Skip to content

deberta

mindnlp.transformers.models.deberta.modeling_deberta

MindSpore DeBERTa model.

mindnlp.transformers.models.deberta.modeling_deberta.ContextPooler

Bases: Module

Represents a ContextPooler module used for pooling contextual embeddings in a neural network architecture.

This class inherits from nn.Module and provides methods for initializing the pooler, forwarding the pooled output based on hidden states, and retrieving the output dimension. The pooler consists of a dense layer and dropout mechanism for processing hidden states.

ATTRIBUTE DESCRIPTION
dense

A dense layer for transforming input hidden states to pooler hidden size.

TYPE: Linear

dropout

A dropout layer for stable dropout operations.

TYPE: StableDropout

config

Configuration object containing pooler settings.

METHOD DESCRIPTION
__init__

Initializes the ContextPooler with the given configuration.

forward

Constructs the pooled output by processing hidden states.

output_dim

Property that returns the output dimension based on the hidden size in the configuration.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
class ContextPooler(nn.Module):

    """
    Represents a ContextPooler module used for pooling contextual embeddings in a neural network architecture.

    This class inherits from nn.Module and provides methods for initializing the pooler, forwarding the pooled output based on hidden states,
    and retrieving the output dimension. The pooler consists of a dense layer and dropout mechanism for processing hidden states.

    Attributes:
        dense (nn.Linear): A dense layer for transforming input hidden states to pooler hidden size.
        dropout (StableDropout): A dropout layer for stable dropout operations.
        config: Configuration object containing pooler settings.

    Methods:
        __init__(config): Initializes the ContextPooler with the given configuration.
        forward(hidden_states): Constructs the pooled output by processing hidden states.
        output_dim: Property that returns the output dimension based on the hidden size in the configuration.
    """
    def __init__(self, config):
        """
        Initializes a new instance of the ContextPooler class.

        Args:
            self: The instance of the ContextPooler class.
            config:
                An object of type 'config' that contains the configuration parameters for the ContextPooler.

                - Type: 'config'
                - Purpose: Specifies the configuration parameters for the ContextPooler.
                - Restrictions: None.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
        self.dropout = StableDropout(config.pooler_dropout)
        self.config = config

    def forward(self, hidden_states):
        """
        Args:
            self (ContextPooler): The instance of the ContextPooler class.
            hidden_states (tensor): A tensor containing hidden states.
                It is expected to have a specific shape and format for processing.

        Returns:
            pooled_output (tensor): The output tensor after the pooling operation.
                It represents the pooled context information.

        Raises:
            ValueError: If the hidden_states tensor does not meet the expected shape or format requirements.
            RuntimeError: If an error occurs during the pooling operation.

        """
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.

        context_token = hidden_states[:, 0]
        context_token = self.dropout(context_token)
        pooled_output = self.dense(context_token)
        pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
        return pooled_output

    @property
    def output_dim(self):
        """
        Method to retrieve the output dimension of the ContextPooler.

        Args:
            self (ContextPooler): An instance of the ContextPooler class.
                This parameter is required to access the configuration information.

        Returns:
            None: The method does not perform any computation but simply returns the output dimension.

        Raises:
            None.
        """
        return self.config.hidden_size

mindnlp.transformers.models.deberta.modeling_deberta.ContextPooler.output_dim property

Method to retrieve the output dimension of the ContextPooler.

PARAMETER DESCRIPTION
self

An instance of the ContextPooler class. This parameter is required to access the configuration information.

TYPE: ContextPooler

RETURNS DESCRIPTION
None

The method does not perform any computation but simply returns the output dimension.

mindnlp.transformers.models.deberta.modeling_deberta.ContextPooler.__init__(config)

Initializes a new instance of the ContextPooler class.

PARAMETER DESCRIPTION
self

The instance of the ContextPooler class.

config

An object of type 'config' that contains the configuration parameters for the ContextPooler.

  • Type: 'config'
  • Purpose: Specifies the configuration parameters for the ContextPooler.
  • Restrictions: None.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(self, config):
    """
    Initializes a new instance of the ContextPooler class.

    Args:
        self: The instance of the ContextPooler class.
        config:
            An object of type 'config' that contains the configuration parameters for the ContextPooler.

            - Type: 'config'
            - Purpose: Specifies the configuration parameters for the ContextPooler.
            - Restrictions: None.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
    self.dropout = StableDropout(config.pooler_dropout)
    self.config = config

mindnlp.transformers.models.deberta.modeling_deberta.ContextPooler.forward(hidden_states)

PARAMETER DESCRIPTION
self

The instance of the ContextPooler class.

TYPE: ContextPooler

hidden_states

A tensor containing hidden states. It is expected to have a specific shape and format for processing.

TYPE: tensor

RETURNS DESCRIPTION
pooled_output

The output tensor after the pooling operation. It represents the pooled context information.

TYPE: tensor

RAISES DESCRIPTION
ValueError

If the hidden_states tensor does not meet the expected shape or format requirements.

RuntimeError

If an error occurs during the pooling operation.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def forward(self, hidden_states):
    """
    Args:
        self (ContextPooler): The instance of the ContextPooler class.
        hidden_states (tensor): A tensor containing hidden states.
            It is expected to have a specific shape and format for processing.

    Returns:
        pooled_output (tensor): The output tensor after the pooling operation.
            It represents the pooled context information.

    Raises:
        ValueError: If the hidden_states tensor does not meet the expected shape or format requirements.
        RuntimeError: If an error occurs during the pooling operation.

    """
    # We "pool" the model by simply taking the hidden state corresponding
    # to the first token.

    context_token = hidden_states[:, 0]
    context_token = self.dropout(context_token)
    pooled_output = self.dense(context_token)
    pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
    return pooled_output

mindnlp.transformers.models.deberta.modeling_deberta.DebertaAttention

Bases: Module

This class represents the DebertaAttention module, which is a component of the DeBERTa model. It inherits from the nn.Module class.

DebertaAttention applies self-attention mechanism on the input hidden states, allowing the model to focus on different parts of the input sequence. It consists of a DisentangledSelfAttention layer and a DebertaSelfOutput layer.

PARAMETER DESCRIPTION
config

A dictionary containing the configuration parameters for the DebertaAttention module.

TYPE: dict

METHOD DESCRIPTION
__init__

Initializes a new instance of DebertaAttention.

Args:

  • config (dict): A dictionary containing the configuration parameters for the DebertaAttention module.
forward

Applies the DebertaAttention mechanism on the input hidden states.

Args:

  • hidden_states (Tensor): The input hidden states of shape (batch_size, sequence_length, hidden_size).
  • attention_mask (Tensor): The attention mask of shape (batch_size, sequence_length, sequence_length) where 1 indicates tokens to attend to and 0 indicates tokens to ignore.
  • output_attentions (bool, optional): Whether to output the attention matrix. Defaults to False.
  • query_states (Tensor, optional): The query states of shape (batch_size, sequence_length, hidden_size). If not provided, defaults to using the input hidden states.
  • relative_pos (Tensor, optional): The relative positions of the tokens of shape (batch_size, sequence_length, sequence_length).
  • rel_embeddings (Tensor, optional): The relative embeddings of shape (batch_size, sequence_length, hidden_size).

Returns:

  • Tensor or Tuple: The attention output tensor of shape (batch_size, sequence_length, hidden_size) or a tuple containing the attention output tensor and the attention matrix if output_attentions is True.
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
class DebertaAttention(nn.Module):

    """
    This class represents the DebertaAttention module, which is a component of the DeBERTa model.
    It inherits from the nn.Module class.

    DebertaAttention applies self-attention mechanism on the input hidden states, allowing the model to focus on
    different parts of the input sequence. It consists of a DisentangledSelfAttention layer and a
    DebertaSelfOutput layer.

    Args:
        config (dict): A dictionary containing the configuration parameters for the DebertaAttention module.

    Methods:
        __init__(self, config):
            Initializes a new instance of DebertaAttention.

            Args:

            - config (dict): A dictionary containing the configuration parameters for the DebertaAttention module.

        forward(self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None):
            Applies the DebertaAttention mechanism on the input hidden states.

            Args:

            - hidden_states (Tensor): The input hidden states of shape (batch_size, sequence_length, hidden_size).
            - attention_mask (Tensor): The attention mask of shape (batch_size, sequence_length, sequence_length)
            where 1 indicates tokens to attend to and 0 indicates tokens to ignore.
            - output_attentions (bool, optional): Whether to output the attention matrix.
            Defaults to False.
            - query_states (Tensor, optional): The query states of shape (batch_size, sequence_length, hidden_size).
            If not provided, defaults to using the input hidden states.
            - relative_pos (Tensor, optional): The relative positions of the tokens of shape
            (batch_size, sequence_length, sequence_length).
            - rel_embeddings (Tensor, optional): The relative embeddings of shape
            (batch_size, sequence_length, hidden_size).

            Returns:

            - Tensor or Tuple: The attention output tensor of shape (batch_size, sequence_length, hidden_size) or
            a tuple containing the attention output tensor and the attention matrix if output_attentions is True.
    """
    def __init__(self, config):
        """
        Initializes a new instance of the DebertaAttention class.

        Args:
            self (DebertaAttention): The current instance of the DebertaAttention class.
            config (object): The configuration object containing the settings for the attention module.
                It should provide the necessary parameters for initializing the DisentangledSelfAttention and
                DebertaSelfOutput instances.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.self = DisentangledSelfAttention(config)
        self.output = DebertaSelfOutput(config)
        self.config = config

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_attentions=False,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
    ):
        """
        Constructs the DebertaAttention layer with the given parameters.

        Args:
            self: The DebertaAttention instance.
            hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, hidden_size).
            attention_mask (torch.Tensor): The attention mask with shape (batch_size, sequence_length).
            output_attentions (bool): Whether to output attention matrices.
            query_states (torch.Tensor): The query states with shape (batch_size, sequence_length, hidden_size).
                If not provided, defaults to hidden_states.
            relative_pos (torch.Tensor):
                The relative position encoding with shape (batch_size, sequence_length, sequence_length).
            rel_embeddings (torch.Tensor):
                The relative position embeddings with shape (num_relative_distances, hidden_size).

        Returns:
            None

        Raises:
            None
        """
        self_output = self.self(
            hidden_states,
            attention_mask,
            output_attentions,
            query_states=query_states,
            relative_pos=relative_pos,
            rel_embeddings=rel_embeddings,
        )
        if output_attentions:
            self_output, att_matrix = self_output
        if query_states is None:
            query_states = hidden_states
        attention_output = self.output(self_output, query_states)

        if output_attentions:
            return (attention_output, att_matrix)
        return attention_output

mindnlp.transformers.models.deberta.modeling_deberta.DebertaAttention.__init__(config)

Initializes a new instance of the DebertaAttention class.

PARAMETER DESCRIPTION
self

The current instance of the DebertaAttention class.

TYPE: DebertaAttention

config

The configuration object containing the settings for the attention module. It should provide the necessary parameters for initializing the DisentangledSelfAttention and DebertaSelfOutput instances.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def __init__(self, config):
    """
    Initializes a new instance of the DebertaAttention class.

    Args:
        self (DebertaAttention): The current instance of the DebertaAttention class.
        config (object): The configuration object containing the settings for the attention module.
            It should provide the necessary parameters for initializing the DisentangledSelfAttention and
            DebertaSelfOutput instances.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.self = DisentangledSelfAttention(config)
    self.output = DebertaSelfOutput(config)
    self.config = config

mindnlp.transformers.models.deberta.modeling_deberta.DebertaAttention.forward(hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None)

Constructs the DebertaAttention layer with the given parameters.

PARAMETER DESCRIPTION
self

The DebertaAttention instance.

hidden_states

The input hidden states with shape (batch_size, sequence_length, hidden_size).

TYPE: Tensor

attention_mask

The attention mask with shape (batch_size, sequence_length).

TYPE: Tensor

output_attentions

Whether to output attention matrices.

TYPE: bool DEFAULT: False

query_states

The query states with shape (batch_size, sequence_length, hidden_size). If not provided, defaults to hidden_states.

TYPE: Tensor DEFAULT: None

relative_pos

The relative position encoding with shape (batch_size, sequence_length, sequence_length).

TYPE: Tensor DEFAULT: None

rel_embeddings

The relative position embeddings with shape (num_relative_distances, hidden_size).

TYPE: Tensor DEFAULT: None

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
def forward(
    self,
    hidden_states,
    attention_mask,
    output_attentions=False,
    query_states=None,
    relative_pos=None,
    rel_embeddings=None,
):
    """
    Constructs the DebertaAttention layer with the given parameters.

    Args:
        self: The DebertaAttention instance.
        hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, hidden_size).
        attention_mask (torch.Tensor): The attention mask with shape (batch_size, sequence_length).
        output_attentions (bool): Whether to output attention matrices.
        query_states (torch.Tensor): The query states with shape (batch_size, sequence_length, hidden_size).
            If not provided, defaults to hidden_states.
        relative_pos (torch.Tensor):
            The relative position encoding with shape (batch_size, sequence_length, sequence_length).
        rel_embeddings (torch.Tensor):
            The relative position embeddings with shape (num_relative_distances, hidden_size).

    Returns:
        None

    Raises:
        None
    """
    self_output = self.self(
        hidden_states,
        attention_mask,
        output_attentions,
        query_states=query_states,
        relative_pos=relative_pos,
        rel_embeddings=rel_embeddings,
    )
    if output_attentions:
        self_output, att_matrix = self_output
    if query_states is None:
        query_states = hidden_states
    attention_output = self.output(self_output, query_states)

    if output_attentions:
        return (attention_output, att_matrix)
    return attention_output

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEmbeddings

Bases: Module

Construct the embeddings from word, position and token_type embeddings.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
class DebertaEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""
    def __init__(self, config):
        """
        Initializes the DebertaEmbeddings class.

        Args:
            self (object): Instance of the DebertaEmbeddings class.
            config (object):
                An object containing configuration parameters for the Deberta model.

                - Type: Custom class object.
                - Purpose: Specifies the model configuration including vocab size, hidden size, max position embeddings,
                type vocab size, etc.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        pad_token_id = getattr(config, "pad_token_id", 0)
        self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)

        self.position_biased_input = getattr(config, "position_biased_input", True)
        if not self.position_biased_input:
            self.position_embeddings = None
        else:
            self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)

        if config.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)

        if self.embedding_size != config.hidden_size:
            self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
        self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = StableDropout(config.hidden_dropout_prob)
        self.config = config

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_ids = ops.arange(config.max_position_embeddings).expand((1, -1))

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
        """
        Constructs the embeddings for the Deberta model.

        Args:
            self (DebertaEmbeddings): An instance of the DebertaEmbeddings class.
            input_ids (Tensor, optional):
                A tensor of shape (batch_size, sequence_length) representing the input token IDs. Default is None.
            token_type_ids (Tensor, optional):
                A tensor of shape (batch_size, sequence_length) representing the token type IDs. Default is None.
            position_ids (Tensor, optional):
                A tensor of shape (batch_size, sequence_length) representing the position IDs. Default is None.
            mask (Tensor, optional):
                A tensor of shape (batch_size, sequence_length) representing the attention mask. Default is None.
            inputs_embeds (Tensor, optional):
                A tensor of shape (batch_size, sequence_length, embedding_size) representing the input embeddings.
                Default is None.

        Returns:
            Tensor:
                A tensor of shape (batch_size, sequence_length, embedding_size) representing the forwarded embeddings.

        Raises:
            None.
        """
        if input_ids is not None:
            input_shape = input_ids.shape
        else:
            input_shape = inputs_embeds.shape[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        if self.position_embeddings is not None:
            position_embeddings = self.position_embeddings(position_ids.long())
        else:
            position_embeddings = ops.zeros_like(inputs_embeds)

        embeddings = inputs_embeds
        if self.position_biased_input:
            embeddings += position_embeddings
        if self.config.type_vocab_size > 0:
            token_type_embeddings = self.token_type_embeddings(token_type_ids)
            embeddings += token_type_embeddings

        if self.embedding_size != self.config.hidden_size:
            embeddings = self.embed_proj(embeddings)

        embeddings = self.LayerNorm(embeddings)

        if mask is not None:
            if mask.ndim != embeddings.ndim:
                if mask.ndim == 4:
                    mask = mask.squeeze(1).squeeze(1)
                mask = mask.unsqueeze(2)
            mask = mask.to(embeddings.dtype)

            embeddings = embeddings * mask

        embeddings = self.dropout(embeddings)
        return embeddings

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEmbeddings.__init__(config)

Initializes the DebertaEmbeddings class.

PARAMETER DESCRIPTION
self

Instance of the DebertaEmbeddings class.

TYPE: object

config

An object containing configuration parameters for the Deberta model.

  • Type: Custom class object.
  • Purpose: Specifies the model configuration including vocab size, hidden size, max position embeddings, type vocab size, etc.
  • Restrictions: Must be a valid configuration object.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
def __init__(self, config):
    """
    Initializes the DebertaEmbeddings class.

