ratio for the attention probabilities.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

max_position_embeddings

The maximum sequence length that this model might ever be used with.

TYPE: `int`, *optional*, defaults to 16384 DEFAULT: 16384

type_vocab_size

The vocabulary size of the token_type_ids passed when calling [CanineModel].

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

initializer_range

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

layer_norm_eps

The epsilon used by the layer normalization layers.

TYPE: `float`, *optional*, defaults to 1e-12 DEFAULT: 1e-12

pad_token_id

Padding token id.

TYPE: `int`, *optional*, defaults to 0 DEFAULT: 0

bos_token_id

Beginning of stream token id.

TYPE: `int`, *optional*, defaults to 57344 DEFAULT: 57344

eos_token_id

End of stream token id.

TYPE: `int`, *optional*, defaults to 57345 DEFAULT: 57345

downsampling_rate

The rate at which to downsample the original character sequence length before applying the deep Transformer encoder.

TYPE: `int`, *optional*, defaults to 4 DEFAULT: 4

upsampling_kernel_size

The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when projecting back from hidden_size*2 to hidden_size.

TYPE: `int`, *optional*, defaults to 4 DEFAULT: 4

num_hash_functions

The number of hash functions to use. Each hash function has its own embedding matrix.

TYPE: `int`, *optional*, defaults to 8 DEFAULT: 8

num_hash_buckets

The number of hash buckets to use.

TYPE: `int`, *optional*, defaults to 16384 DEFAULT: 16384

local_transformer_stride

The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good TPU/XLA memory alignment.

TYPE: `int`, *optional*, defaults to 128 DEFAULT: 128

Example
>>> from transformers import CanineConfig, CanineModel
...
>>> # Initializing a CANINE google/canine-s style configuration
>>> configuration = CanineConfig()
...
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
>>> model = CanineModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/canine/configuration_canine.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
class CanineConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
    CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CANINE
    [google/canine-s](https://huggingface.co/google/canine-s) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the deep Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoders.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoders, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        type_vocab_size (`int`, *optional*, defaults to 16):
            The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 57344):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 57345):
            End of stream token id.
        downsampling_rate (`int`, *optional*, defaults to 4):
            The rate at which to downsample the original character sequence length before applying the deep Transformer
            encoder.
        upsampling_kernel_size (`int`, *optional*, defaults to 4):
            The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
            projecting back from `hidden_size`*2 to `hidden_size`.
        num_hash_functions (`int`, *optional*, defaults to 8):
            The number of hash functions to use. Each hash function has its own embedding matrix.
        num_hash_buckets (`int`, *optional*, defaults to 16384):
            The number of hash buckets to use.
        local_transformer_stride (`int`, *optional*, defaults to 128):
            The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
            TPU/XLA memory alignment.

    Example:
        ```python
        >>> from transformers import CanineConfig, CanineModel
        ...
        >>> # Initializing a CANINE google/canine-s style configuration
        >>> configuration = CanineConfig()
        ...
        >>> # Initializing a model (with random weights) from the google/canine-s style configuration
        >>> model = CanineModel(configuration)
        ...
        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """

    model_type = "canine"

    def __init__(
        self,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=16384,
        type_vocab_size=16,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        bos_token_id=0xE000,
        eos_token_id=0xE001,
        downsampling_rate=4,
        upsampling_kernel_size=4,
        num_hash_functions=8,
        num_hash_buckets=16384,
        local_transformer_stride=128,  # Good TPU/XLA memory alignment.
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.type_vocab_size = type_vocab_size
        self.layer_norm_eps = layer_norm_eps

        # Character config:
        self.downsampling_rate = downsampling_rate
        self.upsampling_kernel_size = upsampling_kernel_size
        self.num_hash_functions = num_hash_functions
        self.num_hash_buckets = num_hash_buckets
        self.local_transformer_stride = local_transformer_stride

mindnlp.transformers.models.canine.modeling_canine

MindSpore CANINE model.

mindnlp.transformers.models.canine.modeling_canine.CanineAttention

Bases: Module

Additional arguments related to local attention:

- **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention.
- **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to
  attend
to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`,
*optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all
positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The
width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to
128) -- The number of elements to skip when moving to the next block in `from_tensor`. -
**attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in
*to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to
skip when moving to the next block in `to_tensor`.
Source code in mindnlp/transformers/models/canine/modeling_canine.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
class CanineAttention(nn.Module):
    """
    Additional arguments related to local attention:

