encodec
mindnlp.transformers.models.encodec.modeling_encodec
¶
MindSpore EnCodec model.
mindnlp.transformers.models.encodec.modeling_encodec.EncodecConv1d
¶
Bases: Module
Conv1d with asymmetric or causal padding and normalization.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecConv1d.__init__(config, in_channels, out_channels, kernel_size, stride=1, dilation=1)
¶
Initialize the EncodecConv1d class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing various settings.
|
in_channels |
The number of input channels.
TYPE:
|
out_channels |
The number of output channels.
TYPE:
|
kernel_size |
The size of the convolutional kernel.
TYPE:
|
stride |
The stride value for the convolution operation. Defaults to 1.
TYPE:
|
dilation |
The dilation value for the convolution operation. Defaults to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Warning
|
If both |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecConv1d.forward(hidden_states)
¶
Method 'forward' in the class 'EncodecConv1d'.
PARAMETER | DESCRIPTION |
---|---|
self |
Instance of EncodecConv1d class.
TYPE:
|
hidden_states |
Input tensor of shape [batch_size, channels, sequence_length] representing hidden states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method does not return any value but updates the hidden_states tensor after applying convolution and normalization. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the normalization type is not supported. |
RuntimeError
|
If the convolution operation fails. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecConvTranspose1d
¶
Bases: Module
ConvTranspose1d with asymmetric or causal padding and normalization.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecConvTranspose1d.__init__(config, in_channels, out_channels, kernel_size, stride=1)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
An object containing configuration parameters.
TYPE:
|
in_channels |
The number of input channels.
TYPE:
|
out_channels |
The number of output channels.
TYPE:
|
kernel_size |
The size of the convolutional kernel.
TYPE:
|
stride |
The stride of the convolution. Defaults to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If self.norm_type is not one of 'weight_norm' or 'time_group_norm'. |
ValueError
|
If trim_right_ratio is not equal to 1.0 and causal convolutions are not used. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecConvTranspose1d.forward(hidden_states)
¶
This method forwards a 1D transposed convolutional layer for the EncodecConvTranspose1d class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecConvTranspose1d class.
|
hidden_states |
A tensor representing the input hidden states to be processed by the transposed convolution layer.
|
RETURNS | DESCRIPTION |
---|---|
None
|
However, the method modifies the hidden_states tensor to apply the transposed convolution operation. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the norm_type attribute is not recognized or supported. |
RuntimeError
|
If an error occurs during the transposed convolution operation. |
AttributeError
|
If the required attributes are not found in the instance of the EncodecConvTranspose1d class. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecDecoder
¶
Bases: Module
SEANet decoder as used by EnCodec.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecDecoder.__init__(config)
¶
init
Initializes an instance of the EncodecDecoder class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An instance of the EncodecConfig class containing configuration parameters for the decoder.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecDecoder.forward(hidden_states)
¶
Construct method in the EncodecDecoder class.
PARAMETER | DESCRIPTION |
---|---|
self |
Instance of the EncodecDecoder class.
TYPE:
|
hidden_states |
The hidden states to be processed by the method. This parameter is a list of hidden states that will be sequentially processed by each layer in the model. It is expected that each hidden state conforms to the input requirements of the layers.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method does not return any value directly but modifies the hidden_states in place. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecDecoderOutput
dataclass
¶
Bases: ModelOutput
PARAMETER | DESCRIPTION |
---|---|
audio_values |
Decoded audio values, obtained using the decoder part of Encodec.
TYPE:
|
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
65 66 67 68 69 70 71 72 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEncoder
¶
Bases: Module
SEANet encoder as used by EnCodec.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEncoder.__init__(config)
¶
This method initializes an instance of the EncodecEncoder class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecEncoder class.
|
config |
An instance of the EncodecConfig class containing configuration parameters for the encoder.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method initializes the layers of the encoder and assigns them to the 'layers' attribute of the EncodecEncoder instance. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEncoder.forward(hidden_states)
¶
Constructs the encoded hidden states by applying each layer in the EncodecEncoder.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecEncoder class.