    Args:
        self (object): Instance of the DebertaEmbeddings class.
        config (object):
            An object containing configuration parameters for the Deberta model.

            - Type: Custom class object.
            - Purpose: Specifies the model configuration including vocab size, hidden size, max position embeddings,
            type vocab size, etc.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    pad_token_id = getattr(config, "pad_token_id", 0)
    self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
    self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)

    self.position_biased_input = getattr(config, "position_biased_input", True)
    if not self.position_biased_input:
        self.position_embeddings = None
    else:
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)

    if config.type_vocab_size > 0:
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)

    if self.embedding_size != config.hidden_size:
        self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
    self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
    self.dropout = StableDropout(config.hidden_dropout_prob)
    self.config = config

    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
    self.position_ids = ops.arange(config.max_position_embeddings).expand((1, -1))

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEmbeddings.forward(input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None)

Constructs the embeddings for the Deberta model.

PARAMETER DESCRIPTION
self

An instance of the DebertaEmbeddings class.

TYPE: DebertaEmbeddings

input_ids

A tensor of shape (batch_size, sequence_length) representing the input token IDs. Default is None.

TYPE: Tensor DEFAULT: None

token_type_ids

A tensor of shape (batch_size, sequence_length) representing the token type IDs. Default is None.

TYPE: Tensor DEFAULT: None

position_ids

A tensor of shape (batch_size, sequence_length) representing the position IDs. Default is None.

TYPE: Tensor DEFAULT: None

mask

A tensor of shape (batch_size, sequence_length) representing the attention mask. Default is None.

TYPE: Tensor DEFAULT: None

inputs_embeds

A tensor of shape (batch_size, sequence_length, embedding_size) representing the input embeddings. Default is None.

TYPE: Tensor DEFAULT: None

RETURNS DESCRIPTION
Tensor

A tensor of shape (batch_size, sequence_length, embedding_size) representing the forwarded embeddings.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
    """
    Constructs the embeddings for the Deberta model.

    Args:
        self (DebertaEmbeddings): An instance of the DebertaEmbeddings class.
        input_ids (Tensor, optional):
            A tensor of shape (batch_size, sequence_length) representing the input token IDs. Default is None.
        token_type_ids (Tensor, optional):
            A tensor of shape (batch_size, sequence_length) representing the token type IDs. Default is None.
        position_ids (Tensor, optional):
            A tensor of shape (batch_size, sequence_length) representing the position IDs. Default is None.
        mask (Tensor, optional):
            A tensor of shape (batch_size, sequence_length) representing the attention mask. Default is None.
        inputs_embeds (Tensor, optional):
            A tensor of shape (batch_size, sequence_length, embedding_size) representing the input embeddings.
            Default is None.

    Returns:
        Tensor:
            A tensor of shape (batch_size, sequence_length, embedding_size) representing the forwarded embeddings.

    Raises:
        None.
    """
    if input_ids is not None:
        input_shape = input_ids.shape
    else:
        input_shape = inputs_embeds.shape[:-1]

    seq_length = input_shape[1]

    if position_ids is None:
        position_ids = self.position_ids[:, :seq_length]

    if token_type_ids is None:
        token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

    if inputs_embeds is None:
        inputs_embeds = self.word_embeddings(input_ids)

    if self.position_embeddings is not None:
        position_embeddings = self.position_embeddings(position_ids.long())
    else:
        position_embeddings = ops.zeros_like(inputs_embeds)

    embeddings = inputs_embeds
    if self.position_biased_input:
        embeddings += position_embeddings
    if self.config.type_vocab_size > 0:
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        embeddings += token_type_embeddings

    if self.embedding_size != self.config.hidden_size:
        embeddings = self.embed_proj(embeddings)

    embeddings = self.LayerNorm(embeddings)

    if mask is not None:
        if mask.ndim != embeddings.ndim:
            if mask.ndim == 4:
                mask = mask.squeeze(1).squeeze(1)
            mask = mask.unsqueeze(2)
        mask = mask.to(embeddings.dtype)

        embeddings = embeddings * mask

    embeddings = self.dropout(embeddings)
    return embeddings

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEncoder

Bases: Module

Modified BertEncoder with relative position bias support

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
class DebertaEncoder(nn.Module):
    """Modified BertEncoder with relative position bias support"""
    def __init__(self, config):
        """
        Initialize the DebertaEncoder class with the provided configuration.

        Args:
            self (DebertaEncoder): The instance of the DebertaEncoder class.
            config (object):
                An object containing configuration settings for the DebertaEncoder.

                - The configuration should include the following attributes:

                    - num_hidden_layers (int): Number of hidden layers.
                    - relative_attention (bool): Flag indicating whether relative attention is used.
                    - max_relative_positions (int): Maximum number of relative positions.
                        If not provided or less than 1, defaults to config.max_position_embeddings.
                    - hidden_size (int): Size of the hidden layer.
                    - max_position_embeddings (int): Maximum number of position embeddings.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
        self.relative_attention = getattr(config, "relative_attention", False)
        if self.relative_attention:
            self.max_relative_positions = getattr(config, "max_relative_positions", -1)
            if self.max_relative_positions < 1:
                self.max_relative_positions = config.max_position_embeddings
            self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
        self.gradient_checkpointing = False

    def get_rel_embedding(self):
        """
        Retrieve the relative embeddings from the DebertaEncoder.

        Args:
            self (DebertaEncoder): The instance of the DebertaEncoder class.

        Returns:
            None: Returns the relative embeddings if self.relative_attention is True, otherwise returns None.

        Raises:
            None.
        """
        rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
        return rel_embeddings

    def get_attention_mask(self, attention_mask):
        """
        This method calculates the attention mask for the DebertaEncoder.

        Args:
            self (object): The instance of the DebertaEncoder class.
            attention_mask (tensor): The attention mask tensor.
                It can be of dimension 2 or 3. For a 2-dimensional tensor, it is expected to be of shape
                (batch_size, sequence_length) representing the attention mask for each token in the input sequence.
                For a 3-dimensional tensor, it is expected to be of shape (batch_size, num_heads, sequence_length)
                representing the attention mask for each head in the multi-head attention mechanism.

        Returns:
            None: This method does not return any value. The attention_mask parameter is modified in place.

        Raises:
            ValueError: If the attention_mask tensor is not of dimension 2 or 3, a ValueError is raised.
            RuntimeError: If there is a runtime error during the calculation, a RuntimeError may be raised.
        """
        if attention_mask.ndim <= 2:
            extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
        elif attention_mask.ndim == 3:
            attention_mask = attention_mask.unsqueeze(1)

        return attention_mask

    def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
        """
        Method:
            get_rel_pos

        Description:
            This method calculates and returns the relative position tensor used for relative attention in the
            DebertaEncoder class.

        Args:
            self (DebertaEncoder): The instance of the DebertaEncoder class.
            hidden_states (Tensor): The input tensor representing the hidden states.
            query_states (Tensor, optional): The input tensor representing the query states. Default is None.
            relative_pos (Tensor, optional): The input tensor representing the relative positions. Default is None.

        Returns:
            None

        Raises:
            None

        Note:
            The 'query_states' and 'relative_pos' parameters are optional.
            If 'relative_attention' is True and 'relative_pos' is not provided,
            this method will automatically build the relative position tensor using 'query_states' or
            'hidden_states' shape.

        Example:
            ```python
            >>> # Create an instance of DebertaEncoder class
            >>> encoder = DebertaEncoder()
            ...
            >>> # Call the get_rel_pos method
            >>> encoder.get_rel_pos(hidden_states, query_states, relative_pos)
            ```
        """
        if self.relative_attention and relative_pos is None:
            q = query_states.shape[-2] if query_states is not None else hidden_states.shape[-2]
            relative_pos = build_relative_position(q, hidden_states.shape[-2])
        return relative_pos

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_hidden_states=True,
        output_attentions=False,
        query_states=None,
        relative_pos=None,
        return_dict=True,
    ):
        """
        This method forwards the DebertaEncoder by processing the input hidden states and attention mask.

        Args:
            self (object): The instance of the DebertaEncoder class.
            hidden_states (Sequence or object): The input hidden states for the encoder.
                It can be a Sequence of hidden states or a single hidden state object.
            attention_mask (Tensor): The attention mask to be applied to the input hidden states.
            output_hidden_states (bool, optional): Indicates whether to return all hidden states. Defaults to True.
            output_attentions (bool, optional): Indicates whether to return attentions. Defaults to False.
            query_states (object, optional): The query states for the encoder. Defaults to None.
            relative_pos (object, optional): The relative position information. Defaults to None.
            return_dict (bool, optional): Indicates whether to return the output as a BaseModelOutput instance.
                Defaults to True.

        Returns:
            None.

        Raises:
            ValueError: If the input parameters are invalid or incompatible.
            RuntimeError: If there is a runtime error during the execution of the method.
            TypeError: If the input types are incorrect or incompatible.
        """
        attention_mask = self.get_attention_mask(attention_mask)
        relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)

        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        if isinstance(hidden_states, Sequence):
            next_kv = hidden_states[0]
        else:
            next_kv = hidden_states
        rel_embeddings = self.get_rel_embedding()
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    next_kv,
                    attention_mask,
                    query_states,
                    relative_pos,
                    rel_embeddings,
                    output_attentions,
                )
            else:
                hidden_states = layer_module(
                    next_kv,
                    attention_mask,
                    query_states=query_states,
                    relative_pos=relative_pos,
                    rel_embeddings=rel_embeddings,
                    output_attentions=output_attentions,
                )

            if output_attentions:
                hidden_states, att_m = hidden_states

            if query_states is not None:
                query_states = hidden_states
                if isinstance(hidden_states, Sequence):
                    next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
            else:
                next_kv = hidden_states

            if output_attentions:
                all_attentions = all_attentions + (att_m,)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEncoder.__init__(config)

Initialize the DebertaEncoder class with the provided configuration.

PARAMETER DESCRIPTION
self

The instance of the DebertaEncoder class.

TYPE: DebertaEncoder

config

An object containing configuration settings for the DebertaEncoder.

  • The configuration should include the following attributes:

    • num_hidden_layers (int): Number of hidden layers.
    • relative_attention (bool): Flag indicating whether relative attention is used.
    • max_relative_positions (int): Maximum number of relative positions. If not provided or less than 1, defaults to config.max_position_embeddings.
    • hidden_size (int): Size of the hidden layer.
    • max_position_embeddings (int): Maximum number of position embeddings.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
def __init__(self, config):
    """
    Initialize the DebertaEncoder class with the provided configuration.

    Args:
        self (DebertaEncoder): The instance of the DebertaEncoder class.
        config (object):
            An object containing configuration settings for the DebertaEncoder.

            - The configuration should include the following attributes:

                - num_hidden_layers (int): Number of hidden layers.
                - relative_attention (bool): Flag indicating whether relative attention is used.
                - max_relative_positions (int): Maximum number of relative positions.
                    If not provided or less than 1, defaults to config.max_position_embeddings.
                - hidden_size (int): Size of the hidden layer.
                - max_position_embeddings (int): Maximum number of position embeddings.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
    self.relative_attention = getattr(config, "relative_attention", False)
    if self.relative_attention:
        self.max_relative_positions = getattr(config, "max_relative_positions", -1)
        if self.max_relative_positions < 1:
            self.max_relative_positions = config.max_position_embeddings
        self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
    self.gradient_checkpointing = False

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEncoder.forward(hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True)

This method forwards the DebertaEncoder by processing the input hidden states and attention mask.

PARAMETER DESCRIPTION
self

The instance of the DebertaEncoder class.

TYPE: object

hidden_states

The input hidden states for the encoder. It can be a Sequence of hidden states or a single hidden state object.

TYPE: Sequence or object

attention_mask

The attention mask to be applied to the input hidden states.

TYPE: Tensor

output_hidden_states

Indicates whether to return all hidden states. Defaults to True.

TYPE: bool DEFAULT: True

output_attentions

Indicates whether to return attentions. Defaults to False.

TYPE: bool DEFAULT: False

query_states

The query states for the encoder. Defaults to None.

TYPE: object DEFAULT: None

relative_pos

The relative position information. Defaults to None.

TYPE: object DEFAULT: None

return_dict

Indicates whether to return the output as a BaseModelOutput instance. Defaults to True.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the input parameters are invalid or incompatible.

RuntimeError

If there is a runtime error during the execution of the method.

TypeError

If the input types are incorrect or incompatible.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
def forward(
    self,
    hidden_states,
    attention_mask,
    output_hidden_states=True,
    output_attentions=False,
    query_states=None,
    relative_pos=None,
    return_dict=True,
):
    """
    This method forwards the DebertaEncoder by processing the input hidden states and attention mask.

    Args:
        self (object): The instance of the DebertaEncoder class.
        hidden_states (Sequence or object): The input hidden states for the encoder.
            It can be a Sequence of hidden states or a single hidden state object.
        attention_mask (Tensor): The attention mask to be applied to the input hidden states.
        output_hidden_states (bool, optional): Indicates whether to return all hidden states. Defaults to True.
        output_attentions (bool, optional): Indicates whether to return attentions. Defaults to False.
        query_states (object, optional): The query states for the encoder. Defaults to None.
        relative_pos (object, optional): The relative position information. Defaults to None.
        return_dict (bool, optional): Indicates whether to return the output as a BaseModelOutput instance.
            Defaults to True.

    Returns:
        None.

    Raises:
        ValueError: If the input parameters are invalid or incompatible.
        RuntimeError: If there is a runtime error during the execution of the method.
        TypeError: If the input types are incorrect or incompatible.
    """
    attention_mask = self.get_attention_mask(attention_mask)
    relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)

    all_hidden_states = () if output_hidden_states else None
    all_attentions = () if output_attentions else None

    if isinstance(hidden_states, Sequence):
        next_kv = hidden_states[0]
    else:
        next_kv = hidden_states
    rel_embeddings = self.get_rel_embedding()
    for i, layer_module in enumerate(self.layer):
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if self.gradient_checkpointing and self.training:
            hidden_states = self._gradient_checkpointing_func(
                layer_module.__call__,
                next_kv,
                attention_mask,
                query_states,
                relative_pos,
                rel_embeddings,
                output_attentions,
            )
        else:
            hidden_states = layer_module(
                next_kv,
                attention_mask,
                query_states=query_states,
                relative_pos=relative_pos,
                rel_embeddings=rel_embeddings,
                output_attentions=output_attentions,
            )

        if output_attentions:
            hidden_states, att_m = hidden_states

        if query_states is not None:
            query_states = hidden_states
            if isinstance(hidden_states, Sequence):
                next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
        else:
            next_kv = hidden_states

        if output_attentions:
            all_attentions = all_attentions + (att_m,)

    if output_hidden_states:
        all_hidden_states = all_hidden_states + (hidden_states,)

    if not return_dict:
        return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
    return BaseModelOutput(
        last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
    )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEncoder.get_attention_mask(attention_mask)

This method calculates the attention mask for the DebertaEncoder.

PARAMETER DESCRIPTION
self

The instance of the DebertaEncoder class.

TYPE: object

attention_mask

The attention mask tensor. It can be of dimension 2 or 3. For a 2-dimensional tensor, it is expected to be of shape (batch_size, sequence_length) representing the attention mask for each token in the input sequence. For a 3-dimensional tensor, it is expected to be of shape (batch_size, num_heads, sequence_length) representing the attention mask for each head in the multi-head attention mechanism.

TYPE: tensor

RETURNS DESCRIPTION
None

This method does not return any value. The attention_mask parameter is modified in place.

RAISES DESCRIPTION
ValueError

If the attention_mask tensor is not of dimension 2 or 3, a ValueError is raised.

RuntimeError

If there is a runtime error during the calculation, a RuntimeError may be raised.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
def get_attention_mask(self, attention_mask):
    """
    This method calculates the attention mask for the DebertaEncoder.

    Args:
        self (object): The instance of the DebertaEncoder class.
        attention_mask (tensor): The attention mask tensor.
            It can be of dimension 2 or 3. For a 2-dimensional tensor, it is expected to be of shape
            (batch_size, sequence_length) representing the attention mask for each token in the input sequence.
            For a 3-dimensional tensor, it is expected to be of shape (batch_size, num_heads, sequence_length)
            representing the attention mask for each head in the multi-head attention mechanism.

    Returns:
        None: This method does not return any value. The attention_mask parameter is modified in place.

    Raises:
        ValueError: If the attention_mask tensor is not of dimension 2 or 3, a ValueError is raised.
        RuntimeError: If there is a runtime error during the calculation, a RuntimeError may be raised.
    """
    if attention_mask.ndim <= 2:
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
    elif attention_mask.ndim == 3:
        attention_mask = attention_mask.unsqueeze(1)

    return attention_mask

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEncoder.get_rel_embedding()

Retrieve the relative embeddings from the DebertaEncoder.

PARAMETER DESCRIPTION
self

The instance of the DebertaEncoder class.