        - **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention.
        - **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to
          attend
        to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`,
        *optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all
        positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The
        width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to
        128) -- The number of elements to skip when moving to the next block in `from_tensor`. -
        **attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in
        *to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to
        skip when moving to the next block in `to_tensor`.
    """

    def __init__(
        self,
        config,
        local=False,
        always_attend_to_first_position: bool = False,
        first_position_attends_to_all: bool = False,
        attend_from_chunk_width: int = 128,
        attend_from_chunk_stride: int = 128,
        attend_to_chunk_width: int = 128,
        attend_to_chunk_stride: int = 128,
    ):
        super().__init__()
        self.self = CanineSelfAttention(config)
        self.output = CanineSelfOutput(config)
        self.pruned_heads = set()

        # additional arguments related to local attention
        self.local = local
        if attend_from_chunk_width < attend_from_chunk_stride:
            raise ValueError(
                "`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped."
            )
        if attend_to_chunk_width < attend_to_chunk_stride:
            raise ValueError(
                "`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped."
            )
        self.always_attend_to_first_position = always_attend_to_first_position
        self.first_position_attends_to_all = first_position_attends_to_all
        self.attend_from_chunk_width = attend_from_chunk_width
        self.attend_from_chunk_stride = attend_from_chunk_stride
        self.attend_to_chunk_width = attend_to_chunk_width
        self.attend_to_chunk_stride = attend_to_chunk_stride

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: Tuple[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor]]:
        if not self.local:
            self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions)
            attention_output = self_outputs[0]
        else:
            from_seq_length = to_seq_length = hidden_states.shape[1]
            from_tensor = to_tensor = hidden_states

            # Create chunks (windows) that we will attend *from* and then concatenate them.
            from_chunks = []
            if self.first_position_attends_to_all:
                from_chunks.append((0, 1))
                # We must skip this first position so that our output sequence is the
                # correct length (this matters in the *from* sequence only).
                from_start = 1
            else:
                from_start = 0
            for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride):
                chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width)
                from_chunks.append((chunk_start, chunk_end))

            # Determine the chunks (windows) that will attend *to*.
            to_chunks = []
            if self.first_position_attends_to_all:
                to_chunks.append((0, to_seq_length))
            for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride):
                chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width)
                to_chunks.append((chunk_start, chunk_end))

            if len(from_chunks) != len(to_chunks):
                raise ValueError(
                    f"Expected to have same number of `from_chunks` ({from_chunks}) and "
                    f"`to_chunks` ({from_chunks}). Check strides."
                )

            # next, compute attention scores for each pair of windows and concatenate
            attention_output_chunks = []
            attention_probs_chunks = []
            for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks):
                from_tensor_chunk = from_tensor[:, from_start:from_end, :]
                to_tensor_chunk = to_tensor[:, to_start:to_end, :]
                # `attention_mask`: <float>[batch_size, from_seq, to_seq]
                # `attention_mask_chunk`: <float>[batch_size, from_seq_chunk, to_seq_chunk]
                attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end]
                if self.always_attend_to_first_position:
                    cls_attention_mask = attention_mask[:, from_start:from_end, 0:1]
                    attention_mask_chunk = ops.cat([cls_attention_mask, attention_mask_chunk], dim=2)

                    cls_position = to_tensor[:, 0:1, :]
                    to_tensor_chunk = ops.cat([cls_position, to_tensor_chunk], dim=1)

                attention_outputs_chunk = self.self(
                    from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions
                )
                attention_output_chunks.append(attention_outputs_chunk[0])
                if output_attentions:
                    attention_probs_chunks.append(attention_outputs_chunk[1])

            attention_output = ops.cat(attention_output_chunks, dim=1)

        attention_output = self.output(attention_output, hidden_states)
        outputs = (attention_output,)
        if not self.local:
            outputs = outputs + self_outputs[1:]  # add attentions if we output them
        else:
            outputs = outputs + tuple(attention_probs_chunks)  # add attentions if we output them
        return outputs

mindnlp.transformers.models.canine.modeling_canine.CanineEmbeddings

Bases: Module

Construct the character, position and token_type embeddings.