TYPE:
|
hidden_states |
The input hidden states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. It updates the hidden_states in place. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEncoderOutput
dataclass
¶
Bases: ModelOutput
PARAMETER | DESCRIPTION |
---|---|
audio_codes |
Discret code embeddings computed using
TYPE:
|
audio_scales |
Scaling factor for each
TYPE:
|
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
52 53 54 55 56 57 58 59 60 61 62 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook
¶
Bases: Module
Codebook with Euclidean distance.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.__init__(config)
¶
Initializes an instance of the EncodecEuclideanCodebook class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object of the EncodecConfig class that contains the configuration parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.decode(embed_ind)
¶
Decodes an embedding index using the Euclidean codebook method.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecEuclideanCodebook class.
TYPE:
|
embed_ind |
The index of the embedding to decode.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.encode(hidden_states)
¶
Encodes the hidden states using the Euclidean Codebook method.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecEuclideanCodebook class.
|
hidden_states |
A numpy array containing the hidden states to be encoded. The shape of the array is expected to be (batch_size, sequence_length, hidden_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
A numpy array containing the encoded indices. The shape of the array is the same as the input hidden_states, except for the last dimension which is reduced to represent the indices of the codebook. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.quantize(hidden_states)
¶
Quantizes the given hidden states using the Euclidean codebook encoding method.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecEuclideanCodebook class.
TYPE:
|
hidden_states |
A tensor representing the hidden states to be quantized.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecLSTM
¶
Bases: Module
LSTM without worrying about the hidden state, nor the layout of the data. Expects input as convolutional layout.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecLSTM.__init__(config, dimension)
¶
Initializes an instance of the EncodecLSTM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecLSTM class.
TYPE:
|
config |
The configuration object containing various settings.
TYPE:
|
dimension |
The dimension of the LSTM input and output.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecLSTM.forward(hidden_states)
¶
Constructs the encoded hidden states using the Long Short-Term Memory (LSTM) algorithm.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecLSTM class.
TYPE:
|
hidden_states |
The hidden states to be encoded. Should have shape (batch_size, sequence_length, input_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
torch.Tensor: The encoded hidden states. Has shape (sequence_length, input_size, batch_size). |
Note
- The 'hidden_states' tensor is expected to have the batch dimension as the first dimension, the sequence dimension as the second dimension, and the input size dimension as the third dimension.
- The 'hidden_states' tensor is permuted twice to match the expected input format for the LSTM.
- The LSTM is applied on the permuted 'hidden_states' tensor, and its output is added element-wise to the original 'hidden_states' tensor.
- The resulting tensor is permuted again to match the expected output format.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel
¶
Bases: EncodecPreTrainedModel
EncodecModel
This class represents an Encodec model for audio encoding and decoding. It is a subclass of EncodecPreTrainedModel.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration instance used to initialize the model.
TYPE:
|
encoder |
The encoder module of the model.
TYPE:
|
decoder |
The decoder module of the model.
TYPE:
|
quantizer |
The quantizer module of the model. |
bits_per_codebook |
The number of bits per codebook.
TYPE:
|
post_init |
A method called after the initialization of the model.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
get_encoder |
Returns the encoder module of the model. |
get_decoder |
Returns the decoder module of the model. |
_encode_frame |
Encodes the given input using the underlying VQVAE. |
encode |
Encodes the input audio waveform into discrete codes. |
_linear_overlap_add |
Applies linear overlap-add to the given frames. |
_decode_frame |
Decodes the given codes into an output audio waveform. |
decode |
Decodes the given frames into an output audio waveform. |
forward |
Constructs the model. |
Example
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, EncodecModel
...
>>> dataset = load_dataset("ashraq/esc50")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
...