TYPE: DebertaEncoder

RETURNS DESCRIPTION
None

Returns the relative embeddings if self.relative_attention is True, otherwise returns None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
def get_rel_embedding(self):
    """
    Retrieve the relative embeddings from the DebertaEncoder.

    Args:
        self (DebertaEncoder): The instance of the DebertaEncoder class.

    Returns:
        None: Returns the relative embeddings if self.relative_attention is True, otherwise returns None.

    Raises:
        None.
    """
    rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
    return rel_embeddings

mindnlp.transformers.models.deberta.modeling_deberta.DebertaEncoder.get_rel_pos(hidden_states, query_states=None, relative_pos=None)

Method

get_rel_pos

Description

This method calculates and returns the relative position tensor used for relative attention in the DebertaEncoder class.

PARAMETER DESCRIPTION
self

The instance of the DebertaEncoder class.

TYPE: DebertaEncoder

hidden_states

The input tensor representing the hidden states.

TYPE: Tensor

query_states

The input tensor representing the query states. Default is None.

TYPE: Tensor DEFAULT: None

relative_pos

The input tensor representing the relative positions. Default is None.

TYPE: Tensor DEFAULT: None

RETURNS DESCRIPTION

None

Note

The 'query_states' and 'relative_pos' parameters are optional. If 'relative_attention' is True and 'relative_pos' is not provided, this method will automatically build the relative position tensor using 'query_states' or 'hidden_states' shape.

Example
>>> # Create an instance of DebertaEncoder class
>>> encoder = DebertaEncoder()
...
>>> # Call the get_rel_pos method
>>> encoder.get_rel_pos(hidden_states, query_states, relative_pos)
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
    """
    Method:
        get_rel_pos

    Description:
        This method calculates and returns the relative position tensor used for relative attention in the
        DebertaEncoder class.

    Args:
        self (DebertaEncoder): The instance of the DebertaEncoder class.
        hidden_states (Tensor): The input tensor representing the hidden states.
        query_states (Tensor, optional): The input tensor representing the query states. Default is None.
        relative_pos (Tensor, optional): The input tensor representing the relative positions. Default is None.

    Returns:
        None

    Raises:
        None

    Note:
        The 'query_states' and 'relative_pos' parameters are optional.
        If 'relative_attention' is True and 'relative_pos' is not provided,
        this method will automatically build the relative position tensor using 'query_states' or
        'hidden_states' shape.

    Example:
        ```python
        >>> # Create an instance of DebertaEncoder class
        >>> encoder = DebertaEncoder()
        ...
        >>> # Call the get_rel_pos method
        >>> encoder.get_rel_pos(hidden_states, query_states, relative_pos)
        ```
    """
    if self.relative_attention and relative_pos is None:
        q = query_states.shape[-2] if query_states is not None else hidden_states.shape[-2]
        relative_pos = build_relative_position(q, hidden_states.shape[-2])
    return relative_pos

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForMaskedLM

Bases: DebertaPreTrainedModel

DebertaForMaskedLM is a class that represents a DeBERTa model for masked language modeling. This class is designed to be used for generating predictions and computing loss in a masked language modeling task. It inherits from DebertaPreTrainedModel, providing additional functionality specific to masked language modeling tasks.

ATTRIBUTE DESCRIPTION
deberta

A DebertaModel instance used for processing input sequences.

cls

A DebertaOnlyMLMHead instance responsible for generating prediction scores for masked tokens.

METHOD DESCRIPTION
get_output_embeddings

Retrieves the decoder embeddings used for output predictions.

set_output_embeddings

Sets new decoder embeddings for output predictions.

forward

Constructs the DeBERTa model for masked language modeling, including processing input data, generating predictions, and computing the masked language modeling loss.

The 'forward' method takes various input parameters such as input_ids, attention_mask, labels, etc., and returns a MaskedLMOutput object containing the loss, prediction scores, hidden states, and attentions. It also allows for customization of return types based on the 'return_dict' parameter.

Note

Ensure proper input data formatting as described in the docstring of the 'forward' method for accurate predictions and loss computation.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
class DebertaForMaskedLM(DebertaPreTrainedModel):

    """
    DebertaForMaskedLM is a class that represents a DeBERTa model for masked language modeling.
    This class is designed to be used for generating predictions and computing loss in a masked language modeling task.
    It inherits from DebertaPreTrainedModel, providing additional functionality specific to masked language modeling tasks.

    Attributes:
        deberta: A DebertaModel instance used for processing input sequences.
        cls: A DebertaOnlyMLMHead instance responsible for generating prediction scores for masked tokens.

    Methods:
        get_output_embeddings: Retrieves the decoder embeddings used for output predictions.
        set_output_embeddings: Sets new decoder embeddings for output predictions.
        forward: Constructs the DeBERTa model for masked language modeling, including processing input data,
            generating predictions, and computing the masked language modeling loss.

    The 'forward' method takes various input parameters such as input_ids, attention_mask, labels, etc., and returns
    a MaskedLMOutput object containing the loss, prediction scores, hidden states, and attentions.
    It also allows for customization of return types based on the 'return_dict' parameter.

    Note:
        Ensure proper input data formatting as described in the docstring of the 'forward' method for accurate
        predictions and loss computation.
    """
    _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]

    def __init__(self, config):
        """
        Initialize the DebertaForMaskedLM class.

        Args:
            self (DebertaForMaskedLM): The instance of the DebertaForMaskedLM class.
            config (object): The configuration object containing parameters for the Deberta model.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not provided or is of an incorrect type.
            ValueError: If the config object is missing required attributes.
        """
        super().__init__(config)

        self.deberta = DebertaModel(config)
        self.cls = DebertaOnlyMLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        """
        Retrieve the output embeddings from the DebertaForMaskedLM model.

        Args:
            self (DebertaForMaskedLM): The instance of the DebertaForMaskedLM class.

        Returns:
            decoder: This method returns the output embeddings obtained from the predictions decoder of the model.

        Raises:
            None.
        """
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        """
        Sets the output embeddings for the DebertaForMaskedLM model.

        Args:
            self (DebertaForMaskedLM): The instance of the DebertaForMaskedLM class.
            new_embeddings (Tensor): The new embeddings to be set as the output embeddings.
                It should be of shape (vocab_size, hidden_size).

        Returns:
            None.

        Raises:
            None.
        """
        self.cls.predictions.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MaskedLMOutput]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
                config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
                loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.__init__(config)

Initialize the DebertaForMaskedLM class.

PARAMETER DESCRIPTION
self

The instance of the DebertaForMaskedLM class.

TYPE: DebertaForMaskedLM

config

The configuration object containing parameters for the Deberta model.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not provided or is of an incorrect type.

ValueError

If the config object is missing required attributes.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
def __init__(self, config):
    """
    Initialize the DebertaForMaskedLM class.

    Args:
        self (DebertaForMaskedLM): The instance of the DebertaForMaskedLM class.
        config (object): The configuration object containing parameters for the Deberta model.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not provided or is of an incorrect type.
        ValueError: If the config object is missing required attributes.
    """
    super().__init__(config)

    self.deberta = DebertaModel(config)
    self.cls = DebertaOnlyMLMHead(config)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

TYPE: `torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
    r"""
    Args:
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.deberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]
    prediction_scores = self.cls(sequence_output)

    masked_lm_loss = None
    if labels is not None:
        masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

    if not return_dict:
        output = (prediction_scores,) + outputs[1:]
        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

    return MaskedLMOutput(
        loss=masked_lm_loss,
        logits=prediction_scores,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.get_output_embeddings()

Retrieve the output embeddings from the DebertaForMaskedLM model.

PARAMETER DESCRIPTION
self

The instance of the DebertaForMaskedLM class.

TYPE: DebertaForMaskedLM

RETURNS DESCRIPTION
decoder

This method returns the output embeddings obtained from the predictions decoder of the model.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
def get_output_embeddings(self):
    """
    Retrieve the output embeddings from the DebertaForMaskedLM model.

    Args:
        self (DebertaForMaskedLM): The instance of the DebertaForMaskedLM class.

    Returns:
        decoder: This method returns the output embeddings obtained from the predictions decoder of the model.

    Raises:
        None.
    """
    return self.cls.predictions.decoder

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.set_output_embeddings(new_embeddings)

Sets the output embeddings for the DebertaForMaskedLM model.

PARAMETER DESCRIPTION
self

The instance of the DebertaForMaskedLM class.

TYPE: DebertaForMaskedLM

new_embeddings

The new embeddings to be set as the output embeddings. It should be of shape (vocab_size, hidden_size).

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
def set_output_embeddings(self, new_embeddings):
    """
    Sets the output embeddings for the DebertaForMaskedLM model.

    Args:
        self (DebertaForMaskedLM): The instance of the DebertaForMaskedLM class.
        new_embeddings (Tensor): The new embeddings to be set as the output embeddings.
            It should be of shape (vocab_size, hidden_size).

    Returns:
        None.

    Raises:
        None.
    """
    self.cls.predictions.decoder = new_embeddings

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering

Bases: DebertaPreTrainedModel

This class represents a Deberta model for question answering tasks. It inherits functionality from the DebertaPreTrainedModel class. The DebertaForQuestionAnswering class includes methods for initializing the model with configuration, and for forwarding the model by processing input data and producing question answering model outputs. The forward method takes various input tensors such as input_ids, attention_mask, token_type_ids, position_ids, and inputs_embeds, and returns QuestionAnsweringModelOutput. It also supports optional parameters for controlling the output format and behavior. The class provides detailed documentation for the forward method, including explanations of the input and output parameters and their respective shapes and types. Additionally, the class handles the computation of total loss for question answering tasks based on start and end positions, and returns the final model outputs as a QuestionAnsweringModelOutput object.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
class DebertaForQuestionAnswering(DebertaPreTrainedModel):

    """
    This class represents a Deberta model for question answering tasks. It inherits functionality from the
    DebertaPreTrainedModel class.
    The DebertaForQuestionAnswering class includes methods for initializing the model with configuration,
    and for forwarding the model by processing input data and producing question answering model outputs.
    The forward method takes various input tensors such as input_ids, attention_mask, token_type_ids, position_ids,
    and inputs_embeds, and returns QuestionAnsweringModelOutput.
    It also supports optional parameters for controlling the output format and behavior.
    The class provides detailed documentation for the forward method, including explanations of the input and output
    parameters and their respective shapes and types.
    Additionally, the class handles the computation of total loss for question answering tasks based on start
    and end positions, and returns the final model outputs as a QuestionAnsweringModelOutput object.
    """
    def __init__(self, config):
        """
        Initializes a new instance of the DebertaForQuestionAnswering class.

        Args:
            self: The instance of the class.
            config: An instance of the configuration class containing the model configuration.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.deberta = DebertaModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        Args:
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the start of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the end of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering.__init__(config)

Initializes a new instance of the DebertaForQuestionAnswering class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An instance of the configuration class containing the model configuration.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
def __init__(self, config):
    """
    Initializes a new instance of the DebertaForQuestionAnswering class.

    Args:
        self: The instance of the class.
        config: An instance of the configuration class containing the model configuration.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.deberta = DebertaModel(config)
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
start_positions

Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `torch.LongTensor` of shape `(batch_size,)`, *optional* DEFAULT: None

end_positions

Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `torch.LongTensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
    r"""
    Args:
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.deberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + outputs[1:]
        return ((total_loss,) + output) if total_loss is not None else output

    return QuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification

Bases: DebertaPreTrainedModel

DebertaForSequenceClassification is a class that represents a DeBERTa model for sequence classification tasks. It inherits from DebertaPreTrainedModel and provides functionalities for sequenceclassification using the DeBERTa model architecture.

The class includes methods for initializing the model, getting and setting input embeddings, and forwarding the model for sequence classification tasks. The 'forward' method takes input tensors such as input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, and labels to perform sequence classification. It utilizes the DeBERTa model, a context pooler, and a classifier to generate logits for the input sequences and compute the loss based on the specified problem type.

The 'forward' method also handles different problem types such as regression, single-label classification, and multi-label classification by adjusting the loss computation accordingly. The class provides flexibility in handling various types of sequence classification tasks and supports configurable return options.

For more detailed information on the methods and parameters of DebertaForSequenceClassification, refer to the class implementation and the DeBERTa documentation.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
class DebertaForSequenceClassification(DebertaPreTrainedModel):

    """
    DebertaForSequenceClassification is a class that represents a DeBERTa model for sequence classification tasks.
    It inherits from DebertaPreTrainedModel and provides functionalities for sequenceclassification using the
    DeBERTa model architecture.

    The class includes methods for initializing the model, getting and setting input embeddings, and forwarding
    the model for sequence classification tasks. The 'forward' method takes input tensors such as  input_ids,
    attention_mask, token_type_ids, position_ids, inputs_embeds, and labels to perform sequence classification.
    It utilizes the DeBERTa model, a context pooler, and a classifier to generate logits for the input sequences and
    compute the loss based on the specified problem type.

    The 'forward' method also handles different problem types such as regression, single-label classification,
    and multi-label classification by adjusting the loss computation accordingly.
    The class provides flexibility in handling various types of sequence classification tasks and supports configurable
    return options.

    For more detailed information on the methods and parameters of DebertaForSequenceClassification,
    refer to the class implementation and the DeBERTa documentation.
    """
    def __init__(self, config):
        """
        Initializes the DebertaForSequenceClassification class.

        Args:
            self (DebertaForSequenceClassification): The instance of the DebertaForSequenceClassification class.
            config (object): The configuration object containing various settings for the model.

        Returns:
            None.

        Raises:
            AttributeError: If the 'num_labels' attribute is missing in the configuration object.
            TypeError: If the 'num_labels' attribute in the configuration object is not an integer.
            ValueError: If the 'cls_dropout' attribute is not a valid dropout value.
        """
        super().__init__(config)

        num_labels = getattr(config, "num_labels", 2)
        self.num_labels = num_labels

        self.deberta = DebertaModel(config)
        self.pooler = ContextPooler(config)
        output_dim = self.pooler.output_dim

        self.classifier = nn.Linear(output_dim, num_labels)
        drop_out = getattr(config, "cls_dropout", None)
        drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
        self.dropout = StableDropout(drop_out)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Method to retrieve the input embeddings from the Deberta model for sequence classification.

        Args:
            self (DebertaForSequenceClassification): The instance of the DebertaForSequenceClassification class.
                This parameter is used to access the Deberta model's input embeddings.

        Returns:
            None:
                This method returns None as it simply delegates the call to the Deberta model to retrieve the
                input embeddings.

        Raises:
            None
        """
        return self.deberta.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        """
        Sets the input embeddings for the Deberta model in the DebertaForSequenceClassification class.

        Args:
            self (DebertaForSequenceClassification): The instance of the DebertaForSequenceClassification class.
            new_embeddings (torch.nn.Embedding): The new input embeddings to be set for the Deberta model.

        Returns:
            None.

        Raises:
            None.
        """
        self.deberta.set_input_embeddings(new_embeddings)

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        encoder_layer = outputs[0]
        pooled_output = self.pooler(encoder_layer)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    # regression task
                    logits = logits.view(-1).to(labels.dtype)
                    loss = ops.mse_loss(logits, labels.view(-1))
                elif labels.ndim == 1 or labels.shape[-1] == 1:
                    label_index = (labels >= 0).nonzero()
                    labels = labels.long()
                    if label_index.shape[0] > 0:
                        labeled_logits = ops.gather_elements(
                            logits, 0, label_index.expand(label_index.shape[0], logits.shape[1])
                        )
                        labels = ops.gather_elements(labels, 0, label_index.view(-1))
                        loss = ops.cross_entropy(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
                    else:
                        loss = mindspore.tensor(0).to(logits)
                else:
                    log_softmax = nn.LogSoftmax(-1)
                    loss = -((log_softmax(logits) * labels).sum(-1)).mean()
            elif self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.__init__(config)

Initializes the DebertaForSequenceClassification class.

PARAMETER DESCRIPTION
self

The instance of the DebertaForSequenceClassification class.

TYPE: DebertaForSequenceClassification

config

The configuration object containing various settings for the model.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
AttributeError

If the 'num_labels' attribute is missing in the configuration object.

TypeError

If the 'num_labels' attribute in the configuration object is not an integer.

ValueError

If the 'cls_dropout' attribute is not a valid dropout value.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
def __init__(self, config):
    """
    Initializes the DebertaForSequenceClassification class.

    Args:
        self (DebertaForSequenceClassification): The instance of the DebertaForSequenceClassification class.
        config (object): The configuration object containing various settings for the model.

    Returns:
        None.

