ernie
mindnlp.transformers.models.ernie.modeling_ernie
¶
MindSpore ERNIE model.
mindnlp.transformers.models.ernie.modeling_ernie.ErnieAttention
¶
Bases: Module
This class represents the ErnieAttention module, which is a part of the ERNIE (Enhanced Representation through kNowledge Integration) model. The ErnieAttention module is used for self-attention mechanism and output processing. It includes methods for head pruning and attention forwardion. This class inherits from nn.Module and is designed to be used within the ERNIE model architecture for natural language processing tasks.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieAttention.__init__(config, position_embedding_type=None)
¶
Initializes an instance of the ErnieAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
The configuration object containing the model's settings and hyperparameters.
TYPE:
|
position_embedding_type |
The type of position embedding to be used. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieAttention.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)
¶
This method forwards the attention mechanism for the Ernie model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieAttention class.
TYPE:
|
hidden_states |
The input hidden states for the attention mechanism.
TYPE:
|
attention_mask |
An optional mask tensor for the attention scores. Defaults to None.
TYPE:
|
head_mask |
An optional mask tensor for controlling the attention heads. Defaults to None.
TYPE:
|
encoder_hidden_states |
An optional tensor containing the hidden states of the encoder. Defaults to None.
TYPE:
|
encoder_attention_mask |
An optional mask tensor for the encoder attention scores. Defaults to None.
TYPE:
|
past_key_value |
An optional tuple containing the past key and value tensors. Defaults to None.
TYPE:
|
output_attentions |
A flag indicating whether to output attentions. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the attention output tensor and any additional outputs from the attention mechanism. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieAttention.prune_heads(heads)
¶
This method 'prune_heads' is defined within the class 'ErnieAttention' and is responsible for pruning the attention heads based on the provided 'heads' parameter.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieAttention class. This parameter represents the instance of the ErnieAttention class which contains the attention heads to be pruned.
TYPE:
|
heads |
A list of integers representing the indices of attention heads to be pruned. This parameter specifies the indices of the attention heads that need to be pruned from the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. It operates by modifying the attributes of the ErnieAttention instance in-place. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieEmbeddings
¶
Bases: Module
Construct the embeddings from word, position and token_type embeddings.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieEmbeddings.__init__(config)
¶
Initializes an instance of the ErnieEmbeddings class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieEmbeddings class.
|
config |
An object containing configuration parameters for the ErnieEmbeddings class. The config object should have the following attributes:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieEmbeddings.forward(input_ids=None, token_type_ids=None, task_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0)
¶
Constructs the embeddings for the ERNIE model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieEmbeddings class.
TYPE:
|
input_ids |
The input tensor of shape [batch_size, sequence_length].
TYPE:
|
token_type_ids |
The token type tensor of shape [batch_size, sequence_length].
TYPE:
|
task_type_ids |
The task type tensor of shape [batch_size, sequence_length].
TYPE:
|
position_ids |
The position ids tensor of shape [batch_size, sequence_length].
TYPE:
|
inputs_embeds |
The input embeddings tensor of shape [batch_size, sequence_length, embedding_size].
TYPE:
|
past_key_values_length |
The length of past key values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The embeddings tensor of shape [batch_size, sequence_length, embedding_size]. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieEncoder
¶
Bases: Module
The ErnieEncoder class represents a multi-layer Ernie (Enhanced Representation through kNowledge Integration) encoder module for processing sequential inputs. It inherits from the nn.Module class.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration settings for the ErnieEncoder.
|
layer |
A list of ErnieLayer instances representing the individual layers of the encoder.
|
gradient_checkpointing |
A boolean indicating whether gradient checkpointing is enabled.
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the ErnieEncoder with the provided configuration. |
forward |
Constructs the ErnieEncoder module with the given inputs and returns the output either as a tuple of tensors or as a BaseModelOutputWithPastAndCrossAttentions object. |
Notes
- The forward method supports various optional input parameters and returns different types of outputs based on the provided arguments.
