cpm
mindnlp.transformers.models.cpm.tokenization_cpm
¶
Tokenization classes.
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer
¶
Bases: PreTrainedTokenizer
Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models.
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.vocab_size
property
¶
Method to retrieve the vocabulary size of the CpmTokenizer instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the CpmTokenizer class. This parameter is required to access the vocabulary model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
int
|
The size of the vocabulary model. The return value indicates the number of tokens in the vocabulary model. |
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.__getstate__()
¶
Method 'getstate' in the class 'CpmTokenizer'.
PARAMETER | DESCRIPTION |
---|---|
self |
CpmTokenizer The instance of the CpmTokenizer class. Parameter to access the internal state of the object.
|
RETURNS | DESCRIPTION |
---|---|
None
|
Returns the state of the object with 'sp_model' set to None. |
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.__init__(vocab_file, do_lower_case=False, remove_space=True, keep_accents=False, bos_token='<s>', eos_token='</s>', unk_token='<unk>', sep_token='<sep>', pad_token='<pad>', cls_token='<cls>', mask_token='<mask>', additional_special_tokens=['<eop>', '<eod>'], sp_model_kwargs=None, **kwargs)
¶
Construct a CPM tokenizer. Based on Jieba and SentencePiece.
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.
TYPE:
|
do_lower_case |
Whether to lowercase the input when tokenizing.
TYPE:
|
remove_space |
Whether to strip the text when tokenizing (removing excess spaces before and after the string).
TYPE:
|
keep_accents |
Whether to keep accents when tokenizing.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the
TYPE:
|
eos_token |
The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
additional_special_tokens |
Additional special tokens used by the tokenizer.
TYPE:
|
ATTRIBUTE | DESCRIPTION |
---|---|
sp_model |
The SentencePiece processor that is used for every conversion (string, tokens and IDs).
TYPE:
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.__setstate__(d)
¶
Method 'setstate' in the class 'CpmTokenizer' updates the state of the object by restoring its attributes from a serialized state dictionary.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the CpmTokenizer class.
TYPE:
|
d |
The serialized state dictionary containing the attributes to be restored.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method updates the 'dict' attribute of the 'self' object with the attributes from the serialized state dictionary 'd'. If the 'sp_model_kwargs' attribute doesn't exist in the object, it is initialized as an empty dictionary. Then, a SentencePieceProcessor object 'sp_model' is created with the keyword arguments provided in 'self.sp_model_kwargs'. Finally, the 'vocab_file' is loaded into the 'sp_model'.
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format:
- single sequence:
X <sep> <cls>
- pair of sequences:
A <sep> B <sep> <cls>
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (strings for sub-words) in a single string.
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
318 319 320 321 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.get_vocab()
¶
Retrieves the vocabulary of the CpmTokenizer instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the CpmTokenizer class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the vocabulary of the CpmTokenizer instance. The keys are the tokens in the vocabulary, and the values are the corresponding token IDs. The vocabulary includes both the default vocabulary and any additional tokens that have been added. |
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.preprocess_text(inputs)
¶
This method preprocesses text input based on the specified settings in the CpmTokenizer class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the CpmTokenizer class.
TYPE:
|
inputs |
The text input to be preprocessed.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value directly. The preprocessed text is stored internally within the method. |
RAISES | DESCRIPTION |
---|---|
None
|
This method does not raise any exceptions explicitly. However, potential exceptions may arise from the use of external functions within the method such as unicodedata.normalize() and unicodedata.combining(). |
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
mindnlp.transformers.models.cpm.tokenization_cpm.CpmTokenizer.save_vocabulary(save_directory, filename_prefix=None)
¶
Save the vocabulary file to the specified directory with an optional filename prefix.
PARAMETER | DESCRIPTION |
---|---|
self |
Instance of CpmTokenizer.
|
save_directory |
The directory where the vocabulary file will be saved.
TYPE:
|
filename_prefix |
An optional prefix to be added to the filename. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
Tuple[str]: A tuple containing the path to the saved vocabulary file. |
RAISES | DESCRIPTION |
---|---|
IOError
|
If the save_directory is not a valid directory. |
FileNotFoundError
|
If the self.vocab_file does not exist. |
Exception
|
If any other unexpected error occurs during the file operations. |
Source code in mindnlp/transformers/models/cpm/tokenization_cpm.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
mindnlp.transformers.models.cpm.tokenization_cpm_fast
¶
Tokenization classes.
mindnlp.transformers.models.cpm.tokenization_cpm_fast.CpmTokenizerFast
¶
Bases: PreTrainedTokenizerFast
Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models.
Source code in mindnlp/transformers/models/cpm/tokenization_cpm_fast.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
|
mindnlp.transformers.models.cpm.tokenization_cpm_fast.CpmTokenizerFast.can_save_slow_tokenizer: bool
property
¶
Description: This method checks if the slow tokenizer can be saved by verifying the existence of the vocabulary file.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the CpmTokenizerFast class.
|
RETURNS | DESCRIPTION |
---|---|
bool
|
Returns a boolean value indicating whether the slow tokenizer can be saved. Returns True if the vocabulary file exists, otherwise False.
TYPE:
|
mindnlp.transformers.models.cpm.tokenization_cpm_fast.CpmTokenizerFast.__init__(vocab_file=None, tokenizer_file=None, do_lower_case=False, remove_space=True, keep_accents=False, bos_token='<s>', eos_token='</s>', unk_token='<unk>', sep_token='<sep>', pad_token='<pad>', cls_token='<cls>', mask_token='<mask>', additional_special_tokens=['<eop>', '<eod>'], **kwargs)
¶
Construct a CPM tokenizer. Based on Jieba and SentencePiece.
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.
TYPE:
|
do_lower_case |
Whether to lowercase the input when tokenizing.
TYPE:
|
remove_space |
Whether to strip the text when tokenizing (removing excess spaces before and after the string).
TYPE:
|
keep_accents |
Whether to keep accents when tokenizing.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the
TYPE:
|
eos_token |
The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
additional_special_tokens |
Additional special tokens used by the tokenizer.
TYPE:
|
ATTRIBUTE | DESCRIPTION |
---|---|
sp_model |
The SentencePiece processor that is used for every conversion (string, tokens and IDs).
TYPE:
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm_fast.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
mindnlp.transformers.models.cpm.tokenization_cpm_fast.CpmTokenizerFast.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format:
- single sequence:
X <sep> <cls>
- pair of sequences:
A <sep> B <sep> <cls>
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm_fast.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
mindnlp.transformers.models.cpm.tokenization_cpm_fast.CpmTokenizerFast.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/cpm/tokenization_cpm_fast.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
mindnlp.transformers.models.cpm.tokenization_cpm_fast.CpmTokenizerFast.save_vocabulary(save_directory, filename_prefix=None)
¶
Saves the vocabulary of a fast tokenizer to a specified directory.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the fast tokenizer.
TYPE:
|
save_directory |
The directory where the vocabulary will be saved.
TYPE:
|
filename_prefix |
The prefix to be added to the filename. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
Tuple[str]: A tuple containing the path to the saved vocabulary file. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if the fast tokenizer does not have the necessary information to save the vocabulary for a slow tokenizer. |
OSError
|
Raised if the save_directory is not a valid directory. |
Note
The method assumes that the fast tokenizer has the required information to save the vocabulary for a slow tokenizer. If this is not the case, a ValueError is raised.
Example
>>> tokenizer = CpmTokenizerFast()
>>> tokenizer.save_vocabulary('path/to/save', 'vocab')
Source code in mindnlp/transformers/models/cpm/tokenization_cpm_fast.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|