Source code in mindnlp/transformers/models/canine/modeling_canine.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
class CanineEmbeddings(nn.Module):
    """Construct the character, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()

        self.config = config

        # character embeddings
        shard_embedding_size = config.hidden_size // config.num_hash_functions
        for i in range(config.num_hash_functions):
            name = f"HashBucketCodepointEmbedder_{i}"
            setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size))
        self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids", ops.broadcast_to(ops.arange(config.max_position_embeddings), (1, -1)), persistent=False
        )
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")

    def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int):
        """
        Converts ids to hash bucket ids via multiple hashing.

        Args:
            input_ids: The codepoints or other IDs to be hashed.
            num_hashes: The number of hash functions to use.
            num_buckets: The number of hash buckets (i.e. embeddings in each table).

        Returns:
            A list of tensors, each of which is the hash bucket IDs from one hash function.
        """
        if num_hashes > len(_PRIMES):
            raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}")

        primes = _PRIMES[:num_hashes]

        result_tensors = []
        for prime in primes:
            hashed = ((input_ids + 1) * prime) % num_buckets
            result_tensors.append(hashed)
        return result_tensors

    def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int):
        """Converts IDs (e.g. codepoints) into embeddings via multiple hashing."""
        if embedding_size % num_hashes != 0:
            raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0")

        hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets)
        embedding_shards = []
        for i, hash_bucket_ids in enumerate(hash_bucket_tensors):
            name = f"HashBucketCodepointEmbedder_{i}"
            shard_embeddings = getattr(self, name)(hash_bucket_ids)
            embedding_shards.append(shard_embeddings)

        return ops.cat(embedding_shards, dim=-1)

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
    ) -> mindspore.Tensor:
        if input_ids is not None:
            input_shape = input_ids.shape
        else:
            input_shape = inputs_embeds.shape[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        if inputs_embeds is None:
            inputs_embeds = self._embed_hash_buckets(
                input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets
            )

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings

        if self.position_embedding_type == "absolute":
            position_embeddings = self.char_position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

mindnlp.transformers.models.canine.modeling_canine.CanineForMultipleChoice

Bases: CaninePreTrainedModel

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
class CanineForMultipleChoice(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.canine = CanineModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MultipleChoiceModelOutput]:
        r"""
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.shape[-1])
            if inputs_embeds is not None
            else None
        )

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.canine.modeling_canine.CanineForMultipleChoice.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

labels (mindspore.Tensor of shape (batch_size,), optional): Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
    r"""
    labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
        Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
        num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
        `input_ids` above)
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

    input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
    attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
    token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
    position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
    inputs_embeds = (
        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.shape[-1])
        if inputs_embeds is not None
        else None
    )

    outputs = self.canine(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    pooled_output = outputs[1]

    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)
    reshaped_logits = logits.view(-1, num_choices)

    loss = None
    if labels is not None:
        loss = F.cross_entropy(reshaped_logits, labels)

    if not return_dict:
        output = (reshaped_logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return MultipleChoiceModelOutput(
        loss=loss,
        logits=reshaped_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.canine.modeling_canine.CanineForQuestionAnswering

Bases: CaninePreTrainedModel

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
class CanineForQuestionAnswering(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.canine = CanineModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = F.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = F.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.canine.modeling_canine.CanineForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

start_positions (mindspore.Tensor of shape (batch_size,), optional): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss. end_positions (mindspore.Tensor of shape (batch_size,), optional): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
    r"""
    start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
        Labels for position (index) of the start of the labelled span for computing the token classification loss.
        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
        are not taken into account for computing the loss.
    end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
        Labels for position (index) of the end of the labelled span for computing the token classification loss.
        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
        are not taken into account for computing the loss.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.canine(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = F.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = F.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + outputs[2:]
        return ((total_loss,) + output) if total_loss is not None else output

    return QuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.canine.modeling_canine.CanineForSequenceClassification

Bases: CaninePreTrainedModel

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
class CanineForSequenceClassification(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.canine = CanineModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == mindspore.int64 or labels.dtype == ops.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = F.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = F.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = F.binary_cross_entropy_with_logits(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.canine.modeling_canine.CanineForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

labels (mindspore.Tensor of shape (batch_size,), optional): Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
    r"""
    labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.canine(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    pooled_output = outputs[1]

    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and (labels.dtype == mindspore.int64 or labels.dtype == ops.int):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = F.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = F.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = F.binary_cross_entropy_with_logits(logits, labels)
    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.canine.modeling_canine.CanineForTokenClassification