- The class supports gradient checkpointing when enabled during training.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieEncoder.__init__(config)
¶
Initialize the ErnieEncoder class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieEncoder class.
TYPE:
|
config |
A dictionary containing configuration parameters for the ErnieEncoder. It should include the following keys:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieEncoder.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True)
¶
Constructs the ErnieEncoder.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieEncoder class.
TYPE:
|
hidden_states |
The input hidden states of the encoder.
TYPE:
|
attention_mask |
The attention mask tensor. Defaults to None.
TYPE:
|
head_mask |
The head mask tensor. Defaults to None.
TYPE:
|
encoder_hidden_states |
The hidden states of the encoder. Defaults to None.
TYPE:
|
encoder_attention_mask |
The attention mask tensor for the encoder. Defaults to None.
TYPE:
|
past_key_values |
The past key values. Defaults to None.
TYPE:
|
use_cache |
Whether to use cache. Defaults to None.
TYPE:
|
output_attentions |
Whether to output attentions. Defaults to False.
TYPE:
|
output_hidden_states |
Whether to output hidden states. Defaults to False.
TYPE:
|
return_dict |
Whether to return a dictionary. Defaults to True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], BaseModelOutputWithPastAndCrossAttentions]
|
Union[Tuple[mindspore.Tensor], BaseModelOutputWithPastAndCrossAttentions]: The output of the ErnieEncoder. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForCausalLM
¶
Bases: ErniePreTrainedModel
This class represents a causal language modeling model based on the ERNIE (Enhanced Representation through kNowledge Integration) architecture. It is designed for generating text predictions based on input sequences, with a focus on predicting the next word in a sequence. The model includes functionality for forwarding the model, setting and getting output embeddings, preparing inputs for text generation, and reordering cache during generation.
The class includes methods for initializing the model, forwarding the model for inference or training, setting and getting output embeddings, preparing inputs for text generation, and reordering cache during generation.
The 'forward' method forwards the model for inference or training, taking various input tensors such as input ids, attention masks, token type ids, and more. It returns the model outputs including the language modeling loss and predictions.
The 'prepare_inputs_for_generation' method prepares input tensors for text generation, including handling past key values and attention masks. It returns a dictionary containing the input ids, attention mask, past key values, and use_cache flag.
The '_reorder_cache' method reorders the past key values during generation based on the beam index used for parallel decoding.
For more detailed information on each method's parameters and return values, refer to the method docstrings within the class code.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForCausalLM.__init__(config)
¶
Initializes an instance of the ErnieForCausalLM
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing various settings for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForCausalLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in
TYPE:
|
labels |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
TYPE:
|
use_cache |
If set to
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForCausalLM.get_output_embeddings()
¶
Retrieve the output embeddings from the ErnieForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
decoder
|
This method returns the output embeddings from the model's predictions decoder layer. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs)
¶
Prepare inputs for generation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
input_ids |
The input tensor containing the input ids.
TYPE:
|
past_key_values |
The tuple containing past key values. Defaults to None.
TYPE:
|
attention_mask |
The attention mask tensor. Defaults to None.
TYPE:
|
use_cache |
Flag indicating whether to use cache. Defaults to True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the prepared input_ids, attention_mask, past_key_values, and use_cache. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If input_ids shape is incompatible with past_key_values. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the ErnieForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set as output embeddings. It should be of the same shape as the existing embeddings.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Note
This method updates the output embeddings of the ErnieForCausalLM model to the provided new_embeddings. The new_embeddings should be of the same shape as the existing embeddings.
Example
>>> model = ErnieForCausalLM()
>>> new_embeddings = torch.Tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
>>> model.set_output_embeddings(new_embeddings)
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMaskedLM
¶
Bases: ErniePreTrainedModel
This class represents a model for Masked Language Modeling using the ERNIE (Enhanced Representation through kNowledge Integration) architecture. It is designed for generating predictions for masked tokens within a sequence of text.
The class inherits from ErniePreTrainedModel and implements methods for initializing the model, getting and setting output embeddings, forwarding the model for training or inference, and preparing inputs for text generation.