>>> model_id = "facebook/encodec_24khz"
>>> model = EncodecModel.from_pretrained(model_id)
>>> processor = AutoProcessor.from_pretrained(model_id)
...
>>> inputs = processor(raw_audio=audio_sample, return_tensors="pt")
...
>>> outputs = model(**inputs)
>>> audio_codes = outputs.audio_codes
>>> audio_values = outputs.audio_values
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel.__init__(config)
¶
Initializes an instance of the EncodecModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecModel class.
|
config |
The configuration object containing settings for the EncodecModel. This parameter is required and must be of type EncodecConfig. It specifies the configuration settings for the EncodecModel.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the codebook_size specified in the config is not a power of 2. This exception is raised when the codebook_size is invalid. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel.decode(audio_codes, audio_scales, padding_mask=None, return_dict=None)
¶
Decodes the given frames into an output audio waveform.
Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be trimmed.
PARAMETER | DESCRIPTION |
---|---|
audio_codes |
Discret code embeddings computed using
TYPE:
|
audio_scales |
Scaling factor for each
TYPE:
|
padding_mask |
Padding mask used to pad the
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel.encode(input_values, padding_mask=None, bandwidth=None, return_dict=None)
¶
Encodes the input audio waveform into discrete codes.
PARAMETER | DESCRIPTION |
---|---|
input_values |
Float values of the input audio waveform.
TYPE:
|
padding_mask |
Padding mask used to pad the
TYPE:
|
bandwidth |
The target bandwidth. Must be one of
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor, Optional[Tensor]], EncodecEncoderOutput]
|
A list of frames containing the discrete encoded codes for the input audio waveform, along with rescaling |
Union[Tuple[Tensor, Optional[Tensor]], EncodecEncoderOutput]
|
factors for each chunk when |
Union[Tuple[Tensor, Optional[Tensor]], EncodecEncoderOutput]
|
|
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel.forward(input_values, padding_mask=None, bandwidth=None, audio_codes=None, audio_scales=None, return_dict=None)
¶
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor, Tensor], EncodecOutput]
|
Union[Tuple[mindspore.Tensor, mindspore.Tensor], EncodecOutput] |
Example
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, EncodecModel
...
>>> dataset = load_dataset("ashraq/esc50")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
...
>>> model_id = "facebook/encodec_24khz"
>>> model = EncodecModel.from_pretrained(model_id)
>>> processor = AutoProcessor.from_pretrained(model_id)
...
>>> inputs = processor(raw_audio=audio_sample, return_tensors="pt")
...
>>> outputs = model(**inputs)
>>> audio_codes = outputs.audio_codes
>>> audio_values = outputs.audio_values
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel.get_decoder()
¶
This method returns the decoder object associated with the EncodecModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecModel class. It is used to access the attributes and methods of the class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value explicitly, as it directly retrieves and returns the decoder object associated with the instance of the EncodecModel class. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecModel.get_encoder()
¶
This method returns the encoder associated with the EncodecModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecModel class. It is used to access the attributes and methods of the class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
encoder
|
This method returns the encoder associated with the EncodecModel instance. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecOutput
dataclass
¶
Bases: ModelOutput
PARAMETER | DESCRIPTION |
---|---|
audio_codes |
Discret code embeddings computed using
TYPE:
|
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
39 40 41 42 43 44 45 46 47 48 49 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResidualVectorQuantizer
¶
Bases: Module
Residual Vector Quantizer.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResidualVectorQuantizer.__init__(config)
¶
Initializes an instance of the EncodecResidualVectorQuantizer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object of the EncodecConfig class that holds configuration parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResidualVectorQuantizer.decode(codes)
¶
Decode the given codes to the quantized representation.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
742 743 744 745 746 747 748 749 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResidualVectorQuantizer.encode(embeddings, bandwidth=None)
¶
Encode a given input tensor with the specified frame rate at the given bandwidth. The RVQ encode method sets the appropriate number of quantizers to use and returns indices for each quantizer.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResidualVectorQuantizer.get_num_quantizers_for_bandwidth(bandwidth=None)
¶
Return num_quantizers based on specified target bandwidth.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
718 719 720 721 722 723 724 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResnetBlock
¶
Bases: Module
Residual block from SEANet model as used by EnCodec.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResnetBlock.__init__(config, dim, dilations)
¶
Initialize the EncodecResnetBlock.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
An object containing configuration parameters for the block.