Bases: CaninePreTrainedModel

Source code in mindnlp/transformers/models/canine/modeling_canine.py
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
class CanineForTokenClassification(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.canine = CanineModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, CanineForTokenClassification
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
        >>> model = CanineForTokenClassification.from_pretrained("google/canine-s")

        >>> inputs = tokenizer(
        ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
        ... )

        >>> with ops.no_grad():
        ...     logits = model(**inputs).logits

        >>> predicted_token_class_ids = logits.argmax(-1)

        >>> # Note that tokens are classified rather then input words which means that
        >>> # there might be more predicted token classes than words.
        >>> # Multiple token classes might account for the same word
        >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
        >>> predicted_tokens_classes  # doctest: +SKIP
        ```

        ```python
        >>> labels = predicted_token_class_ids
        >>> loss = model(**inputs, labels=labels).loss
        >>> round(loss.item(), 2)  # doctest: +SKIP
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.canine.modeling_canine.CanineForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

labels (mindspore.Tensor of shape (batch_size, sequence_length), optional): Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns:

Example:

>>> from transformers import AutoTokenizer, CanineForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
>>> model = CanineForTokenClassification.from_pretrained("google/canine-s")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with ops.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes  # doctest: +SKIP
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)  # doctest: +SKIP
Source code in mindnlp/transformers/models/canine/modeling_canine.py
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
    r"""
    labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
        Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

    Returns:

    Example:

    ```python
    >>> from transformers import AutoTokenizer, CanineForTokenClassification
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
    >>> model = CanineForTokenClassification.from_pretrained("google/canine-s")

    >>> inputs = tokenizer(
    ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
    ... )

    >>> with ops.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_token_class_ids = logits.argmax(-1)

    >>> # Note that tokens are classified rather then input words which means that
    >>> # there might be more predicted token classes than words.
    >>> # Multiple token classes might account for the same word
    >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
    >>> predicted_tokens_classes  # doctest: +SKIP
    ```

    ```python
    >>> labels = predicted_token_class_ids
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(loss.item(), 2)  # doctest: +SKIP
    ```"""
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.canine(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    sequence_output = self.dropout(sequence_output)
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return TokenClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.canine.modeling_canine.CanineModel

Bases: CaninePreTrainedModel

Source code in mindnlp/transformers/models/canine/modeling_canine.py
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
class CanineModel(CaninePreTrainedModel):
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config
        shallow_config = copy.deepcopy(config)
        shallow_config.num_hidden_layers = 1

        self.char_embeddings = CanineEmbeddings(config)
        # shallow/low-dim transformer encoder to get a initial character encoding
        self.initial_char_encoder = CanineEncoder(
            shallow_config,
            local=True,
            always_attend_to_first_position=False,
            first_position_attends_to_all=False,
            attend_from_chunk_width=config.local_transformer_stride,
            attend_from_chunk_stride=config.local_transformer_stride,
            attend_to_chunk_width=config.local_transformer_stride,
            attend_to_chunk_stride=config.local_transformer_stride,
        )
        self.chars_to_molecules = CharactersToMolecules(config)
        # deep transformer encoder
        self.encoder = CanineEncoder(config)
        self.projection = ConvProjection(config)
        # shallow/low-dim transformer encoder to get a final character encoding
        self.final_char_encoder = CanineEncoder(shallow_config)

        self.pooler = CaninePooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask):
        """
        Create 3D attention mask from a 2D tensor mask.

        Args:
            from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
            to_mask: int32 Tensor of shape [batch_size, to_seq_length].

        Returns:
            float Tensor of shape [batch_size, from_seq_length, to_seq_length].
        """
        batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1]

        to_seq_length = to_mask.shape[1]

        to_mask = ops.reshape(to_mask, (batch_size, 1, to_seq_length)).float()

        # We don't assume that `from_tensor` is a mask (although it could be). We
        # don't actually care if we attend *from* padding tokens (only *to* padding)
        # tokens so we create a tensor of all ones.
        broadcast_ones = ops.ones(batch_size, from_seq_length, 1, dtype=mindspore.float32)

        # Here we broadcast along two dimensions to create the mask.
        mask = broadcast_ones * to_mask

        return mask

    def _downsample_attention_mask(self, char_attention_mask: mindspore.Tensor, downsampling_rate: int):
        """Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer."""