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the ErnieForMaskedLM model with the given configuration. |
get_output_embeddings |
Retrieves the output embeddings from the model. |
set_output_embeddings |
Sets new output embeddings for the model. |
forward |
Constructs the model for training or inference, computing the masked language modeling loss and prediction scores. |
prepare_inputs_for_generation |
Prepares inputs for text generation, including handling padding and dummy tokens. |
Note
This class assumes the existence of the ErnieModel and ErnieOnlyMLMHead classes for the ERNIE architecture.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMaskedLM.__init__(config)
¶
Initializes an instance of the 'ErnieForMaskedLM' class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current object instance.
|
config |
An instance of the 'Config' class containing the configuration settings for the model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Description
This method initializes the 'ErnieForMaskedLM' class by setting the configuration and initializing the 'ErnieModel' and 'ErnieOnlyMLMHead' objects.
The 'config' parameter is an instance of the 'Config' class, which contains various configuration settings for the model. This method also logs a warning if the 'is_decoder' flag in the 'config' parameter is set to True, indicating that the model is being used as a decoder.
The 'ErnieModel' object is initialized with the given 'config' and the 'add_pooling_layer' flag set to False.
The 'ErnieOnlyMLMHead' object is also initialized with the given 'config'.
Finally, the 'post_init' method is called to perform any additional initialization steps.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMaskedLM.get_output_embeddings()
¶
Retrieve the output embeddings from the ErnieForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ErnieForMaskedLM class. Represents the model object that contains the output embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns the output embeddings stored in the 'decoder' of the 'predictions' object within the ErnieForMaskedLM model. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMaskedLM.prepare_inputs_for_generation(input_ids, attention_mask=None, **model_kwargs)
¶
Prepare inputs for generation.
This method prepares input data for generation in the ErnieForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForMaskedLM class.
|
input_ids |
The input token IDs. Shape (batch_size, sequence_length).
TYPE:
|
attention_mask |
The attention mask tensor. Shape (batch_size, sequence_length).
TYPE:
|
**model_kwargs |
Additional model-specific keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the prepared input_ids and attention_mask. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the PAD token is not defined for generation. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMaskedLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the ErnieForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForMaskedLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the model's output. It can be any object that is compatible with the existing model's output embeddings. The new embeddings will replace the current embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMultipleChoice
¶
Bases: ErniePreTrainedModel
This class represents an Ernie model for multiple choice tasks. It inherits from the ErniePreTrainedModel class.
The ErnieForMultipleChoice class initializes an Ernie model with the given configuration. It forwards the model by passing input tensors through the Ernie model layers and applies dropout and classification layers to generate the logits for multiple choice classification.
Example
>>> model = ErnieForMultipleChoice(config)
>>> outputs = model.forward(input_ids, attention_mask, token_type_ids, task_type_ids, position_ids, head_mask, inputs_embeds, labels, output_attentions, output_hidden_states, return_dict)
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the ErnieForMultipleChoice class with the given configuration. |
forward |
Constructs the Ernie model for multiple choice tasks and returns the model outputs. |
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[mindspore.Tensor], MultipleChoiceModelOutput]: The model outputs, which can include the loss, logits, hidden states, and attentions. |
Note
The labels argument should be provided for computing the multiple choice classification loss. Indices in labels should be in the range [0, num_choices-1], where num_choices is the size of the second dimension of the input tensors (input_ids).
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMultipleChoice.__init__(config)
¶
Initializes an instance of the ErnieForMultipleChoice class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForMultipleChoice class.
TYPE:
|
config |
The configuration object containing various hyperparameters and settings for the model initialization.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input parameters are not of the expected types. |
ValueError
|
If the configuration object is missing required attributes. |
RuntimeError
|
If there are issues during model initialization or post-initialization steps. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForMultipleChoice.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForNextSentencePrediction
¶
Bases: ErniePreTrainedModel
ErnieForNextSentencePrediction is a class that represents a model for next sentence prediction using the ERNIE (Enhanced Representation through kNowledge IntEgration) architecture. This class inherits from the ErniePreTrainedModel class.