TYPE:
|
dim |
The dimension of the input data.
TYPE:
|
dilations |
A list of dilation factors for each convolutional layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if the number of kernel sizes does not match the number of dilations provided. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecResnetBlock.forward(hidden_states)
¶
Constructs the EncodecResnetBlock.
This method applies a series of layers to the given hidden_states to forward the EncodecResnetBlock. The method returns the combined result of the residual connection and the output of the layers.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the EncodecResnetBlock class.
TYPE:
|
hidden_states |
The input hidden states to be passed through the block layers. Expected shape: (batch_size, hidden_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
The combined result of the residual connection and the output of the block layers. Expected shape: (batch_size, hidden_size). |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecVectorQuantization
¶
Bases: Module
Vector quantization implementation. Currently supports only euclidean distance.
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecVectorQuantization.__init__(config)
¶
Initializes an instance of the EncodecVectorQuantization class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecVectorQuantization class.
|
config |
An object of the EncodecConfig class that contains the configuration data for the vector quantization.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecVectorQuantization.decode(embed_ind)
¶
Decode the embedded indices to obtain the quantized vectors.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodecVectorQuantization class. |
embed_ind |
A 3D tensor containing the embedded indices. Its shape should be (batch_size, num_channels, num_embeddings).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
quantize
|
A 3D tensor representing the quantized vectors after decoding. The shape of the tensor is (batch_size, num_embeddings, num_channels).
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the embed_ind tensor is not of the expected shape. |
RuntimeError
|
If there is an issue with decoding the embedded indices. |
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
|
mindnlp.transformers.models.encodec.modeling_encodec.EncodecVectorQuantization.encode(hidden_states)
¶
Method to encode hidden states using vector quantization.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the EncodeVectorQuantization class.
TYPE:
|
hidden_states |
The hidden states to be encoded. Should be in the shape of (batch_size, hidden_dim, sequence_length).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
embed_in
|
The encoded representation of the hidden states.
TYPE:
|
Source code in mindnlp/transformers/models/encodec/modeling_encodec.py
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
|
mindnlp.transformers.models.encodec.configuration_encodec
¶
Encodec Model config
mindnlp.transformers.models.encodec.configuration_encodec.EncodecConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of an [EncodecModel
]. It is used to instantiate a
Encodec model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
facebook/encodec_24khz architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
target_bandwidths |
The range of diffent bandwiths the model can encode audio with.
TYPE:
|
sampling_rate |
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
TYPE:
|
audio_channels |
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
TYPE:
|
normalize |
Whether the audio shall be normalized when passed.
TYPE:
|
chunk_length_s |
If defined the audio is pre-processed into chunks of lengths
TYPE:
|
overlap |
Defines the overlap between each chunk. It is used to compute the
TYPE:
|
hidden_size |
Intermediate representation dimension.
TYPE:
|
num_filters |
Number of convolution kernels of first
TYPE:
|
num_residual_layers |
Number of residual layers.
TYPE:
|
upsampling_ratios |
Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here that must match the decoder order.
TYPE:
|
norm_type |
Normalization method. Should be in
TYPE:
|
kernel_size |
Kernel size for the initial convolution.
TYPE:
|
last_kernel_size |
Kernel size for the last convolution layer.
TYPE:
|
residual_kernel_size |
Kernel size for the residual layers.
TYPE:
|
dilation_growth_rate |
How much to increase the dilation with each layer.