        # first, make char_attention_mask 3D by adding a channel dim
        batch_size, char_seq_len = char_attention_mask.shape
        poolable_char_mask = ops.reshape(char_attention_mask, (batch_size, 1, char_seq_len))

        # next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len)
        pooled_molecule_mask = nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)(
            poolable_char_mask.float()
        )

        # finally, squeeze to get tensor of shape (batch_size, mol_seq_len)
        molecule_attention_mask = ops.squeeze(pooled_molecule_mask, dim=-1)

        return molecule_attention_mask

    def _repeat_molecules(self, molecules: mindspore.Tensor, char_seq_length: mindspore.Tensor) -> mindspore.Tensor:
        """Repeats molecules to make them the same length as the char sequence."""

        rate = self.config.downsampling_rate

        molecules_without_extra_cls = molecules[:, 1:, :]
        # `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size]
        repeated = ops.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2)

        # So far, we've repeated the elements sufficient for any `char_seq_length`
        # that's a multiple of `downsampling_rate`. Now we account for the last
        # n elements (n < `downsampling_rate`), i.e. the remainder of floor
        # division. We do this by repeating the last molecule a few extra times.
        last_molecule = molecules[:, -1:, :]
        remainder_length = ops.fmod(mindspore.tensor(char_seq_length), mindspore.tensor(rate)).item()
        remainder_repeated = ops.repeat_interleave(
            last_molecule,
            # +1 molecule to compensate for truncation.
            repeats=remainder_length + rate,
            dim=-2,
        )

        # `repeated`: [batch_size, char_seq_len, molecule_hidden_size]
        return ops.cat([repeated, remainder_repeated], dim=-2)

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CanineModelOutputWithPooling]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape

        if attention_mask is None:
            attention_mask = ops.ones(batch_size, seq_length)
        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
        molecule_attention_mask = self._downsample_attention_mask(
            attention_mask, downsampling_rate=self.config.downsampling_rate
        )
        extended_molecule_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(
            molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1])
        )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        # `input_char_embeddings`: shape (batch_size, char_seq, char_dim)
        input_char_embeddings = self.char_embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        # Contextualize character embeddings using shallow Transformer.
        # We use a 3D attention mask for the local attention.
        # `input_char_encoding`: shape (batch_size, char_seq_len, char_dim)
        char_attention_mask = self._create_3d_attention_mask_from_input_mask(
            input_ids if input_ids is not None else inputs_embeds, attention_mask
        )
        init_chars_encoder_outputs = self.initial_char_encoder(
            input_char_embeddings,
            attention_mask=char_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        input_char_encoding = init_chars_encoder_outputs.last_hidden_state

        # Downsample chars to molecules.
        # The following lines have dimensions: [batch, molecule_seq, molecule_dim].
        # In this transformation, we change the dimensionality from `char_dim` to
        # `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on
        # the resnet connections (a) from the final char transformer stack back into
        # the original char transformer stack and (b) the resnet connections from
        # the final char transformer stack back into the deep BERT stack of
        # molecules.
        #
        # Empirically, it is critical to use a powerful enough transformation here:
        # mean pooling causes training to diverge with huge gradient norms in this
        # region of the model; using a convolution here resolves this issue. From
        # this, it seems that molecules and characters require a very different
        # feature space; intuitively, this makes sense.
        init_molecule_encoding = self.chars_to_molecules(input_char_encoding)

        # Deep BERT encoder
        # `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim)
        encoder_outputs = self.encoder(
            init_molecule_encoding,
            attention_mask=extended_molecule_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        molecule_sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None

        # Upsample molecules back to characters.
        # `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size)
        repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1])

        # Concatenate representations (contextualized char embeddings and repeated molecules):
        # `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final]
        concat = ops.cat([input_char_encoding, repeated_molecules], dim=-1)

        # Project representation dimension back to hidden_size
        # `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
        sequence_output = self.projection(concat)

        # Apply final shallow Transformer
        # `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
        final_chars_encoder_outputs = self.final_char_encoder(
            sequence_output,
            attention_mask=extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = final_chars_encoder_outputs.last_hidden_state

        if output_hidden_states:
            deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1]
            all_hidden_states = (
                all_hidden_states
                + init_chars_encoder_outputs.hidden_states
                + deep_encoder_hidden_states
                + final_chars_encoder_outputs.hidden_states
            )

        if output_attentions:
            deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1]
            all_self_attentions = (
                all_self_attentions
                + init_chars_encoder_outputs.attentions
                + deep_encoder_self_attentions
                + final_chars_encoder_outputs.attentions
            )

        if not return_dict:
            output = (sequence_output, pooled_output)
            output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None)
            return output

        return CanineModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

mindnlp.transformers.models.canine.modeling_canine.CanineModelOutputWithPooling dataclass

Bases: ModelOutput

Output type of [CanineModel]. Based on [~modeling_outputs.BaseModelOutputWithPooling], but with slightly different hidden_states and attentions, as these also include the hidden states and attentions of the shallow Transformer encoders.