    Raises:
        AttributeError: If the 'num_labels' attribute is missing in the configuration object.
        TypeError: If the 'num_labels' attribute in the configuration object is not an integer.
        ValueError: If the 'cls_dropout' attribute is not a valid dropout value.
    """
    super().__init__(config)

    num_labels = getattr(config, "num_labels", 2)
    self.num_labels = num_labels

    self.deberta = DebertaModel(config)
    self.pooler = ContextPooler(config)
    output_dim = self.pooler.output_dim

    self.classifier = nn.Linear(output_dim, num_labels)
    drop_out = getattr(config, "cls_dropout", None)
    drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
    self.dropout = StableDropout(drop_out)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `torch.LongTensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
    r"""
    Args:
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.deberta(
        input_ids,
        token_type_ids=token_type_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    encoder_layer = outputs[0]
    pooled_output = self.pooler(encoder_layer)
    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                # regression task
                logits = logits.view(-1).to(labels.dtype)
                loss = ops.mse_loss(logits, labels.view(-1))
            elif labels.ndim == 1 or labels.shape[-1] == 1:
                label_index = (labels >= 0).nonzero()
                labels = labels.long()
                if label_index.shape[0] > 0:
                    labeled_logits = ops.gather_elements(
                        logits, 0, label_index.expand(label_index.shape[0], logits.shape[1])
                    )
                    labels = ops.gather_elements(labels, 0, label_index.view(-1))
                    loss = ops.cross_entropy(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
                else:
                    loss = mindspore.tensor(0).to(logits)
            else:
                log_softmax = nn.LogSoftmax(-1)
                loss = -((log_softmax(logits) * labels).sum(-1)).mean()
        elif self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy(logits, labels)
    if not return_dict:
        output = (logits,) + outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutput(
        loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
    )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.get_input_embeddings()

Method to retrieve the input embeddings from the Deberta model for sequence classification.

PARAMETER DESCRIPTION
self

The instance of the DebertaForSequenceClassification class. This parameter is used to access the Deberta model's input embeddings.

TYPE: DebertaForSequenceClassification

RETURNS DESCRIPTION
None

This method returns None as it simply delegates the call to the Deberta model to retrieve the input embeddings.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
def get_input_embeddings(self):
    """
    Method to retrieve the input embeddings from the Deberta model for sequence classification.

    Args:
        self (DebertaForSequenceClassification): The instance of the DebertaForSequenceClassification class.
            This parameter is used to access the Deberta model's input embeddings.

    Returns:
        None:
            This method returns None as it simply delegates the call to the Deberta model to retrieve the
            input embeddings.

    Raises:
        None
    """
    return self.deberta.get_input_embeddings()

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.set_input_embeddings(new_embeddings)

Sets the input embeddings for the Deberta model in the DebertaForSequenceClassification class.

PARAMETER DESCRIPTION
self

The instance of the DebertaForSequenceClassification class.

TYPE: DebertaForSequenceClassification

new_embeddings

The new input embeddings to be set for the Deberta model.

TYPE: Embedding

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
def set_input_embeddings(self, new_embeddings):
    """
    Sets the input embeddings for the Deberta model in the DebertaForSequenceClassification class.

    Args:
        self (DebertaForSequenceClassification): The instance of the DebertaForSequenceClassification class.
        new_embeddings (torch.nn.Embedding): The new input embeddings to be set for the Deberta model.

    Returns:
        None.

    Raises:
        None.
    """
    self.deberta.set_input_embeddings(new_embeddings)

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForTokenClassification

Bases: DebertaPreTrainedModel

This class represents a token classification model based on the DeBERTa architecture. It is designed to perform token-level classification tasks such as named entity recognition or part-of-speech tagging.

The DebertaForTokenClassification class extends the DebertaPreTrainedModel class and inherits its functionality and attributes.

ATTRIBUTE DESCRIPTION
`num_labels`

The number of labels for token classification.

`deberta`

The DeBERTa model used for feature extraction.

`dropout`

A dropout layer for regularization.

`classifier`

A fully connected layer for classification.

METHOD DESCRIPTION
`__init__

Initializes the DebertaForTokenClassification instance.

`forward

Performs the forward pass of the model and returns the output.

Args:

  • input_ids: An optional tensor representing the input token IDs.
  • attention_mask: An optional tensor representing the attention mask.
  • token_type_ids: An optional tensor representing the token type IDs.
  • position_ids: An optional tensor representing the position IDs.
  • inputs_embeds: An optional tensor representing the input embeddings.
  • labels: An optional tensor representing the labels for computing the token classification loss.
  • output_attentions: An optional boolean indicating whether to output attentions.
  • output_hidden_states: An optional boolean indicating whether to output hidden states.
  • return_dict: An optional boolean indicating whether to return the output as a dictionary.

Returns:

  • If return_dict is False, returns a tuple containing the loss, logits, and other outputs.
  • If return_dict is True, returns a TokenClassifierOutput object containing the loss, logits, hidden states, and attentions.
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
class DebertaForTokenClassification(DebertaPreTrainedModel):

    """
    This class represents a token classification model based on the DeBERTa architecture.
    It is designed to perform token-level classification tasks such as named entity recognition or part-of-speech tagging.

    The `DebertaForTokenClassification` class extends the `DebertaPreTrainedModel` class and inherits its functionality
    and attributes.

    Attributes:
        `num_labels`: The number of labels for token classification.
        `deberta`: The DeBERTa model used for feature extraction.
        `dropout`: A dropout layer for regularization.
        `classifier`: A fully connected layer for classification.

    Methods:
        `__init__(self, config)`: Initializes the `DebertaForTokenClassification` instance.
        `forward(self, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, labels, output_attentions, output_hidden_states, return_dict)`:
            Performs the forward pass of the model and returns the output.

            Args:

            - `input_ids`: An optional tensor representing the input token IDs.
            - `attention_mask`: An optional tensor representing the attention mask.
            - `token_type_ids`: An optional tensor representing the token type IDs.
            - `position_ids`: An optional tensor representing the position IDs.
            - `inputs_embeds`: An optional tensor representing the input embeddings.
            - `labels`: An optional tensor representing the labels for computing the token classification loss.
            - `output_attentions`: An optional boolean indicating whether to output attentions.
            - `output_hidden_states`: An optional boolean indicating whether to output hidden states.
            - `return_dict`: An optional boolean indicating whether to return the output as a dictionary.

            Returns:

            - If `return_dict` is False,
            returns a tuple containing the loss, logits, and other outputs.
            - If `return_dict` is True,
            returns a `TokenClassifierOutput` object containing the loss, logits, hidden states, and attentions.
    """
    def __init__(self, config):
        """
        __init__

        Initializes an instance of the DebertaForTokenClassification class.
        Args:
            self: DebertaForTokenClassification
                The instance of the DebertaForTokenClassification class.
            config: DebertaConfig
                The configuration object containing the model configuration settings.
                It is used to set up the model architecture and hyperparameters.
                Required and must be an instance of DebertaConfig.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.deberta = DebertaModel(config)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForTokenClassification.__init__(config)

init

Initializes an instance of the DebertaForTokenClassification class. Args: self: DebertaForTokenClassification The instance of the DebertaForTokenClassification class. config: DebertaConfig The configuration object containing the model configuration settings. It is used to set up the model architecture and hyperparameters. Required and must be an instance of DebertaConfig.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
def __init__(self, config):
    """
    __init__

    Initializes an instance of the DebertaForTokenClassification class.
    Args:
        self: DebertaForTokenClassification
            The instance of the DebertaForTokenClassification class.
        config: DebertaConfig
            The configuration object containing the model configuration settings.
            It is used to set up the model architecture and hyperparameters.
            Required and must be an instance of DebertaConfig.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.deberta = DebertaModel(config)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.deberta.modeling_deberta.DebertaForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

TYPE: `torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
    r"""
    Args:
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.deberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    sequence_output = self.dropout(sequence_output)
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

    if not return_dict:
        output = (logits,) + outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return TokenClassifierOutput(
        loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
    )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaIntermediate

Bases: Module

DebertaIntermediate represents an intermediate layer in the DeBERTa neural network architecture for natural language processing tasks. This class inherits from nn.Module and contains methods for initializing the layer and performing computations on hidden states. The layer consists of a dense transformation followed by an activation function specified in the configuration.

ATTRIBUTE DESCRIPTION
dense

A dense layer with hidden size and intermediate size specified in the configuration.

TYPE: Linear

intermediate_act_fn

The activation function applied to the hidden states.

TYPE: function

METHOD DESCRIPTION
__init__

Initializes the DebertaIntermediate layer with the provided configuration.

forward

Applies the dense transformation and activation function to the input hidden states.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
class DebertaIntermediate(nn.Module):

    """
    DebertaIntermediate represents an intermediate layer in the DeBERTa neural network architecture for natural
    language processing tasks.
    This class inherits from nn.Module and contains methods for initializing the layer and performing computations
    on hidden states.
    The layer consists of a dense transformation followed by an activation function specified in the configuration.

    Attributes:
        dense (nn.Linear): A dense layer with hidden size and intermediate size specified in the configuration.
        intermediate_act_fn (function): The activation function applied to the hidden states.

    Methods:
        __init__: Initializes the DebertaIntermediate layer with the provided configuration.
        forward: Applies the dense transformation and activation function to the input hidden states.

    """
    def __init__(self, config):
        """
        Initializes a new instance of the DebertaIntermediate class.

        Args:
            self: The object itself.
            config (object):
                An object containing the configuration parameters for the DebertaIntermediate class.
                It should have the following properties:

                - hidden_size (int): The size of the hidden layer in the intermediate module.
                - intermediate_size (int): The size of the intermediate layer.
                - hidden_act (str or object): The activation function for the hidden layer.

                    - If it is a string, it should be one of the supported activation functions.
                    - If it is an object, it should be a callable that takes a single argument.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
        """
        Constructs the intermediate layer of the Deberta model.
        This method takes in the hidden states tensor and applies a series of transformations to it in order to
        forward the intermediate layer of the Deberta model. The hidden states tensor is first passed through a dense
        layer, followed by an activation function specified by 'intermediate_act_fn'.
        The resulting tensor represents the intermediate hidden states and is returned as the output of this method.

        Args:
            self (DebertaIntermediate): The instance of the DebertaIntermediate class.
            hidden_states (mindspore.Tensor): The input hidden states tensor.

        Returns:
            mindspore.Tensor: The tensor representing the output hidden states.

        Raises:
            None:

        Note:
            The 'intermediate_act_fn' attribute should be set prior to calling this method to specify the desired
            activation function.

        Example:
            ```python
            >>> intermediate_layer = DebertaIntermediate()
            >>> hidden_states = mindspore.Tensor([0.1, 0.2, 0.3])
            >>> output = intermediate_layer.forward(hidden_states)
            ```
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaIntermediate.__init__(config)

Initializes a new instance of the DebertaIntermediate class.

PARAMETER DESCRIPTION
self

The object itself.

config

An object containing the configuration parameters for the DebertaIntermediate class. It should have the following properties:

  • hidden_size (int): The size of the hidden layer in the intermediate module.
  • intermediate_size (int): The size of the intermediate layer.
  • hidden_act (str or object): The activation function for the hidden layer.

    • If it is a string, it should be one of the supported activation functions.
    • If it is an object, it should be a callable that takes a single argument.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def __init__(self, config):
    """
    Initializes a new instance of the DebertaIntermediate class.

    Args:
        self: The object itself.
        config (object):
            An object containing the configuration parameters for the DebertaIntermediate class.
            It should have the following properties:

            - hidden_size (int): The size of the hidden layer in the intermediate module.
            - intermediate_size (int): The size of the intermediate layer.
            - hidden_act (str or object): The activation function for the hidden layer.

                - If it is a string, it should be one of the supported activation functions.
                - If it is an object, it should be a callable that takes a single argument.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
    if isinstance(config.hidden_act, str):
        self.intermediate_act_fn = ACT2FN[config.hidden_act]
    else:
        self.intermediate_act_fn = config.hidden_act

mindnlp.transformers.models.deberta.modeling_deberta.DebertaIntermediate.forward(hidden_states)

Constructs the intermediate layer of the Deberta model. This method takes in the hidden states tensor and applies a series of transformations to it in order to forward the intermediate layer of the Deberta model. The hidden states tensor is first passed through a dense layer, followed by an activation function specified by 'intermediate_act_fn'. The resulting tensor represents the intermediate hidden states and is returned as the output of this method.

PARAMETER DESCRIPTION
self

The instance of the DebertaIntermediate class.

TYPE: DebertaIntermediate

hidden_states

The input hidden states tensor.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The tensor representing the output hidden states.

RAISES DESCRIPTION
None
Note

The 'intermediate_act_fn' attribute should be set prior to calling this method to specify the desired activation function.

Example
>>> intermediate_layer = DebertaIntermediate()
>>> hidden_states = mindspore.Tensor([0.1, 0.2, 0.3])
>>> output = intermediate_layer.forward(hidden_states)
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
    """
    Constructs the intermediate layer of the Deberta model.
    This method takes in the hidden states tensor and applies a series of transformations to it in order to
    forward the intermediate layer of the Deberta model. The hidden states tensor is first passed through a dense
    layer, followed by an activation function specified by 'intermediate_act_fn'.
    The resulting tensor represents the intermediate hidden states and is returned as the output of this method.

    Args:
        self (DebertaIntermediate): The instance of the DebertaIntermediate class.
        hidden_states (mindspore.Tensor): The input hidden states tensor.

    Returns:
        mindspore.Tensor: The tensor representing the output hidden states.

    Raises:
        None:

    Note:
        The 'intermediate_act_fn' attribute should be set prior to calling this method to specify the desired
        activation function.

    Example:
        ```python
        >>> intermediate_layer = DebertaIntermediate()
        >>> hidden_states = mindspore.Tensor([0.1, 0.2, 0.3])
        >>> output = intermediate_layer.forward(hidden_states)
        ```
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.intermediate_act_fn(hidden_states)
    return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLMPredictionHead

Bases: Module

DebertaLMPredictionHead represents the prediction head for language model tasks in a DeBERTa model. This class inherits from nn.Module.

ATTRIBUTE DESCRIPTION
transform

An instance of DebertaPredictionHeadTransform for transforming hidden states.

TYPE: DebertaPredictionHeadTransform

embedding_size

The size of the embedding layer, defaults to the hidden size if not specified in config.

TYPE: int

decoder

A fully connected layer for decoding hidden states to predict the next token.

TYPE: Linear

bias

The bias parameter for the decoder layer.

TYPE: Parameter

METHOD DESCRIPTION
__init__

Initializes the DebertaLMPredictionHead with the provided configuration.

forward

Constructs the prediction head by applying transformations and decoding the hidden states.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
class DebertaLMPredictionHead(nn.Module):

    """
    DebertaLMPredictionHead represents the prediction head for language model tasks in a DeBERTa model.
    This class inherits from nn.Module.

    Attributes:
        transform (DebertaPredictionHeadTransform):
            An instance of DebertaPredictionHeadTransform for transforming hidden states.
        embedding_size (int): The size of the embedding layer, defaults to the hidden size if not specified in config.
        decoder (nn.Linear): A fully connected layer for decoding hidden states to predict the next token.
        bias (Parameter): The bias parameter for the decoder layer.

    Methods:
        __init__: Initializes the DebertaLMPredictionHead with the provided configuration.
        forward: Constructs the prediction head by applying transformations and decoding the hidden states.

    """
    def __init__(self, config):
        """
        Initializes an instance of the DebertaLMPredictionHead class.

        Args:
            self: The current object instance.
            config (obj):
                An object containing configuration parameters for the DebertaLMPredictionHead.

                - Type: object
                - Purpose: Specifies the configuration settings for the DebertaLMPredictionHead.
                - Restrictions: None

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.transform = DebertaPredictionHeadTransform(config)

        self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)

        self.bias = Parameter(ops.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        """
        This method forwards the prediction head for DebertaLM model.

        Args:
            self (DebertaLMPredictionHead): An instance of the DebertaLMPredictionHead class.
            hidden_states (tensor): The hidden states to be processed for prediction.

        Returns:
            None: The processed hidden states after passing through the transformation and decoder layers.

        Raises:
            None.
        """
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLMPredictionHead.__init__(config)

Initializes an instance of the DebertaLMPredictionHead class.

PARAMETER DESCRIPTION
self

The current object instance.

config

An object containing configuration parameters for the DebertaLMPredictionHead.

  • Type: object
  • Purpose: Specifies the configuration settings for the DebertaLMPredictionHead.
  • Restrictions: None

TYPE: obj

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
def __init__(self, config):
    """
    Initializes an instance of the DebertaLMPredictionHead class.

    Args:
        self: The current object instance.
        config (obj):
            An object containing configuration parameters for the DebertaLMPredictionHead.

            - Type: object
            - Purpose: Specifies the configuration settings for the DebertaLMPredictionHead.
            - Restrictions: None

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.transform = DebertaPredictionHeadTransform(config)

    self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
    # The output weights are the same as the input embeddings, but there is
    # an output-only bias for each token.
    self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)

    self.bias = Parameter(ops.zeros(config.vocab_size))

    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
    self.decoder.bias = self.bias

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLMPredictionHead.forward(hidden_states)

This method forwards the prediction head for DebertaLM model.

PARAMETER DESCRIPTION
self

An instance of the DebertaLMPredictionHead class.