The ERNIE model is designed for various natural language processing tasks, including next sentence prediction. It takes input sequences and predicts whether the second sequence follows the first sequence in a given pair.
The class's code initializes an instance of the ErnieForNextSentencePrediction class with the provided configuration. It creates an ERNIE model and a next sentence prediction head. The post_init() method is called to perform additional setup after the initialization.
The forward() method forwards the model using the provided input tensors and other optional arguments. It returns the predicted next sentence relationship scores. The method also supports computing the next sequence prediction loss if labels are provided.
The labels parameter is used to compute the next sequence prediction loss. It should be a tensor of shape (batch_size,) where each value indicates the relationship between the input sequences:
- 0 indicates sequence B is a continuation of sequence A.
- 1 indicates sequence B is a random sequence. The method returns a tuple of the next sentence prediction loss, the next sentence relationship scores, and other optional outputs such as hidden states and attentions.
Example
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
...
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
...
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
...
>>> outputs = model(**encoding, labels=mindspore.Tensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForNextSentencePrediction.__init__(config)
¶
Initializes an instance of ErnieForNextSentencePrediction.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForNextSentencePrediction class. |
config |
The configuration dictionary containing parameters for initializing the model. It should include necessary settings for model configuration.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForNextSentencePrediction.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], NextSentencePredictorOutput]
|
Union[Tuple[mindspore.Tensor], NextSentencePredictorOutput] |
Example
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
...
...
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
...
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
...
>>> outputs = model(**encoding, labels=mindspore.Tensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForPreTraining
¶
Bases: ErniePreTrainedModel
This class represents an Ernie model for pre-training tasks. It inherits from the ErniePreTrainedModel.
The class includes methods for initializing the model, getting and setting output embeddings, and forwarding the
model for pre-training tasks. The forward
method takes various input tensors and optional arguments, and returns
the output of the model for pre-training. It also includes detailed information about the expected input parameters,
optional arguments, and return values.
The class also provides an example of how to use the model for pre-training tasks using the AutoTokenizer and example inputs. The example demonstrates how to tokenize input text, generate model outputs, and access specific logits from the model.
For more details on the usage and functionality of the ErnieForPreTraining class, refer to the provided code and docstring examples.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForPreTraining.__init__(config)
¶
Initializes an instance of the ErnieForPreTraining class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ErnieForPreTraining class.
TYPE:
|
config |
The configuration object for the ErnieForPreTraining class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForPreTraining.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
next_sentence_label |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
pair (see
TYPE:
|
kwargs |
Used to hide legacy arguments that have been deprecated.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], ErnieForPreTrainingOutput]
|
Union[Tuple[mindspore.Tensor], ErnieForPreTrainingOutput] |
Example
>>> from transformers import AutoTokenizer, ErnieForPreTraining
...
...
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
...
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
...
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForPreTraining.get_output_embeddings()
¶
Method to retrieve the output embeddings from the ErnieForPreTraining model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieForPreTraining class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return anything but directly accesses and returns the output embeddings from the model. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForPreTraining.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the ErnieForPreTraining model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ErnieForPreTraining class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the model predictions decoder. This can be of any type.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput
dataclass
¶
Bases: ModelOutput
Output type of [ErnieForPreTraining
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
TYPE:
|
prediction_logits |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
TYPE:
|
seq_relationship_logits |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
TYPE:
|
hidden_states |
Tuple of Hidden-states of the model at the output of each layer plus the initial embedding outputs.
TYPE:
|
attentions |
Tuple of Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForQuestionAnswering
¶
Bases: ErniePreTrainedModel
ErnieForQuestionAnswering is a class that represents a model for question answering tasks using the ERNIE (Enhanced Representation through kNowledge Integration) architecture. This class inherits from ErniePreTrainedModel and provides methods for forwarding the model and performing question answering inference.
The class forwardor initializes the model with the provided configuration. The model architecture includes an ERNIE model with the option to add a pooling layer. Additionally, it includes a dense layer for question answering outputs.