PARAMETER DESCRIPTION
last_hidden_state

Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final shallow Transformer encoder).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)` DEFAULT: None

pooler_output

Hidden-state of the first token of the sequence (classification token) at the last layer of the deep Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

TYPE: `mindspore.Tensor` of shape `(batch_size, hidden_size)` DEFAULT: None

hidden_states

Tuple of mindspore.Tensor (one for the input to each encoder + one for the output of each layer of each encoder) of shape (batch_size, sequence_length, hidden_size) and (batch_size, sequence_length // config.downsampling_rate, hidden_size). Hidden-states of the model at the output of each layer plus the initial input to each Transformer encoder. The hidden states of the shallow encoders have length sequence_length, but the hidden states of the deep encoder have length sequence_length // config.downsampling_rate.

TYPE: `tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True` DEFAULT: None

attentions

Tuple of mindspore.Tensor (one for each layer) of the 3 Transformer encoders of shape (batch_size, num_heads, sequence_length, sequence_length) and (batch_size, num_heads, sequence_length // config.downsampling_rate, sequence_length // config.downsampling_rate). Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

TYPE: `tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True` DEFAULT: None

Source code in mindnlp/transformers/models/canine/modeling_canine.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
@dataclass
class CanineModelOutputWithPooling(ModelOutput):
    """
    Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly
    different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow
    Transformer encoders.

    Args:
        last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final
            shallow Transformer encoder).
        pooler_output (`mindspore.Tensor` of shape `(batch_size, hidden_size)`):
            Hidden-state of the first token of the sequence (classification token) at the last layer of the deep
            Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer
            weights are trained from the next sentence prediction (classification) objective during pretraining.
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the input to each encoder + one for the output of each layer of each
            encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length //
            config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the
            initial input to each Transformer encoder. The hidden states of the shallow encoders have length
            `sequence_length`, but the hidden states of the deep encoder have length `sequence_length` //
            `config.downsampling_rate`.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size,
            num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length //
            config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the
            attention softmax, used to compute the weighted average in the self-attention heads.
    """

    last_hidden_state: mindspore.Tensor = None
    pooler_output: mindspore.Tensor = None
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None

mindnlp.transformers.models.canine.modeling_canine.CaninePreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/canine/modeling_canine.py
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
class CaninePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CanineConfig
    base_model_prefix = "canine"
    supports_gradient_checkpointing = True

    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, (nn.Linear, nn.Conv1d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.bias is not None:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            cell.weight.set_data(initializer(Normal(self.config.initializer_range), cell.weight.shape, cell.weight.dtype))
            if cell.padding_idx:
                cell.weight.data[cell.padding_idx] = 0
        elif isinstance(cell, nn.LayerNorm):
            cell.weight.set_data(initializer('ones', cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))

mindnlp.transformers.models.canine.modeling_canine.CharactersToMolecules

Bases: Module

Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions.

Source code in mindnlp/transformers/models/canine/modeling_canine.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
class CharactersToMolecules(nn.Module):
    """Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions."""

    def __init__(self, config):
        super().__init__()

        self.conv = nn.Conv1d(
            in_channels=config.hidden_size,
            out_channels=config.hidden_size,
            kernel_size=config.downsampling_rate,
            stride=config.downsampling_rate,
        )
        self.activation = ACT2FN[config.hidden_act]

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, char_encoding: mindspore.Tensor) -> mindspore.Tensor:
        # `cls_encoding`: [batch, 1, hidden_size]
        cls_encoding = char_encoding[:, 0:1, :]

        # char_encoding has shape [batch, char_seq, hidden_size]
        # We transpose it to be [batch, hidden_size, char_seq]
        char_encoding = ops.transpose(char_encoding, 1, 2)
        downsampled = self.conv(char_encoding)
        downsampled = ops.transpose(downsampled, 1, 2)
        downsampled = self.activation(downsampled)

        # Truncate the last molecule in order to reserve a position for [CLS].
        # Often, the last position is never used (unless we completely fill the
        # text buffer). This is important in order to maintain alignment on TPUs
        # (i.e. a multiple of 128).
        downsampled_truncated = downsampled[:, 0:-1, :]

        # We also keep [CLS] as a separate sequence position since we always
        # want to reserve a position (and the model capacity that goes along
        # with that) in the deep BERT stack.
        # `result`: [batch, molecule_seq, molecule_dim]
        result = ops.cat([cls_encoding, downsampled_truncated], dim=1)

        result = self.LayerNorm(result)

        return result

mindnlp.transformers.models.canine.modeling_canine.ConvProjection

Bases: Module

Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size characters.