TYPE: DebertaLMPredictionHead

hidden_states

The hidden states to be processed for prediction.

TYPE: tensor

RETURNS DESCRIPTION
None

The processed hidden states after passing through the transformation and decoder layers.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
def forward(self, hidden_states):
    """
    This method forwards the prediction head for DebertaLM model.

    Args:
        self (DebertaLMPredictionHead): An instance of the DebertaLMPredictionHead class.
        hidden_states (tensor): The hidden states to be processed for prediction.

    Returns:
        None: The processed hidden states after passing through the transformation and decoder layers.

    Raises:
        None.
    """
    hidden_states = self.transform(hidden_states)
    hidden_states = self.decoder(hidden_states)
    return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLayer

Bases: Module

Represents a single layer in the DeBERTa model, containing modules for attention, intermediate processing, and output computation.

This class inherits from nn.Module and is responsible for processing input hidden states through attention mechanisms, intermediate processing, and final output computation. It provides a 'forward' method to perform these operations and return the final layer output.

ATTRIBUTE DESCRIPTION
attention

Module for performing attention mechanism computation.

TYPE: DebertaAttention

intermediate

Module for intermediate processing of attention output.

TYPE: DebertaIntermediate

output

Module for computing final output based on intermediate processed data.

TYPE: DebertaOutput

METHOD DESCRIPTION
forward

Process the input hidden states through attention, intermediate, and output modules to compute the final layer output.

Args:

  • hidden_states (Tensor): Input hidden states to be processed.
  • attention_mask (Tensor): Mask for attention calculation.
  • query_states (Tensor, optional): Query states for attention mechanism. Default is None.
  • relative_pos (Tensor, optional): Relative position information for attention computation. Default is None.
  • rel_embeddings (Tensor, optional): Relative embeddings for attention computation. Default is None.
  • output_attentions (bool, optional): Flag indicating whether to output attention matrices. Default is False.

Returns:

  • layer_output (Tensor): Final computed output of the layer.
  • att_matrix (Tensor, optional): Attention matrix if 'output_attentions' is True. Otherwise, None.
Note

If 'output_attentions' is set to True, the 'forward' method will return both the final layer output and the attention matrix.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
class DebertaLayer(nn.Module):

    """
    Represents a single layer in the DeBERTa model, containing modules for attention, intermediate processing,
    and output computation.

    This class inherits from nn.Module and is responsible for processing input hidden states through attention mechanisms,
    intermediate processing, and final output computation.
    It provides a 'forward' method to perform these operations and return the final layer output.

    Attributes:
        attention (DebertaAttention): Module for performing attention mechanism computation.
        intermediate (DebertaIntermediate): Module for intermediate processing of attention output.
        output (DebertaOutput): Module for computing final output based on intermediate processed data.

    Methods:
        forward:
            Process the input hidden states through attention, intermediate,
            and output modules to compute the final layer output.

            Args:

            - hidden_states (Tensor): Input hidden states to be processed.
            - attention_mask (Tensor): Mask for attention calculation.
            - query_states (Tensor, optional): Query states for attention mechanism. Default is None.
            - relative_pos (Tensor, optional): Relative position information for attention computation. Default is None.
            - rel_embeddings (Tensor, optional): Relative embeddings for attention computation. Default is None.
            - output_attentions (bool, optional): Flag indicating whether to output attention matrices. Default is False.

            Returns:

            - layer_output (Tensor): Final computed output of the layer.
            - att_matrix (Tensor, optional): Attention matrix if 'output_attentions' is True. Otherwise, None.

    Note:
        If 'output_attentions' is set to True, the 'forward' method will return both the final layer output and the
        attention matrix.
    """
    def __init__(self, config):
        """
        Initialize a DebertaLayer instance.

        Args:
            self (object): The instance of the DebertaLayer class.
            config (object): An object containing configuration settings for the DebertaLayer.
                It is used to customize the behavior of the layer during initialization.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.attention = DebertaAttention(config)
        self.intermediate = DebertaIntermediate(config)
        self.output = DebertaOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
        output_attentions=False,
    ):
        """
        Constructs the DebertaLayer by performing attention, intermediate, and output operations.

        Args:
            self (object): The class instance.
            hidden_states (torch.Tensor): The input hidden states tensor.
            attention_mask (torch.Tensor): The attention mask tensor to mask out padded tokens.
            query_states (torch.Tensor, optional): The tensor representing query states for attention computation.
                Defaults to None.
            relative_pos (torch.Tensor, optional): The tensor representing relative positions for attention computation.
                Defaults to None.
            rel_embeddings (torch.Tensor, optional): The tensor containing relative embeddings for attention computation.
                Defaults to None.
            output_attentions (bool): Flag indicating whether to output attention matrices. Defaults to False.

        Returns:
            None.

        Raises:
            ValueError: If the dimensions of the input tensors are incompatible.
            TypeError: If the input parameters are not of the expected types.
        """
        attention_output = self.attention(
            hidden_states,
            attention_mask,
            output_attentions=output_attentions,
            query_states=query_states,
            relative_pos=relative_pos,
            rel_embeddings=rel_embeddings,
        )
        if output_attentions:
            attention_output, att_matrix = attention_output
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        if output_attentions:
            return (layer_output, att_matrix)
        return layer_output

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLayer.__init__(config)

Initialize a DebertaLayer instance.

PARAMETER DESCRIPTION
self

The instance of the DebertaLayer class.

TYPE: object

config

An object containing configuration settings for the DebertaLayer. It is used to customize the behavior of the layer during initialization.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
def __init__(self, config):
    """
    Initialize a DebertaLayer instance.

    Args:
        self (object): The instance of the DebertaLayer class.
        config (object): An object containing configuration settings for the DebertaLayer.
            It is used to customize the behavior of the layer during initialization.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.attention = DebertaAttention(config)
    self.intermediate = DebertaIntermediate(config)
    self.output = DebertaOutput(config)

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLayer.forward(hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions=False)

Constructs the DebertaLayer by performing attention, intermediate, and output operations.

PARAMETER DESCRIPTION
self

The class instance.

TYPE: object

hidden_states

The input hidden states tensor.

TYPE: Tensor

attention_mask

The attention mask tensor to mask out padded tokens.

TYPE: Tensor

query_states

The tensor representing query states for attention computation. Defaults to None.

TYPE: Tensor DEFAULT: None

relative_pos

The tensor representing relative positions for attention computation. Defaults to None.

TYPE: Tensor DEFAULT: None

rel_embeddings

The tensor containing relative embeddings for attention computation. Defaults to None.

TYPE: Tensor DEFAULT: None

output_attentions

Flag indicating whether to output attention matrices. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the dimensions of the input tensors are incompatible.

TypeError

If the input parameters are not of the expected types.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
def forward(
    self,
    hidden_states,
    attention_mask,
    query_states=None,
    relative_pos=None,
    rel_embeddings=None,
    output_attentions=False,
):
    """
    Constructs the DebertaLayer by performing attention, intermediate, and output operations.

    Args:
        self (object): The class instance.
        hidden_states (torch.Tensor): The input hidden states tensor.
        attention_mask (torch.Tensor): The attention mask tensor to mask out padded tokens.
        query_states (torch.Tensor, optional): The tensor representing query states for attention computation.
            Defaults to None.
        relative_pos (torch.Tensor, optional): The tensor representing relative positions for attention computation.
            Defaults to None.
        rel_embeddings (torch.Tensor, optional): The tensor containing relative embeddings for attention computation.
            Defaults to None.
        output_attentions (bool): Flag indicating whether to output attention matrices. Defaults to False.

    Returns:
        None.

    Raises:
        ValueError: If the dimensions of the input tensors are incompatible.
        TypeError: If the input parameters are not of the expected types.
    """
    attention_output = self.attention(
        hidden_states,
        attention_mask,
        output_attentions=output_attentions,
        query_states=query_states,
        relative_pos=relative_pos,
        rel_embeddings=rel_embeddings,
    )
    if output_attentions:
        attention_output, att_matrix = attention_output
    intermediate_output = self.intermediate(attention_output)
    layer_output = self.output(intermediate_output, attention_output)
    if output_attentions:
        return (layer_output, att_matrix)
    return layer_output

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLayerNorm

Bases: Module

LayerNorm module in the TF style (epsilon inside the square root).

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
class DebertaLayerNorm(nn.Module):
    """LayerNorm module in the TF style (epsilon inside the square root)."""
    def __init__(self, size, eps=1e-12):
        """
        Initializes an instance of the DebertaLayerNorm class.

        Args:
            self: The instance of the class.
            size (int): The size of the layer normalization parameters.
                It determines the shape of the weight and bias tensors.
            eps (float, optional): The epsilon value used for numerical stability.
                It prevents division by zero. Default is 1e-12.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.weight = Parameter(ops.ones(size))
        self.bias = Parameter(ops.zeros(size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        """
        This method forwards layer normalization for hidden states in a Deberta model.

        Args:
            self (DebertaLayerNorm): The instance of the DebertaLayerNorm class.
            hidden_states (torch.Tensor): The input hidden states tensor to be normalized.
                Should be a tensor of dtype float32.

        Returns:
            None: The method performs layer normalization on the hidden_states tensor in place.

        Raises:
            ValueError: If the input hidden_states tensor is not of dtype float32.
            RuntimeError: If any runtime error occurs during the normalization process.
        """
        input_type = hidden_states.dtype
        hidden_states = hidden_states.float()
        mean = hidden_states.mean(-1, keep_dims=True)
        variance = (hidden_states - mean).pow(2).mean(-1, keep_dims=True)
        hidden_states = (hidden_states - mean) / ops.sqrt(variance + self.variance_epsilon)
        hidden_states = hidden_states.to(input_type)
        y = self.weight * hidden_states + self.bias
        return y

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLayerNorm.__init__(size, eps=1e-12)

Initializes an instance of the DebertaLayerNorm class.

PARAMETER DESCRIPTION
self

The instance of the class.

size

The size of the layer normalization parameters. It determines the shape of the weight and bias tensors.

TYPE: int

eps

The epsilon value used for numerical stability. It prevents division by zero. Default is 1e-12.

TYPE: float DEFAULT: 1e-12

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def __init__(self, size, eps=1e-12):
    """
    Initializes an instance of the DebertaLayerNorm class.

    Args:
        self: The instance of the class.
        size (int): The size of the layer normalization parameters.
            It determines the shape of the weight and bias tensors.
        eps (float, optional): The epsilon value used for numerical stability.
            It prevents division by zero. Default is 1e-12.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.weight = Parameter(ops.ones(size))
    self.bias = Parameter(ops.zeros(size))
    self.variance_epsilon = eps

mindnlp.transformers.models.deberta.modeling_deberta.DebertaLayerNorm.forward(hidden_states)

This method forwards layer normalization for hidden states in a Deberta model.

PARAMETER DESCRIPTION
self

The instance of the DebertaLayerNorm class.

TYPE: DebertaLayerNorm

hidden_states

The input hidden states tensor to be normalized. Should be a tensor of dtype float32.

TYPE: Tensor

RETURNS DESCRIPTION
None

The method performs layer normalization on the hidden_states tensor in place.

RAISES DESCRIPTION
ValueError

If the input hidden_states tensor is not of dtype float32.

RuntimeError

If any runtime error occurs during the normalization process.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
def forward(self, hidden_states):
    """
    This method forwards layer normalization for hidden states in a Deberta model.

    Args:
        self (DebertaLayerNorm): The instance of the DebertaLayerNorm class.
        hidden_states (torch.Tensor): The input hidden states tensor to be normalized.
            Should be a tensor of dtype float32.

    Returns:
        None: The method performs layer normalization on the hidden_states tensor in place.

    Raises:
        ValueError: If the input hidden_states tensor is not of dtype float32.
        RuntimeError: If any runtime error occurs during the normalization process.
    """
    input_type = hidden_states.dtype
    hidden_states = hidden_states.float()
    mean = hidden_states.mean(-1, keep_dims=True)
    variance = (hidden_states - mean).pow(2).mean(-1, keep_dims=True)
    hidden_states = (hidden_states - mean) / ops.sqrt(variance + self.variance_epsilon)
    hidden_states = hidden_states.to(input_type)
    y = self.weight * hidden_states + self.bias
    return y

mindnlp.transformers.models.deberta.modeling_deberta.DebertaModel

Bases: DebertaPreTrainedModel

DebertaModel class represents a DeBERTa model for natural language processing tasks. This class inherits functionalities from DebertaPreTrainedModel and implements methods for initializing the model, getting and setting input embeddings, and forwarding the model output.

ATTRIBUTE DESCRIPTION
embeddings

The embeddings module of the DeBERTa model.

TYPE: DebertaEmbeddings

encoder

The encoder module of the DeBERTa model.

TYPE: DebertaEncoder

z_steps

Number of Z steps used in the model.

TYPE: int

config

Configuration object for the model.

METHOD DESCRIPTION
__init__

Initializes the DebertaModel with the provided configuration.

get_input_embeddings

Retrieves the word embeddings from the input embeddings.

set_input_embeddings

Sets new word embeddings for the input embeddings.

_prune_heads

Prunes heads of the model based on the provided dictionary.

forward

Constructs the model output based on the input parameters.

RAISES DESCRIPTION
NotImplementedError

If the prune function is called as it is not implemented in the DeBERTa model.

ValueError

If both input_ids and inputs_embeds are specified simultaneously, or if neither input_ids nor inputs_embeds are provided.

RETURNS DESCRIPTION

Tuple or BaseModelOutput: Depending on the configuration settings, returns either a tuple or a BaseModelOutput object containing the model output.

Note

This class is designed for use in natural language processing tasks and leverages the DeBERTa architecture for efficient modeling.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
class DebertaModel(DebertaPreTrainedModel):

    """
    DebertaModel class represents a DeBERTa model for natural language processing tasks.
    This class inherits functionalities from DebertaPreTrainedModel and implements methods for initializing the model,
    getting and setting input embeddings, and forwarding the model output.

    Attributes:
        embeddings (DebertaEmbeddings): The embeddings module of the DeBERTa model.
        encoder (DebertaEncoder): The encoder module of the DeBERTa model.
        z_steps (int): Number of Z steps used in the model.
        config: Configuration object for the model.

    Methods:
        __init__: Initializes the DebertaModel with the provided configuration.
        get_input_embeddings: Retrieves the word embeddings from the input embeddings.
        set_input_embeddings: Sets new word embeddings for the input embeddings.
        _prune_heads: Prunes heads of the model based on the provided dictionary.
        forward: Constructs the model output based on the input parameters.

    Raises:
        NotImplementedError: If the prune function is called as it is not implemented in the DeBERTa model.
        ValueError: If both input_ids and inputs_embeds are specified simultaneously,
            or if neither input_ids nor inputs_embeds are provided.

    Returns:
        Tuple or BaseModelOutput:
            Depending on the configuration settings, returns either a tuple or a BaseModelOutput object
            containing the model output.

    Note:
        This class is designed for use in natural language processing tasks and leverages the DeBERTa architecture
        for efficient modeling.

    """
    def __init__(self, config):
        """
        Initializes a new instance of the DebertaModel class.

        Args:
            self: The instance of the class.
            config (object): The configuration object containing the model configuration parameters.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.embeddings = DebertaEmbeddings(config)
        self.encoder = DebertaEncoder(config)
        self.z_steps = 0
        self.config = config
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Retrieve the input embeddings from the DebertaModel.

        Args:
            self (DebertaModel): An instance of the DebertaModel class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        """
        Method to set the input embeddings for a DebertaModel instance.

        Args:
            self (DebertaModel): The instance of the DebertaModel class.
            new_embeddings (object): New input embeddings to be set for the model.
                It should be of the appropriate type compatible with the model's word_embeddings attribute.

        Returns:
            None.

        Raises:
            TypeError: If the new_embeddings parameter is not of the expected type.
            ValueError: If the new_embeddings parameter is invalid or incompatible with the model.
        """
        self.embeddings.word_embeddings = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        raise NotImplementedError("The prune function is not implemented in DeBERTa model.")

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        """
        This method forwards a DebertaModel based on the provided input parameters.

        Args:
            self (object): The instance of the DebertaModel class.
            input_ids (Optional[mindspore.Tensor]): The input tensor containing token indices. Default is None.
            attention_mask (Optional[mindspore.Tensor]):
                The attention mask tensor to specify which tokens should be attended to. Default is None.
            token_type_ids (Optional[mindspore.Tensor]): The tensor specifying the type of each token. Default is None.
            position_ids (Optional[mindspore.Tensor]): The tensor containing position indices of tokens. Default is None.
            inputs_embeds (Optional[mindspore.Tensor]):
                The tensor containing precomputed embeddings for input tokens. Default is None.
            output_attentions (Optional[bool]): Flag to indicate whether to output attentions. Default is None.
            output_hidden_states (Optional[bool]): Flag to indicate whether to output hidden states. Default is None.
            return_dict (Optional[bool]): Flag to indicate whether to return output as a dictionary. Default is None.