TYPE:
|
use_causal_conv |
Whether to use fully causal convolution.
TYPE:
|
pad_mode |
Padding mode for the convolutions.
TYPE:
|
compress |
Reduced dimensionality in residual branches (from Demucs v3).
TYPE:
|
num_lstm_layers |
Number of LSTM layers at the end of the encoder.
TYPE:
|
trim_right_ratio |
Ratio for trimming at the right of the transposed convolution under the
TYPE:
|
codebook_size |
Number of discret codes that make up VQVAE.
TYPE:
|
codebook_dim |
Dimension of the codebook vectors. If not defined, uses
TYPE:
|
use_conv_shortcut |
Whether to use a convolutional layer as the 'skip' connection in the
TYPE:
|
Example
>>> from transformers import EncodecModel, EncodecConfig
...
>>> # Initializing a "facebook/encodec_24khz" style configuration
>>> configuration = EncodecConfig()
...
>>> # Initializing a model (with random weights) from the "facebook/encodec_24khz" style configuration
>>> model = EncodecModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/encodec/configuration_encodec.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
mindnlp.transformers.models.encodec.configuration_encodec.EncodecConfig.chunk_length: Optional[int]
property
¶
chunk_length
mindnlp.transformers.models.encodec.configuration_encodec.EncodecConfig.chunk_stride: Optional[int]
property
¶
chunk_stride
mindnlp.transformers.models.encodec.configuration_encodec.EncodecConfig.frame_rate: int
property
¶
frame_rate
mindnlp.transformers.models.encodec.configuration_encodec.EncodecConfig.num_quantizers: int
property
¶
num_quantizers
mindnlp.transformers.models.encodec.configuration_encodec.EncodecConfig.__init__(target_bandwidths=[1.5, 3.0, 6.0, 12.0, 24.0], sampling_rate=24000, audio_channels=1, normalize=False, chunk_length_s=None, overlap=None, hidden_size=128, num_filters=32, num_residual_layers=1, upsampling_ratios=[8, 5, 4, 2], norm_type='weight_norm', kernel_size=7, last_kernel_size=7, residual_kernel_size=3, dilation_growth_rate=2, use_causal_conv=True, pad_mode='reflect', compress=2, num_lstm_layers=2, trim_right_ratio=1.0, codebook_size=1024, codebook_dim=None, use_conv_shortcut=True, **kwargs)
¶
Initializes an instance of the EncodecConfig class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
target_bandwidths |
List of target bandwidths in kHz. Default is [1.5, 3.0, 6.0, 12.0, 24.0].
TYPE:
|
sampling_rate |
The audio sampling rate in Hz. Default is 24000.
TYPE:
|
audio_channels |
The number of audio channels. Default is 1.
TYPE:
|
normalize |
Flag indicating whether to normalize the audio. Default is False.
TYPE:
|
chunk_length_s |
The length of audio chunks in seconds. Default is None.
TYPE:
|
overlap |
The overlap ratio between audio chunks. Default is None.
TYPE:
|
hidden_size |
The size of the hidden state in the model. Default is 128.
TYPE:
|
num_filters |
The number of filters in the model. Default is 32.
TYPE:
|
num_residual_layers |
The number of residual layers in the model. Default is 1.
TYPE:
|
upsampling_ratios |
List of upsampling ratios. Default is [8, 5, 4, 2].
TYPE:
|
norm_type |
The type of normalization. Must be either 'weight_norm' or 'time_group_norm'. Default is 'weight_norm'.
TYPE:
|
kernel_size |
The size of the convolutional kernel. Default is 7.
TYPE:
|
last_kernel_size |
The size of the last convolutional kernel. Default is 7.
TYPE:
|
residual_kernel_size |
The size of the residual convolutional kernel. Default is 3.
TYPE:
|
dilation_growth_rate |
The growth rate of dilation in the model. Default is 2.
TYPE:
|
use_causal_conv |
Flag indicating whether to use causal convolution. Default is True.