Source code in mindnlp/transformers/models/canine/modeling_canine.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
class ConvProjection(nn.Module):
    """
    Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size
    characters.
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.conv = nn.Conv1d(
            in_channels=config.hidden_size * 2,
            out_channels=config.hidden_size,
            kernel_size=config.upsampling_kernel_size,
            stride=1,
        )
        self.activation = ACT2FN[config.hidden_act]
        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self,
        inputs: mindspore.Tensor,
        final_seq_char_positions: Optional[mindspore.Tensor] = None,
    ) -> mindspore.Tensor:
        # inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final]
        # we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq]
        inputs = ops.transpose(inputs, 1, 2)

        # PyTorch < 1.9 does not support padding="same" (which is used in the original implementation),
        # so we pad the tensor manually before passing it to the conv layer
        # based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38
        pad_total = self.config.upsampling_kernel_size - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg

        pad = nn.ConstantPad1d((pad_beg, pad_end), 0)
        # `result`: shape (batch_size, char_seq_len, hidden_size)
        result = self.conv(pad(inputs))
        result = ops.transpose(result, 1, 2)
        result = self.activation(result)
        result = self.LayerNorm(result)
        result = self.dropout(result)
        final_char_seq = result

        if final_seq_char_positions is not None:
            # Limit transformer query seq and attention mask to these character
            # positions to greatly reduce the compute cost. Typically, this is just
            # done for the MLM training task.
            # TODO add support for MLM
            raise NotImplementedError("CanineForMaskedLM is currently not supported")
        else:
            query_seq = final_char_seq

        return query_seq

mindnlp.transformers.models.canine.tokenization_canine

Tokenization classes for CANINE.

mindnlp.transformers.models.canine.tokenization_canine.CanineTokenizer

Bases: PreTrainedTokenizer

Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then converts each character into its Unicode code point.

[CanineTokenizer] inherits from [PreTrainedTokenizer].

Refer to superclass [PreTrainedTokenizer] for usage examples and documentation concerning parameters.

PARAMETER DESCRIPTION
model_max_length

The maximum sentence length the model accepts.

TYPE: `int`, *optional*, defaults to 2048 DEFAULT: 2048

Source code in mindnlp/transformers/models/canine/tokenization_canine.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
class CanineTokenizer(PreTrainedTokenizer):
    r"""
    Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then
    converts each character into its Unicode code point.

    [`CanineTokenizer`] inherits from [`PreTrainedTokenizer`].

    Refer to superclass [`PreTrainedTokenizer`] for usage examples and documentation concerning parameters.

    Args:
        model_max_length (`int`, *optional*, defaults to 2048):
            The maximum sentence length the model accepts.
    """

    def __init__(
        self,
        bos_token=chr(CLS),
        eos_token=chr(SEP),
        sep_token=chr(SEP),
        cls_token=chr(CLS),
        pad_token=chr(PAD),
        mask_token=chr(MASK),
        add_prefix_space=False,
        model_max_length=2048,
        **kwargs,
    ):
        bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
        eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
        sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
        cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
        pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token

        # Mask token behave like a normal word, i.e. include the space before it
        mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token

        # Creates a mapping for looking up the IDs of special symbols.
        self._special_codepoints: Dict[str, int] = {}
        for codepoint, name in SPECIAL_CODEPOINTS.items():
            self._special_codepoints[name] = codepoint

        # Creates a mapping for looking up the string forms of special symbol IDs.
        self._special_codepoint_strings: Dict[int, str] = {
            codepoint: name for name, codepoint in self._special_codepoints.items()
        }

        self._unicode_vocab_size = UNICODE_VOCAB_SIZE
        self._num_special_tokens = len(self._special_codepoints)

        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            add_prefix_space=add_prefix_space,
            model_max_length=model_max_length,
            **kwargs,
        )