        Returns:
            Union[Tuple, BaseModelOutput]: The output value, which can either be a tuple or a BaseModelOutput object,
                containing the forwarded DebertaModel.

        Raises:
            ValueError: Raised if both input_ids and inputs_embeds are specified simultaneously.
            ValueError: Raised if neither input_ids nor inputs_embeds are specified.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if attention_mask is None:
            attention_mask = ops.ones(input_shape)
        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            mask=attention_mask,
            inputs_embeds=inputs_embeds,
        )

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask,
            output_hidden_states=True,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )
        encoded_layers = encoder_outputs[1]

        if self.z_steps > 1:
            hidden_states = encoded_layers[-2]
            layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
            query_states = encoded_layers[-1]
            rel_embeddings = self.encoder.get_rel_embedding()
            attention_mask = self.encoder.get_attention_mask(attention_mask)
            rel_pos = self.encoder.get_rel_pos(embedding_output)
            for layer in layers[1:]:
                query_states = layer(
                    hidden_states,
                    attention_mask,
                    output_attentions=False,
                    query_states=query_states,
                    relative_pos=rel_pos,
                    rel_embeddings=rel_embeddings,
                )
                encoded_layers.append(query_states)

        sequence_output = encoded_layers[-1]

        if not return_dict:
            return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
            attentions=encoder_outputs.attentions,
        )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaModel.__init__(config)

Initializes a new instance of the DebertaModel class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing the model configuration parameters.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
def __init__(self, config):
    """
    Initializes a new instance of the DebertaModel class.

    Args:
        self: The instance of the class.
        config (object): The configuration object containing the model configuration parameters.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    self.embeddings = DebertaEmbeddings(config)
    self.encoder = DebertaEncoder(config)
    self.z_steps = 0
    self.config = config
    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.deberta.modeling_deberta.DebertaModel.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

This method forwards a DebertaModel based on the provided input parameters.

PARAMETER DESCRIPTION
self

The instance of the DebertaModel class.

TYPE: object

input_ids

The input tensor containing token indices. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask tensor to specify which tokens should be attended to. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The tensor specifying the type of each token. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The tensor containing position indices of tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The tensor containing precomputed embeddings for input tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Flag to indicate whether to output attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Flag to indicate whether to output hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Flag to indicate whether to return output as a dictionary. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, BaseModelOutput]

Union[Tuple, BaseModelOutput]: The output value, which can either be a tuple or a BaseModelOutput object, containing the forwarded DebertaModel.

RAISES DESCRIPTION
ValueError

Raised if both input_ids and inputs_embeds are specified simultaneously.

ValueError

Raised if neither input_ids nor inputs_embeds are specified.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
    """
    This method forwards a DebertaModel based on the provided input parameters.

    Args:
        self (object): The instance of the DebertaModel class.
        input_ids (Optional[mindspore.Tensor]): The input tensor containing token indices. Default is None.
        attention_mask (Optional[mindspore.Tensor]):
            The attention mask tensor to specify which tokens should be attended to. Default is None.
        token_type_ids (Optional[mindspore.Tensor]): The tensor specifying the type of each token. Default is None.
        position_ids (Optional[mindspore.Tensor]): The tensor containing position indices of tokens. Default is None.
        inputs_embeds (Optional[mindspore.Tensor]):
            The tensor containing precomputed embeddings for input tokens. Default is None.
        output_attentions (Optional[bool]): Flag to indicate whether to output attentions. Default is None.
        output_hidden_states (Optional[bool]): Flag to indicate whether to output hidden states. Default is None.
        return_dict (Optional[bool]): Flag to indicate whether to return output as a dictionary. Default is None.

    Returns:
        Union[Tuple, BaseModelOutput]: The output value, which can either be a tuple or a BaseModelOutput object,
            containing the forwarded DebertaModel.

    Raises:
        ValueError: Raised if both input_ids and inputs_embeds are specified simultaneously.
        ValueError: Raised if neither input_ids nor inputs_embeds are specified.
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
    if input_ids is not None:
        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
        input_shape = input_ids.shape
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    if attention_mask is None:
        attention_mask = ops.ones(input_shape)
    if token_type_ids is None:
        token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

    embedding_output = self.embeddings(
        input_ids=input_ids,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        mask=attention_mask,
        inputs_embeds=inputs_embeds,
    )

    encoder_outputs = self.encoder(
        embedding_output,
        attention_mask,
        output_hidden_states=True,
        output_attentions=output_attentions,
        return_dict=return_dict,
    )
    encoded_layers = encoder_outputs[1]

    if self.z_steps > 1:
        hidden_states = encoded_layers[-2]
        layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
        query_states = encoded_layers[-1]
        rel_embeddings = self.encoder.get_rel_embedding()
        attention_mask = self.encoder.get_attention_mask(attention_mask)
        rel_pos = self.encoder.get_rel_pos(embedding_output)
        for layer in layers[1:]:
            query_states = layer(
                hidden_states,
                attention_mask,
                output_attentions=False,
                query_states=query_states,
                relative_pos=rel_pos,
                rel_embeddings=rel_embeddings,
            )
            encoded_layers.append(query_states)

    sequence_output = encoded_layers[-1]

    if not return_dict:
        return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]

    return BaseModelOutput(
        last_hidden_state=sequence_output,
        hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
        attentions=encoder_outputs.attentions,
    )

mindnlp.transformers.models.deberta.modeling_deberta.DebertaModel.get_input_embeddings()

Retrieve the input embeddings from the DebertaModel.

PARAMETER DESCRIPTION
self

An instance of the DebertaModel class.

TYPE: DebertaModel

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
def get_input_embeddings(self):
    """
    Retrieve the input embeddings from the DebertaModel.

    Args:
        self (DebertaModel): An instance of the DebertaModel class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.embeddings.word_embeddings

mindnlp.transformers.models.deberta.modeling_deberta.DebertaModel.set_input_embeddings(new_embeddings)

Method to set the input embeddings for a DebertaModel instance.

PARAMETER DESCRIPTION
self

The instance of the DebertaModel class.

TYPE: DebertaModel

new_embeddings

New input embeddings to be set for the model. It should be of the appropriate type compatible with the model's word_embeddings attribute.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the new_embeddings parameter is not of the expected type.

ValueError

If the new_embeddings parameter is invalid or incompatible with the model.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
def set_input_embeddings(self, new_embeddings):
    """
    Method to set the input embeddings for a DebertaModel instance.

    Args:
        self (DebertaModel): The instance of the DebertaModel class.
        new_embeddings (object): New input embeddings to be set for the model.
            It should be of the appropriate type compatible with the model's word_embeddings attribute.

    Returns:
        None.

    Raises:
        TypeError: If the new_embeddings parameter is not of the expected type.
        ValueError: If the new_embeddings parameter is invalid or incompatible with the model.
    """
    self.embeddings.word_embeddings = new_embeddings

mindnlp.transformers.models.deberta.modeling_deberta.DebertaOnlyMLMHead

Bases: Module

This class represents a Deberta Masked Language Model (MLM) head for generating prediction scores from sequence output. It inherits from nn.Module and contains methods for initializing the MLM head and forwarding prediction scores.

ATTRIBUTE DESCRIPTION
predictions

A DebertaLMPredictionHead object for generating prediction scores.

METHOD DESCRIPTION
__init__

Initializes the DebertaOnlyMLMHead with the given configuration.

forward

Constructs prediction scores from the provided sequence output.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
class DebertaOnlyMLMHead(nn.Module):

    """
    This class represents a Deberta Masked Language Model (MLM) head for generating prediction scores from sequence output.
    It inherits from nn.Module and contains methods for initializing the MLM head and forwarding prediction scores.

    Attributes:
        predictions: A DebertaLMPredictionHead object for generating prediction scores.

    Methods:
        __init__: Initializes the DebertaOnlyMLMHead with the given configuration.
        forward: Constructs prediction scores from the provided sequence output.
    """
    def __init__(self, config):
        """
        Initializes an instance of the DebertaOnlyMLMHead class.

        Args:
            self: The instance of the class.
            config: A configuration object containing the necessary settings for the DebertaOnlyMLMHead.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.predictions = DebertaLMPredictionHead(config)

    def forward(self, sequence_output):
        """
        Class:
            DebertaOnlyMLMHead

        Method:
            forward

        Description:
            This method forwards prediction scores based on the given sequence output.

        Args:
            self: (object) The instance of the DebertaOnlyMLMHead class.
            sequence_output: (object) The sequence output from the model for which prediction scores need to be generated.

        Returns:
            None.

        Raises:
            None.
        """
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores

mindnlp.transformers.models.deberta.modeling_deberta.DebertaOnlyMLMHead.__init__(config)

Initializes an instance of the DebertaOnlyMLMHead class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

A configuration object containing the necessary settings for the DebertaOnlyMLMHead.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
def __init__(self, config):
    """
    Initializes an instance of the DebertaOnlyMLMHead class.

    Args:
        self: The instance of the class.
        config: A configuration object containing the necessary settings for the DebertaOnlyMLMHead.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.predictions = DebertaLMPredictionHead(config)

mindnlp.transformers.models.deberta.modeling_deberta.DebertaOnlyMLMHead.forward(sequence_output)

Class

DebertaOnlyMLMHead

Method

forward

Description

This method forwards prediction scores based on the given sequence output.

PARAMETER DESCRIPTION
self

(object) The instance of the DebertaOnlyMLMHead class.

sequence_output

(object) The sequence output from the model for which prediction scores need to be generated.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
def forward(self, sequence_output):
    """
    Class:
        DebertaOnlyMLMHead

    Method:
        forward

    Description:
        This method forwards prediction scores based on the given sequence output.

    Args:
        self: (object) The instance of the DebertaOnlyMLMHead class.
        sequence_output: (object) The sequence output from the model for which prediction scores need to be generated.

    Returns:
        None.

    Raises:
        None.
    """
    prediction_scores = self.predictions(sequence_output)
    return prediction_scores

mindnlp.transformers.models.deberta.modeling_deberta.DebertaOutput

Bases: Module

This class represents the output layer of the Deberta model. It inherits from the nn.Module class and is responsible for applying the final transformations to the hidden states.

ATTRIBUTE DESCRIPTION
dense

A dense layer that transforms the hidden states to an intermediate size.

TYPE: Linear

LayerNorm

A layer normalization module that normalizes the hidden states.

TYPE: DebertaLayerNorm

dropout

A dropout layer that applies dropout to the hidden states.

TYPE: StableDropout

config

The configuration object for the Deberta model.

METHOD DESCRIPTION
__init__

Initializes the DebertaOutput instance.

Args:

  • config: The configuration object for the Deberta model.
forward

Applies the final transformations to the hidden states.

Args:

  • hidden_states: The input hidden states.
  • input_tensor: The original input tensor.

Returns:

  • The transformed hidden states after applying the intermediate dense layer, dropout, and layer normalization.
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
class DebertaOutput(nn.Module):

    """
    This class represents the output layer of the Deberta model.
    It inherits from the nn.Module class and is responsible for applying the final transformations to the hidden states.

    Attributes:
        dense (nn.Linear): A dense layer that transforms the hidden states to an intermediate size.
        LayerNorm (DebertaLayerNorm): A layer normalization module that normalizes the hidden states.
        dropout (StableDropout): A dropout layer that applies dropout to the hidden states.
        config: The configuration object for the Deberta model.

    Methods:
        __init__(self, config):
            Initializes the DebertaOutput instance.

            Args:

            - config: The configuration object for the Deberta model.

        forward(self, hidden_states, input_tensor):
            Applies the final transformations to the hidden states.

            Args:

            - hidden_states: The input hidden states.
            - input_tensor: The original input tensor.

            Returns:

            - The transformed hidden states after applying the intermediate dense layer, dropout, and layer normalization.
    """
    def __init__(self, config):
        """
        Initializes a new instance of the DebertaOutput class.

        Args:
            self: The instance of the DebertaOutput class.
            config:
                An instance of the configuration class containing the parameters for the DebertaOutput layer.

                - Type: object
                - Purpose: Specifies the configuration settings for the DebertaOutput layer.
                - Restrictions: Must be a valid instance of the configuration class.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = StableDropout(config.hidden_dropout_prob)
        self.config = config

    def forward(self, hidden_states, input_tensor):
        """
        Constructs the output of the Deberta model by performing a series of operations.

        Args:
            self (DebertaOutput): The instance of the DebertaOutput class.
            hidden_states (Tensor): The input hidden states.
                This tensor represents the intermediate outputs of the model.
            input_tensor (Tensor): The input tensor to be added to the hidden states.

        Returns:
            None

        Raises:
            None
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaOutput.__init__(config)

Initializes a new instance of the DebertaOutput class.

PARAMETER DESCRIPTION
self

The instance of the DebertaOutput class.

config

An instance of the configuration class containing the parameters for the DebertaOutput layer.

  • Type: object
  • Purpose: Specifies the configuration settings for the DebertaOutput layer.
  • Restrictions: Must be a valid instance of the configuration class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
def __init__(self, config):
    """
    Initializes a new instance of the DebertaOutput class.

    Args:
        self: The instance of the DebertaOutput class.
        config:
            An instance of the configuration class containing the parameters for the DebertaOutput layer.

            - Type: object
            - Purpose: Specifies the configuration settings for the DebertaOutput layer.
            - Restrictions: Must be a valid instance of the configuration class.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
    self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
    self.dropout = StableDropout(config.hidden_dropout_prob)
    self.config = config

mindnlp.transformers.models.deberta.modeling_deberta.DebertaOutput.forward(hidden_states, input_tensor)

Constructs the output of the Deberta model by performing a series of operations.

PARAMETER DESCRIPTION
self

The instance of the DebertaOutput class.

TYPE: DebertaOutput

hidden_states

The input hidden states. This tensor represents the intermediate outputs of the model.

TYPE: Tensor

input_tensor

The input tensor to be added to the hidden states.

TYPE: Tensor

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
def forward(self, hidden_states, input_tensor):
    """
    Constructs the output of the Deberta model by performing a series of operations.

    Args:
        self (DebertaOutput): The instance of the DebertaOutput class.
        hidden_states (Tensor): The input hidden states.
            This tensor represents the intermediate outputs of the model.
        input_tensor (Tensor): The input tensor to be added to the hidden states.

    Returns:
        None

    Raises:
        None
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.LayerNorm(hidden_states + input_tensor)
    return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
class DebertaPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = DebertaConfig
    base_model_prefix = "deberta"
    _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
    supports_gradient_checkpointing = True

    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, self.config.initializer_range, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0

            cell.weight.set_data(Tensor(weight, cell.weight.dtype))

mindnlp.transformers.models.deberta.modeling_deberta.DebertaPredictionHeadTransform

Bases: Module

Represents a prediction head transformation module for the DeBERTa model.

This class defines a prediction head transformation module for the DeBERTa model, which includes operations such as dense layer, activation function transformation, and layer normalization.

ATTRIBUTE DESCRIPTION
embedding_size

The size of the embedding used in the transformation.

TYPE: int

dense

The dense layer used for transformation.

TYPE: Linear

transform_act_fn

The activation function used for transformation.

TYPE: function

LayerNorm

The layer normalization module applied to the hidden states.

TYPE: LayerNorm

METHOD DESCRIPTION
__init__

Initializes the DebertaPredictionHeadTransform instance with the given configuration.

forward

Constructs the prediction head transformation on the input hidden states.

Note

This class inherits from nn.Module and is designed specifically for the DeBERTa model.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
class DebertaPredictionHeadTransform(nn.Module):

    """
    Represents a prediction head transformation module for the DeBERTa model.

    This class defines a prediction head transformation module for the DeBERTa model,
    which includes operations such as dense layer, activation function transformation, and layer normalization.

    Attributes:
        embedding_size (int): The size of the embedding used in the transformation.
        dense (nn.Linear): The dense layer used for transformation.
        transform_act_fn (function): The activation function used for transformation.
        LayerNorm (nn.LayerNorm): The layer normalization module applied to the hidden states.

    Methods:
        __init__: Initializes the DebertaPredictionHeadTransform instance with the given configuration.
        forward: Constructs the prediction head transformation on the input hidden states.

    Note:
        This class inherits from nn.Module and is designed specifically for the DeBERTa model.

    """
    def __init__(self, config):
        """
        Initializes the DebertaPredictionHeadTransform class.

        Args:
            self (DebertaPredictionHeadTransform): The instance of the DebertaPredictionHeadTransform class.
            config (object): The configuration object containing parameters for the prediction head.
                It should include the following attributes:

                - embedding_size (int, optional): The size of the embedding. Defaults to config.hidden_size.
                - hidden_size (int): The size of the hidden layer.
                - hidden_act (str or object): The activation function for the hidden layer.
                If a string, it should be a key in the ACT2FN dictionary.
                - layer_norm_eps (float): The epsilon value for LayerNorm.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of the expected type.
            KeyError: If the config.hidden_act is a string that does not match any key in the ACT2FN dictionary.
            ValueError: If the config does not contain the required attributes.
        """
        super().__init__()
        self.embedding_size = getattr(config, "embedding_size", config.hidden_size)

        self.dense = nn.Linear(config.hidden_size, self.embedding_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        """
        This method 'forward' is defined within the class 'DebertaPredictionHeadTransform' and is responsible for
        processing the hidden states.