TYPE:
|
pad_mode |
The padding mode for convolution. Default is 'reflect'.
TYPE:
|
compress |
The compression factor for audio. Default is 2.
TYPE:
|
num_lstm_layers |
The number of LSTM layers in the model. Default is 2.
TYPE:
|
trim_right_ratio |
The ratio of trimming audio from the right. Default is 1.0.
TYPE:
|
codebook_size |
The size of the codebook. Default is 1024.
TYPE:
|
codebook_dim |
The dimension of the codebook. Default is equal to hidden_size if not provided.
TYPE:
|
use_conv_shortcut |
Flag indicating whether to use convolution shortcut. Default is True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If norm_type is not 'weight_norm' or 'time_group_norm'. |
Source code in mindnlp/transformers/models/encodec/configuration_encodec.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
mindnlp.transformers.models.encodec.feature_extraction_encodec
¶
Feature extractor class for EnCodec.
mindnlp.transformers.models.encodec.feature_extraction_encodec.EncodecFeatureExtractor
¶
Bases: SequenceFeatureExtractor
Constructs an EnCodec feature extractor.
This feature extractor inherits from [~feature_extraction_sequence_utils.SequenceFeatureExtractor
] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
Instantiating a feature extractor with the defaults will yield a similar configuration to that of the facebook/encodec_24khz architecture.
PARAMETER | DESCRIPTION |
---|---|
feature_size |
The feature dimension of the extracted features. Use 1 for mono, 2 for stereo.
TYPE:
|
sampling_rate |
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
TYPE:
|
padding_value |
The value that is used to fill the padding values.
TYPE:
|
chunk_length_s |
If defined the audio is pre-processed into chunks of lengths
TYPE:
|
overlap |
Defines the overlap between each chunk. It is used to compute the
TYPE:
|
Source code in mindnlp/transformers/models/encodec/feature_extraction_encodec.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
mindnlp.transformers.models.encodec.feature_extraction_encodec.EncodecFeatureExtractor.chunk_length: Optional[int]
property
¶
This is a property because you might want to change the chunk_length_s on the fly¶
mindnlp.transformers.models.encodec.feature_extraction_encodec.EncodecFeatureExtractor.chunk_stride: Optional[int]
property
¶
This is a property because you might want to change the chunk_length_s on the fly¶
mindnlp.transformers.models.encodec.feature_extraction_encodec.EncodecFeatureExtractor.__call__(raw_audio, padding=None, truncation=False, max_length=None, return_tensors=None, sampling_rate=None)
¶
Main method to featurize and prepare for the model one or several sequence(s).
PARAMETER | DESCRIPTION |
---|---|
raw_audio |
The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. The numpy array must be of shape
TYPE:
|
padding |
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among:
TYPE:
|
truncation |
Activates truncation to cut input sequences longer than
TYPE:
|
max_length |
Maximum length of the returned list and optionally padding length (see above).
TYPE:
|
return_tensors |
If set, will return tensors instead of list of python integers. Acceptable values are:
TYPE:
|
sampling_rate |
The sampling rate at which the
TYPE:
|
Source code in mindnlp/transformers/models/encodec/feature_extraction_encodec.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
mindnlp.transformers.models.encodec.feature_extraction_encodec.EncodecFeatureExtractor.__init__(feature_size=1, sampling_rate=24000, padding_value=0.0, chunk_length_s=None, overlap=None, **kwargs)
¶
Initialize the EncodecFeatureExtractor class with the given parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
feature_size |
The size of the feature. Default is 1.
TYPE:
|
sampling_rate |
The sampling rate in Hz. Default is 24000.
TYPE:
|
padding_value |
The value used for padding. Default is 0.0.
TYPE:
|
chunk_length_s |
The length of each chunk in seconds. Default is None.
TYPE:
|
overlap |
The overlap between chunks in seconds. Default is None.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/encodec/feature_extraction_encodec.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|