    @property
    def vocab_size(self) -> int:
        return self._unicode_vocab_size

    def get_vocab(self):
        vocab = {chr(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text: str) -> List[str]:
        """Tokenize a string (i.e. perform character splitting)."""
        return list(text)

    def _convert_token_to_id(self, token: str) -> int:
        """Converts a token (i.e. a Unicode character) in an id (i.e. its integer Unicode code point value)."""
        try:
            return ord(token)
        except TypeError:
            raise ValueError(f"invalid token: '{token}'")

    def _convert_id_to_token(self, index: int) -> str:
        """
        Converts a Unicode code point (integer) in a token (str). In case it's a special code point, convert to
        human-readable format.
        """
        try:
            if index in SPECIAL_CODEPOINTS:
                return SPECIAL_CODEPOINTS[index]
            return chr(index)
        except TypeError:
            raise ValueError(f"invalid id: {index}")

    def convert_tokens_to_string(self, tokens):
        return "".join(tokens)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A CANINE sequence has the following format:

        - single sequence: `[CLS] X [SEP]`
        - pair of sequences: `[CLS] A [SEP] B [SEP]`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        result = cls + token_ids_0 + sep
        if token_ids_1 is not None:
            result += token_ids_1 + sep
        return result

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        result = [1] + ([0] * len(token_ids_0)) + [1]
        if token_ids_1 is not None:
            result += ([0] * len(token_ids_1)) + [1]
        return result

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE
        sequence pair mask has the following format:

        ```
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |
        ```

        If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        result = len(cls + token_ids_0 + sep) * [0]
        if token_ids_1 is not None:
            result += len(token_ids_1 + sep) * [1]
        return result

    # CanineTokenizer has no vocab file
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
        return ()

mindnlp.transformers.models.canine.tokenization_canine.CanineTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CANINE sequence has the following format:

  • single sequence: [CLS] X [SEP]
  • pair of sequences: [CLS] A [SEP] B [SEP]
PARAMETER DESCRIPTION
token_ids_0

List of IDs to which the special tokens will be added.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

RETURNS DESCRIPTION
List[int]

List[int]: List of input IDs with the appropriate special tokens.

Source code in mindnlp/transformers/models/canine/tokenization_canine.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def build_inputs_with_special_tokens(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
    """
    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
    adding special tokens. A CANINE sequence has the following format:

    - single sequence: `[CLS] X [SEP]`
    - pair of sequences: `[CLS] A [SEP] B [SEP]`

    Args:
        token_ids_0 (`List[int]`):
            List of IDs to which the special tokens will be added.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.

    Returns:
        `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
    """
    sep = [self.sep_token_id]
    cls = [self.cls_token_id]

    result = cls + token_ids_0 + sep
    if token_ids_1 is not None:
        result += token_ids_1 + sep
    return result

mindnlp.transformers.models.canine.tokenization_canine.CanineTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

PARAMETER DESCRIPTION
token_ids_0

List of IDs.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

RETURNS DESCRIPTION
List[int]

List[int]: List of token type IDs according to the given sequence(s).

Source code in mindnlp/transformers/models/canine/tokenization_canine.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def create_token_type_ids_from_sequences(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
    """
    Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE
    sequence pair mask has the following format:

    ```
    0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
    | first sequence    | second sequence |
    ```

    If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

    Args:
        token_ids_0 (`List[int]`):
            List of IDs.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.

    Returns:
        `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
    """
    sep = [self.sep_token_id]
    cls = [self.cls_token_id]

    result = len(cls + token_ids_0 + sep) * [0]
    if token_ids_1 is not None:
        result += len(token_ids_1 + sep) * [1]
    return result

mindnlp.transformers.models.canine.tokenization_canine.CanineTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

PARAMETER DESCRIPTION
token_ids_0

List of IDs.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

already_has_special_tokens

Whether or not the token list is already formatted with special tokens for the model.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
List[int]

List[int]: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Source code in mindnlp/transformers/models/canine/tokenization_canine.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def get_special_tokens_mask(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
    """
    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
    special tokens using the tokenizer `prepare_for_model` method.

    Args:
        token_ids_0 (`List[int]`):
            List of IDs.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.
        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
            Whether or not the token list is already formatted with special tokens for the model.

    Returns:
        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
    """
    if already_has_special_tokens:
        return super().get_special_tokens_mask(
            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
        )

    result = [1] + ([0] * len(token_ids_0)) + [1]
    if token_ids_1 is not None:
        result += ([0] * len(token_ids_1)) + [1]
    return result