        Args:
            self: An instance of the 'DebertaPredictionHeadTransform' class.
            hidden_states:
                A tensor representing the hidden states to be processed.
                It is of type 'Tensor' and is expected to contain the information to be transformed.

        Returns:
            hidden_states: A tensor containing the transformed hidden states after processing.
                It is of type 'Tensor' and represents the result of the transformation operation.

        Raises:
            This method does not explicitly raise any exceptions.
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaPredictionHeadTransform.__init__(config)

Initializes the DebertaPredictionHeadTransform class.

PARAMETER DESCRIPTION
self

The instance of the DebertaPredictionHeadTransform class.

TYPE: DebertaPredictionHeadTransform

config

The configuration object containing parameters for the prediction head. It should include the following attributes:

  • embedding_size (int, optional): The size of the embedding. Defaults to config.hidden_size.
  • hidden_size (int): The size of the hidden layer.
  • hidden_act (str or object): The activation function for the hidden layer. If a string, it should be a key in the ACT2FN dictionary.
  • layer_norm_eps (float): The epsilon value for LayerNorm.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of the expected type.

KeyError

If the config.hidden_act is a string that does not match any key in the ACT2FN dictionary.

ValueError

If the config does not contain the required attributes.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
def __init__(self, config):
    """
    Initializes the DebertaPredictionHeadTransform class.

    Args:
        self (DebertaPredictionHeadTransform): The instance of the DebertaPredictionHeadTransform class.
        config (object): The configuration object containing parameters for the prediction head.
            It should include the following attributes:

            - embedding_size (int, optional): The size of the embedding. Defaults to config.hidden_size.
            - hidden_size (int): The size of the hidden layer.
            - hidden_act (str or object): The activation function for the hidden layer.
            If a string, it should be a key in the ACT2FN dictionary.
            - layer_norm_eps (float): The epsilon value for LayerNorm.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of the expected type.
        KeyError: If the config.hidden_act is a string that does not match any key in the ACT2FN dictionary.
        ValueError: If the config does not contain the required attributes.
    """
    super().__init__()
    self.embedding_size = getattr(config, "embedding_size", config.hidden_size)

    self.dense = nn.Linear(config.hidden_size, self.embedding_size)
    if isinstance(config.hidden_act, str):
        self.transform_act_fn = ACT2FN[config.hidden_act]
    else:
        self.transform_act_fn = config.hidden_act
    self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)

mindnlp.transformers.models.deberta.modeling_deberta.DebertaPredictionHeadTransform.forward(hidden_states)

This method 'forward' is defined within the class 'DebertaPredictionHeadTransform' and is responsible for processing the hidden states.

PARAMETER DESCRIPTION
self

An instance of the 'DebertaPredictionHeadTransform' class.

hidden_states

A tensor representing the hidden states to be processed. It is of type 'Tensor' and is expected to contain the information to be transformed.

RETURNS DESCRIPTION
hidden_states

A tensor containing the transformed hidden states after processing. It is of type 'Tensor' and represents the result of the transformation operation.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
def forward(self, hidden_states):
    """
    This method 'forward' is defined within the class 'DebertaPredictionHeadTransform' and is responsible for
    processing the hidden states.

    Args:
        self: An instance of the 'DebertaPredictionHeadTransform' class.
        hidden_states:
            A tensor representing the hidden states to be processed.
            It is of type 'Tensor' and is expected to contain the information to be transformed.

    Returns:
        hidden_states: A tensor containing the transformed hidden states after processing.
            It is of type 'Tensor' and represents the result of the transformation operation.

    Raises:
        This method does not explicitly raise any exceptions.
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.transform_act_fn(hidden_states)
    hidden_states = self.LayerNorm(hidden_states)
    return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaSelfOutput

Bases: Module

Represents the output layer for the DeBERTa model, responsible for transforming hidden states and applying normalization and dropout.

This class inherits from nn.Module and contains methods to initialize the output layer components, including dense transformation, layer normalization, and dropout. The 'forward' method takes hidden states and input tensor, applies transformations, and returns the final hidden states after normalization and dropout.

ATTRIBUTE DESCRIPTION
dense

A fully connected layer for transforming hidden states.

TYPE: Linear

LayerNorm

Layer normalization applied to the hidden states.

TYPE: DebertaLayerNorm

dropout

Dropout regularization to prevent overfitting.

TYPE: StableDropout

METHOD DESCRIPTION
__init__

Initializes the output layer components with the given configuration.

forward

Applies transformations to hidden states and input tensor to produce final hidden states.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
class DebertaSelfOutput(nn.Module):

    """
    Represents the output layer for the DeBERTa model, responsible for transforming hidden states and applying normalization and dropout.

    This class inherits from nn.Module and contains methods to initialize the output layer components,
    including dense transformation, layer normalization, and dropout.
    The 'forward' method takes hidden states and input tensor, applies transformations,
    and returns the final hidden states after normalization and dropout.

    Attributes:
        dense (nn.Linear): A fully connected layer for transforming hidden states.
        LayerNorm (DebertaLayerNorm): Layer normalization applied to the hidden states.
        dropout (StableDropout): Dropout regularization to prevent overfitting.

    Methods:
        __init__(self, config): Initializes the output layer components with the given configuration.
        forward(self, hidden_states, input_tensor):
            Applies transformations to hidden states and input tensor to produce final hidden states.

    """
    def __init__(self, config):
        """
        Initializes an instance of the DebertaSelfOutput class.

        Args:
            self (DebertaSelfOutput): The current instance of the class.
            config: The configuration object containing the settings for the Deberta model.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = StableDropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        """
        Method 'forward' in the class 'DebertaSelfOutput'.

        This method forwards the hidden states by applying a series of operations on the input hidden states and the input tensor.

        Args:
            self:
                Instance of the DebertaSelfOutput class.

                - Type: DebertaSelfOutput
                - Purpose: Represents the current instance of the class.

            hidden_states:
                Hidden states that need to be processed.

                - Type: tensor
                - Purpose: Represents the input hidden states that will undergo transformation.

            input_tensor:
                Input tensor to be added to the processed hidden states.

                - Type: tensor
                - Purpose: Represents the input tensor to be added to the processed hidden states.

        Returns:
            None.

        Raises:
            None
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DebertaSelfOutput.__init__(config)

Initializes an instance of the DebertaSelfOutput class.

PARAMETER DESCRIPTION
self

The current instance of the class.

TYPE: DebertaSelfOutput

config

The configuration object containing the settings for the Deberta model.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def __init__(self, config):
    """
    Initializes an instance of the DebertaSelfOutput class.

    Args:
        self (DebertaSelfOutput): The current instance of the class.
        config: The configuration object containing the settings for the Deberta model.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
    self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
    self.dropout = StableDropout(config.hidden_dropout_prob)

mindnlp.transformers.models.deberta.modeling_deberta.DebertaSelfOutput.forward(hidden_states, input_tensor)

Method 'forward' in the class 'DebertaSelfOutput'.

This method forwards the hidden states by applying a series of operations on the input hidden states and the input tensor.

PARAMETER DESCRIPTION
self

Instance of the DebertaSelfOutput class.

  • Type: DebertaSelfOutput
  • Purpose: Represents the current instance of the class.

hidden_states

Hidden states that need to be processed.

  • Type: tensor
  • Purpose: Represents the input hidden states that will undergo transformation.

input_tensor

Input tensor to be added to the processed hidden states.

  • Type: tensor
  • Purpose: Represents the input tensor to be added to the processed hidden states.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
def forward(self, hidden_states, input_tensor):
    """
    Method 'forward' in the class 'DebertaSelfOutput'.

    This method forwards the hidden states by applying a series of operations on the input hidden states and the input tensor.

    Args:
        self:
            Instance of the DebertaSelfOutput class.

            - Type: DebertaSelfOutput
            - Purpose: Represents the current instance of the class.

        hidden_states:
            Hidden states that need to be processed.

            - Type: tensor
            - Purpose: Represents the input hidden states that will undergo transformation.

        input_tensor:
            Input tensor to be added to the processed hidden states.

            - Type: tensor
            - Purpose: Represents the input tensor to be added to the processed hidden states.

    Returns:
        None.

    Raises:
        None
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.LayerNorm(hidden_states + input_tensor)
    return hidden_states

mindnlp.transformers.models.deberta.modeling_deberta.DisentangledSelfAttention

Bases: Module

Disentangled self-attention module

PARAMETER DESCRIPTION
config

A model config class instance with the configuration to build a new model. The schema is similar to BertConfig, for more details, please refer [DebertaConfig]

TYPE: `str`

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
class DisentangledSelfAttention(nn.Module):
    """
    Disentangled self-attention module

    Parameters:
        config (`str`):
            A model config class instance with the configuration to build a new model. The schema is similar to
            *BertConfig*, for more details, please refer [`DebertaConfig`]

    """
    def __init__(self, config):
        """
        Initializes a DisentangledSelfAttention object with the given configuration.

        Args:
            self (DisentangledSelfAttention): The object itself.
            config: A configuration object that contains various parameters for the self-attention mechanism.

        Returns:
            None

        Raises:
            ValueError: If the hidden size is not a multiple of the number of attention heads.

        Note:
            The hidden size should be a multiple of the number of attention heads in order to ensure proper
            functioning of the self-attention mechanism.
        """
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
        self.q_bias = Parameter(ops.zeros((self.all_head_size), dtype=mindspore.float32))
        self.v_bias = Parameter(ops.zeros((self.all_head_size), dtype=mindspore.float32))
        self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []

        self.relative_attention = getattr(config, "relative_attention", False)
        self.talking_head = getattr(config, "talking_head", False)

        if self.talking_head:
            self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
            self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)

        if self.relative_attention:
            self.max_relative_positions = getattr(config, "max_relative_positions", -1)
            if self.max_relative_positions < 1:
                self.max_relative_positions = config.max_position_embeddings
            self.pos_dropout = StableDropout(config.hidden_dropout_prob)

            if "c2p" in self.pos_att_type:
                self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
            if "p2c" in self.pos_att_type:
                self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = StableDropout(config.attention_probs_dropout_prob)
        self.softmax = XSoftmax(-1)

    def swapaxes_for_scores(self, x):
        """
        Performs a swap axis operation on the input tensor for scores in the DisentangledSelfAttention class.

        Args:
            self (DisentangledSelfAttention): An instance of the DisentangledSelfAttention class.
            x (torch.Tensor): The input tensor to be operated on.
                It should have a shape of (batch_size, seq_length, hidden_size).

        Returns:
            torch.Tensor: The transformed tensor after swapping the axes.
                The shape of the returned tensor is (batch_size, num_attention_heads, seq_length, -1).

        Raises:
            None.

        Note:
            - The method assumes that the input tensor has a rank of at least 3.
            - The parameter 'self.num_attention_heads' is expected to be a positive integer representing the number
            of attention heads.
            - The last dimension in the returned tensor is determined by the shape of the input tensor.

        Example:
            ```python
            >>> attention = DisentangledSelfAttention()
            >>> input_tensor = torch.randn(32, 10, 512)
            >>> output_tensor = attention.swapaxes_for_scores(input_tensor)
            ```
        """
        new_x_shape = x.shape[:-1] + (self.num_attention_heads, -1)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_attentions=False,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
    ):
        """
        Call the module

        Args:
            hidden_states (`torch.FloatTensor`):
                Input states to the module usually the output from previous layer, it will be the Q,K and V in
                *Attention(Q,K,V)*

            attention_mask (`torch.BoolTensor`):
                An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
                sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
                th token.

            output_attentions (`bool`, optional):
                Whether return the attention matrix.

            query_states (`torch.FloatTensor`, optional):
                The *Q* state in *Attention(Q,K,V)*.

            relative_pos (`torch.LongTensor`):
                The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
                values ranging in [*-max_relative_positions*, *max_relative_positions*].

            rel_embeddings (`torch.FloatTensor`):
                The embedding of relative distances. It's a tensor of shape [\\(2 \\times
                \\text{max_relative_positions}\\), *hidden_size*].


        """
        if query_states is None:
            qp = self.in_proj(hidden_states)  # .split(self.all_head_size, dim=-1)
            query_layer, key_layer, value_layer = self.swapaxes_for_scores(qp).chunk(3, axis=-1)
        else:

            def linear(w, b, x):
                if b is not None:
                    return ops.matmul(x, w.t()) + b.t()
                return ops.matmul(x, w.t())  # + b.t()

            ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
            qkvw = [ops.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], axis=0) for k in range(3)]
            qkvb = [None] * 3

            q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype))
            k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)]
            query_layer, key_layer, value_layer = [self.swapaxes_for_scores(x) for x in [q, k, v]]

        query_layer = query_layer + self.swapaxes_for_scores(self.q_bias[None, None, :])
        value_layer = value_layer + self.swapaxes_for_scores(self.v_bias[None, None, :])

        rel_att = None
        # Take the dot product between "query" and "key" to get the raw attention scores.
        scale_factor = 1 + len(self.pos_att_type)
        scale = ops.sqrt(mindspore.tensor(query_layer.shape[-1], dtype=mindspore.float32) * scale_factor)
        query_layer = query_layer / scale.to(dtype=query_layer.dtype)
        attention_scores = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))
        if self.relative_attention:
            rel_embeddings = self.pos_dropout(rel_embeddings)
            rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)

        if rel_att is not None:
            attention_scores = attention_scores + rel_att

        # bxhxlxd
        if self.talking_head:
            attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        attention_probs = self.softmax(attention_scores, attention_mask)
        attention_probs = self.dropout(attention_probs)
        if self.talking_head:
            attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        context_layer = ops.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3)
        new_context_layer_shape = context_layer.shape[:-2] + (-1,)
        context_layer = context_layer.view(new_context_layer_shape)
        if output_attentions:
            return (context_layer, attention_probs)
        return context_layer

    def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
        """
        Perform disentangled attention bias calculation in the DisentangledSelfAttention class.

        Args:
            self (DisentangledSelfAttention): An instance of the DisentangledSelfAttention class.
            query_layer (Tensor): Input tensor representing the query layer of shape [batch_size, seq_length, hidden_size].
            key_layer (Tensor): Input tensor representing the key layer of shape [batch_size, seq_length, hidden_size].
            relative_pos (Tensor or None): Optional input tensor representing the relative positions of shape
                [batch_size, seq_length, seq_length] or [seq_length, seq_length].
                If None, relative positions are calculated using the build_relative_position function.
            rel_embeddings (Tensor): Input tensor representing the relative position embeddings of shape
                [2 * max_relative_positions, hidden_size].
            scale_factor (float): Scaling factor for the calculation.

        Returns:
            score (Tensor): Output tensor representing the disentangled attention bias score of shape
                [batch_size, seq_length, seq_length].

        Raises:
            ValueError: If the dimension of relative_pos is not 2 or 3 or 4.

        Note:
            - The method calculates the disentangled attention bias score using the query and key layers,
            relative positions, and relative position embeddings.
            - The attention bias score is calculated based on the 'c2p' and 'p2c' types of positional attention
            specified in the pos_att_type attribute of the DisentangledSelfAttention instance.
            - The score is returned as a Tensor.
        """
        if relative_pos is None:
            q = query_layer.shape[-2]
            relative_pos = build_relative_position(q, key_layer.shape[-2])
        if relative_pos.ndim == 2:
            relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
        elif relative_pos.ndim == 3:
            relative_pos = relative_pos.unsqueeze(1)
        # bxhxqxk
        elif relative_pos.ndim != 4:
            raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.ndim}")

        att_span = min(max(query_layer.shape[-2], key_layer.shape[-2]), self.max_relative_positions)
        relative_pos = relative_pos.long()
        rel_embeddings = rel_embeddings[
            self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
        ].unsqueeze(0)

        score = 0

        # content->position
        if "c2p" in self.pos_att_type:
            pos_key_layer = self.pos_proj(rel_embeddings)
            pos_key_layer = self.swapaxes_for_scores(pos_key_layer)
            c2p_att = ops.matmul(query_layer, pos_key_layer.swapaxes(-1, -2))
            c2p_pos = ops.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
            c2p_att = ops.gather_elements(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
            score += c2p_att

        # position->content
        if "p2c" in self.pos_att_type:
            pos_query_layer = self.pos_q_proj(rel_embeddings)
            pos_query_layer = self.swapaxes_for_scores(pos_query_layer)
            pos_query_layer /= ops.sqrt(mindspore.tensor(pos_query_layer.shape[-1], dtype=mindspore.float32) * scale_factor)
            if query_layer.shape[-2] != key_layer.shape[-2]:
                r_pos = build_relative_position(key_layer.shape[-2], key_layer.shape[-2])
            else:
                r_pos = relative_pos
            p2c_pos = ops.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
            p2c_att = ops.matmul(key_layer, pos_query_layer.swapaxes(-1, -2).to(dtype=key_layer.dtype))
            p2c_att = ops.gather_elements(
                p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
            ).swapaxes(-1, -2)

            if query_layer.shape[-2] != key_layer.shape[-2]:
                pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
                p2c_att = ops.gather_elements(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
            score += p2c_att

        return score

mindnlp.transformers.models.deberta.modeling_deberta.DisentangledSelfAttention.__init__(config)

Initializes a DisentangledSelfAttention object with the given configuration.

PARAMETER DESCRIPTION
self

The object itself.

TYPE: DisentangledSelfAttention

config

A configuration object that contains various parameters for the self-attention mechanism.

RETURNS DESCRIPTION

None

RAISES DESCRIPTION
ValueError

If the hidden size is not a multiple of the number of attention heads.

Note

The hidden size should be a multiple of the number of attention heads in order to ensure proper functioning of the self-attention mechanism.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
def __init__(self, config):
    """
    Initializes a DisentangledSelfAttention object with the given configuration.

    Args:
        self (DisentangledSelfAttention): The object itself.
        config: A configuration object that contains various parameters for the self-attention mechanism.

    Returns:
        None

    Raises:
        ValueError: If the hidden size is not a multiple of the number of attention heads.

    Note:
        The hidden size should be a multiple of the number of attention heads in order to ensure proper
        functioning of the self-attention mechanism.
    """
    super().__init__()
    if config.hidden_size % config.num_attention_heads != 0:
        raise ValueError(
            f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
            f"heads ({config.num_attention_heads})"
        )
    self.num_attention_heads = config.num_attention_heads
    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
    self.all_head_size = self.num_attention_heads * self.attention_head_size
    self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
    self.q_bias = Parameter(ops.zeros((self.all_head_size), dtype=mindspore.float32))
    self.v_bias = Parameter(ops.zeros((self.all_head_size), dtype=mindspore.float32))
    self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []

    self.relative_attention = getattr(config, "relative_attention", False)
    self.talking_head = getattr(config, "talking_head", False)

    if self.talking_head:
        self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
        self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)

    if self.relative_attention:
        self.max_relative_positions = getattr(config, "max_relative_positions", -1)
        if self.max_relative_positions < 1:
            self.max_relative_positions = config.max_position_embeddings
        self.pos_dropout = StableDropout(config.hidden_dropout_prob)

        if "c2p" in self.pos_att_type:
            self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
        if "p2c" in self.pos_att_type:
            self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)

    self.dropout = StableDropout(config.attention_probs_dropout_prob)
    self.softmax = XSoftmax(-1)

mindnlp.transformers.models.deberta.modeling_deberta.DisentangledSelfAttention.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)

Perform disentangled attention bias calculation in the DisentangledSelfAttention class.

PARAMETER DESCRIPTION
self

An instance of the DisentangledSelfAttention class.

TYPE: DisentangledSelfAttention

query_layer

Input tensor representing the query layer of shape [batch_size, seq_length, hidden_size].

TYPE: Tensor

key_layer

Input tensor representing the key layer of shape [batch_size, seq_length, hidden_size].

TYPE: Tensor

relative_pos

Optional input tensor representing the relative positions of shape [batch_size, seq_length, seq_length] or [seq_length, seq_length]. If None, relative positions are calculated using the build_relative_position function.

TYPE: Tensor or None

rel_embeddings

Input tensor representing the relative position embeddings of shape [2 * max_relative_positions, hidden_size].

TYPE: Tensor

scale_factor

Scaling factor for the calculation.

TYPE: float

RETURNS DESCRIPTION
score

Output tensor representing the disentangled attention bias score of shape [batch_size, seq_length, seq_length].

TYPE: Tensor

RAISES DESCRIPTION
ValueError

If the dimension of relative_pos is not 2 or 3 or 4.

Note
  • The method calculates the disentangled attention bias score using the query and key layers, relative positions, and relative position embeddings.
  • The attention bias score is calculated based on the 'c2p' and 'p2c' types of positional attention specified in the pos_att_type attribute of the DisentangledSelfAttention instance.
  • The score is returned as a Tensor.
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
    """
    Perform disentangled attention bias calculation in the DisentangledSelfAttention class.

    Args:
        self (DisentangledSelfAttention): An instance of the DisentangledSelfAttention class.
        query_layer (Tensor): Input tensor representing the query layer of shape [batch_size, seq_length, hidden_size].
        key_layer (Tensor): Input tensor representing the key layer of shape [batch_size, seq_length, hidden_size].
        relative_pos (Tensor or None): Optional input tensor representing the relative positions of shape
            [batch_size, seq_length, seq_length] or [seq_length, seq_length].
            If None, relative positions are calculated using the build_relative_position function.
        rel_embeddings (Tensor): Input tensor representing the relative position embeddings of shape
            [2 * max_relative_positions, hidden_size].
        scale_factor (float): Scaling factor for the calculation.

    Returns:
        score (Tensor): Output tensor representing the disentangled attention bias score of shape
            [batch_size, seq_length, seq_length].

    Raises:
        ValueError: If the dimension of relative_pos is not 2 or 3 or 4.

    Note:
        - The method calculates the disentangled attention bias score using the query and key layers,
        relative positions, and relative position embeddings.
        - The attention bias score is calculated based on the 'c2p' and 'p2c' types of positional attention
        specified in the pos_att_type attribute of the DisentangledSelfAttention instance.
        - The score is returned as a Tensor.
    """
    if relative_pos is None:
        q = query_layer.shape[-2]
        relative_pos = build_relative_position(q, key_layer.shape[-2])
    if relative_pos.ndim == 2:
        relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
    elif relative_pos.ndim == 3:
        relative_pos = relative_pos.unsqueeze(1)
    # bxhxqxk
    elif relative_pos.ndim != 4:
        raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.ndim}")

    att_span = min(max(query_layer.shape[-2], key_layer.shape[-2]), self.max_relative_positions)
    relative_pos = relative_pos.long()
    rel_embeddings = rel_embeddings[
        self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
    ].unsqueeze(0)

    score = 0

    # content->position
    if "c2p" in self.pos_att_type:
        pos_key_layer = self.pos_proj(rel_embeddings)
        pos_key_layer = self.swapaxes_for_scores(pos_key_layer)
        c2p_att = ops.matmul(query_layer, pos_key_layer.swapaxes(-1, -2))
        c2p_pos = ops.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
        c2p_att = ops.gather_elements(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
        score += c2p_att

    # position->content
    if "p2c" in self.pos_att_type:
        pos_query_layer = self.pos_q_proj(rel_embeddings)
        pos_query_layer = self.swapaxes_for_scores(pos_query_layer)
        pos_query_layer /= ops.sqrt(mindspore.tensor(pos_query_layer.shape[-1], dtype=mindspore.float32) * scale_factor)
        if query_layer.shape[-2] != key_layer.shape[-2]:
            r_pos = build_relative_position(key_layer.shape[-2], key_layer.shape[-2])
        else:
            r_pos = relative_pos
        p2c_pos = ops.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
        p2c_att = ops.matmul(key_layer, pos_query_layer.swapaxes(-1, -2).to(dtype=key_layer.dtype))
        p2c_att = ops.gather_elements(
            p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
        ).swapaxes(-1, -2)

        if query_layer.shape[-2] != key_layer.shape[-2]:
            pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
            p2c_att = ops.gather_elements(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
        score += p2c_att

    return score

mindnlp.transformers.models.deberta.modeling_deberta.DisentangledSelfAttention.forward(hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None)

Call the module

PARAMETER DESCRIPTION
hidden_states

Input states to the module usually the output from previous layer, it will be the Q,K and V in Attention(Q,K,V)

TYPE: `torch.FloatTensor`

attention_mask

An attention mask matrix of shape [B, N, N] where B is the batch size, N is the maximum sequence length in which element [i,j] = 1 means the i th token in the input can attend to the j th token.

TYPE: `torch.BoolTensor`

output_attentions

Whether return the attention matrix.

TYPE: `bool` DEFAULT: False

query_states

The Q state in Attention(Q,K,V).

TYPE: `torch.FloatTensor` DEFAULT: None

relative_pos

The relative position encoding between the tokens in the sequence. It's of shape [B, N, N] with values ranging in [-max_relative_positions, max_relative_positions].

TYPE: `torch.LongTensor` DEFAULT: None

rel_embeddings

The embedding of relative distances. It's a tensor of shape [\(2 \times \text{max_relative_positions}\), hidden_size].

TYPE: `torch.FloatTensor` DEFAULT: None

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
def forward(
    self,
    hidden_states,
    attention_mask,
    output_attentions=False,
    query_states=None,
    relative_pos=None,
    rel_embeddings=None,
):
    """
    Call the module

    Args:
        hidden_states (`torch.FloatTensor`):
            Input states to the module usually the output from previous layer, it will be the Q,K and V in
            *Attention(Q,K,V)*

        attention_mask (`torch.BoolTensor`):
            An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
            sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
            th token.

        output_attentions (`bool`, optional):
            Whether return the attention matrix.

        query_states (`torch.FloatTensor`, optional):
            The *Q* state in *Attention(Q,K,V)*.

        relative_pos (`torch.LongTensor`):
            The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
            values ranging in [*-max_relative_positions*, *max_relative_positions*].

        rel_embeddings (`torch.FloatTensor`):
            The embedding of relative distances. It's a tensor of shape [\\(2 \\times
            \\text{max_relative_positions}\\), *hidden_size*].


    """
    if query_states is None:
        qp = self.in_proj(hidden_states)  # .split(self.all_head_size, dim=-1)
        query_layer, key_layer, value_layer = self.swapaxes_for_scores(qp).chunk(3, axis=-1)
    else:

        def linear(w, b, x):
            if b is not None:
                return ops.matmul(x, w.t()) + b.t()
            return ops.matmul(x, w.t())  # + b.t()

        ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
        qkvw = [ops.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], axis=0) for k in range(3)]
        qkvb = [None] * 3

        q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype))
        k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)]
        query_layer, key_layer, value_layer = [self.swapaxes_for_scores(x) for x in [q, k, v]]

    query_layer = query_layer + self.swapaxes_for_scores(self.q_bias[None, None, :])
    value_layer = value_layer + self.swapaxes_for_scores(self.v_bias[None, None, :])

    rel_att = None
    # Take the dot product between "query" and "key" to get the raw attention scores.
    scale_factor = 1 + len(self.pos_att_type)
    scale = ops.sqrt(mindspore.tensor(query_layer.shape[-1], dtype=mindspore.float32) * scale_factor)
    query_layer = query_layer / scale.to(dtype=query_layer.dtype)
    attention_scores = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))
    if self.relative_attention:
        rel_embeddings = self.pos_dropout(rel_embeddings)
        rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)

    if rel_att is not None:
        attention_scores = attention_scores + rel_att

    # bxhxlxd
    if self.talking_head:
        attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

    attention_probs = self.softmax(attention_scores, attention_mask)
    attention_probs = self.dropout(attention_probs)
    if self.talking_head:
        attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

    context_layer = ops.matmul(attention_probs, value_layer)
    context_layer = context_layer.permute(0, 2, 1, 3)
    new_context_layer_shape = context_layer.shape[:-2] + (-1,)
    context_layer = context_layer.view(new_context_layer_shape)
    if output_attentions:
        return (context_layer, attention_probs)
    return context_layer

mindnlp.transformers.models.deberta.modeling_deberta.DisentangledSelfAttention.swapaxes_for_scores(x)

Performs a swap axis operation on the input tensor for scores in the DisentangledSelfAttention class.

PARAMETER DESCRIPTION
self

An instance of the DisentangledSelfAttention class.

TYPE: DisentangledSelfAttention

x

The input tensor to be operated on. It should have a shape of (batch_size, seq_length, hidden_size).

TYPE: Tensor

RETURNS DESCRIPTION

torch.Tensor: The transformed tensor after swapping the axes. The shape of the returned tensor is (batch_size, num_attention_heads, seq_length, -1).

Note
  • The method assumes that the input tensor has a rank of at least 3.
  • The parameter 'self.num_attention_heads' is expected to be a positive integer representing the number of attention heads.
  • The last dimension in the returned tensor is determined by the shape of the input tensor.
Example
>>> attention = DisentangledSelfAttention()
>>> input_tensor = torch.randn(32, 10, 512)
>>> output_tensor = attention.swapaxes_for_scores(input_tensor)
Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
def swapaxes_for_scores(self, x):
    """
    Performs a swap axis operation on the input tensor for scores in the DisentangledSelfAttention class.

    Args:
        self (DisentangledSelfAttention): An instance of the DisentangledSelfAttention class.
        x (torch.Tensor): The input tensor to be operated on.
            It should have a shape of (batch_size, seq_length, hidden_size).

    Returns:
        torch.Tensor: The transformed tensor after swapping the axes.
            The shape of the returned tensor is (batch_size, num_attention_heads, seq_length, -1).

    Raises:
        None.

    Note:
        - The method assumes that the input tensor has a rank of at least 3.
        - The parameter 'self.num_attention_heads' is expected to be a positive integer representing the number
        of attention heads.
        - The last dimension in the returned tensor is determined by the shape of the input tensor.

    Example:
        ```python
        >>> attention = DisentangledSelfAttention()
        >>> input_tensor = torch.randn(32, 10, 512)
        >>> output_tensor = attention.swapaxes_for_scores(input_tensor)
        ```
    """
    new_x_shape = x.shape[:-1] + (self.num_attention_heads, -1)
    x = x.view(new_x_shape)
    return x.permute(0, 2, 1, 3)

mindnlp.transformers.models.deberta.modeling_deberta.DropoutContext

Represents a context for managing dropout operations within a neural network.

This class defines a context for managing dropout operations, including setting the dropout rate, mask, scaling factor, and reusing masks across iterations. It is designed to be used within a neural network framework to control dropout behavior during training.

ATTRIBUTE DESCRIPTION
dropout

The dropout rate to be applied.

TYPE: float

mask

The mask array used for applying dropout.

TYPE: ndarray or None

scale

The scaling factor applied to the output.

TYPE: float

reuse_mask

Flag indicating whether to reuse the mask across iterations.

TYPE: bool

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
class DropoutContext:

    """
    Represents a context for managing dropout operations within a neural network.

    This class defines a context for managing dropout operations,
    including setting the dropout rate, mask, scaling factor, and reusing masks across iterations.
    It is designed to be used within a neural network framework to control dropout behavior during training.

    Attributes:
        dropout (float): The dropout rate to be applied.
        mask (ndarray or None): The mask array used for applying dropout.
        scale (float): The scaling factor applied to the output.
        reuse_mask (bool): Flag indicating whether to reuse the mask across iterations.

    """
    def __init__(self):
        """
        Initialize a DropoutContext object.

        Args:
            self: The instance of the DropoutContext class.

        Returns:
            None.

        Raises:
            None.
        """
        self.dropout = 0
        self.mask = None
        self.scale = 1
        self.reuse_mask = True

mindnlp.transformers.models.deberta.modeling_deberta.DropoutContext.__init__()

Initialize a DropoutContext object.

PARAMETER DESCRIPTION
self

The instance of the DropoutContext class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def __init__(self):
    """
    Initialize a DropoutContext object.

    Args:
        self: The instance of the DropoutContext class.

    Returns:
        None.

    Raises:
        None.
    """
    self.dropout = 0
    self.mask = None
    self.scale = 1
    self.reuse_mask = True

mindnlp.transformers.models.deberta.modeling_deberta.StableDropout

Bases: Module

Optimized dropout module for stabilizing the training

PARAMETER DESCRIPTION
drop_prob

the dropout probabilities

TYPE: float

Source code in mindnlp/transformers/models/deberta/modeling_deberta.py
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
class StableDropout(nn.Module):
    """
    Optimized dropout module for stabilizing the training

    Args:
        drop_prob (float): the dropout probabilities
    """
    def __init__(self, drop_prob):
        """Initialize the StableDropout object.

        This method is called when a new instance of the StableDropout class is created.
        It initializes the object with the given drop probability and sets the count and context_stack attributes to
        their initial values.

        Args:
            self (StableDropout): The instance of the StableDropout class.
            drop_prob (float): The probability of dropping a value during dropout. Must be between 0 and 1 (inclusive).

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.drop_prob = drop_prob
        self.count = 0
        self.context_stack = None

    def forward(self, x):
        """
        Call the module

        Args:
            x (`mindspore.tensor`): The input tensor to apply dropout
        """
        if self.training and self.drop_prob > 0:
            return XDropout(self.get_context())(x)
        return x

    def clear_context(self):
        """
        Clears the context of the StableDropout class.

        Args:
            self (StableDropout): An instance of the StableDropout class.

        Returns:
            None.

        Raises:
            None.
        """
        self.count = 0
        self.context_stack = None

    def init_context(self, reuse_mask=