The forward method takes various input tensors and performs the question answering computation. It supports optional inputs for start and end positions, attention masks, token type IDs, task type IDs, position IDs, head masks, and input embeddings. The method returns the question-answering model output, which includes the start and end logits for the predicted answer spans.
The method also allows for customizing the return of outputs by specifying the return_dict parameter. If the return_dict parameter is not provided, the method uses the default value from the model's configuration.
Overall, the ErnieForQuestionAnswering class encapsulates the functionality for performing question answering tasks using the ERNIE model and provides a high-level interface for forwarding the model and performing inference.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForQuestionAnswering.__init__(config)
¶
Initializes an instance of the ErnieForQuestionAnswering class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance of the ErnieForQuestionAnswering class. |
config |
An object containing configuration settings for the Ernie model. This parameter is required for initializing the ErnieForQuestionAnswering instance. It should include the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not of the expected object type. |
ValueError
|
If the config object is missing any required attributes. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForSequenceClassification
¶
Bases: ErniePreTrainedModel
This class represents an ERNIE model for sequence classification tasks.
It is a subclass of the ErniePreTrainedModel
class.
The ErnieForSequenceClassification
class has an initialization method and a forward
method.
The initialization method initializes the ERNIE model and sets up the classifier layers.
The forward
method performs the forward pass of the model and returns the output.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for the sequence classification task.
TYPE:
|
config |
The configuration object for the ERNIE model.
TYPE:
|
ernie |
The ERNIE model instance.
TYPE:
|
dropout |
Dropout layer for regularization.
TYPE:
|
classifier |
Dense layer for classification.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the |
forward |
Performs the forward pass of the ERNIE model and returns the output. |
Example
>>> # Initialize the model
>>> model = ErnieForSequenceClassification(config)
...
>>> # Perform forward pass
>>> output = model.forward(input_ids, attention_mask, token_type_ids, task_type_ids, position_ids, head_mask, inputs_embeds, labels, output_attentions, output_hidden_states, return_dict)
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForSequenceClassification.__init__(config)
¶
Initializes an instance of the 'ErnieForSequenceClassification' class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An instance of 'Config' class containing the configuration parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForTokenClassification
¶
Bases: ErniePreTrainedModel
This class represents a token classification model based on the Ernie architecture. It is used for token-level classification tasks such as Named Entity Recognition (NER) and part-of-speech tagging. The model inherits from the ErniePreTrainedModel class and utilizes the ErnieModel for token embeddings and hidden representations. It includes methods for model initialization and forward propagation to compute token classification logits and loss.
The class's forwardor initializes the model with the provided configuration, sets the number of classification labels, and configures the ErnieModel with the specified parameters. Additionally, it sets up the dropout and classifier layers.
The forward method takes input tensors and optional arguments for token classification, and returns the token classification output. It also computes the token classification loss if labels are provided. The method supports various optional parameters for controlling the model's behavior during inference.
Note
The docstring is based on the provided information and does not include specific code signatures.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForTokenClassification.__init__(config)
¶
Initializes an instance of the ErnieForTokenClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing the settings for the model. This object must have the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the config object is missing the num_labels attribute. |
TypeError
|
If the config object does not have the expected data types for the attributes. |
RuntimeError
|
If an error occurs during the initialization process. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, task_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the token classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieIntermediate
¶
Bases: Module
Represents an intermediate layer for the ERNIE (Enhanced Representation through kNowledge Integration) model. This class provides methods to perform intermediate operations on input hidden states.
This class inherits from nn.Module and contains methods for initialization and forwarding the intermediate layer.
ATTRIBUTE | DESCRIPTION |
---|---|
dense |
A dense layer with the specified hidden size and intermediate size.
TYPE:
|
intermediate_act_fn |
The activation function applied to the intermediate hidden states.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the ERNIE intermediate layer with the provided configuration. |
forward |
Constructs the intermediate layer by applying dense and activation functions to the input hidden states. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieIntermediate.__init__(config)
¶
Initialize the ErnieIntermediate class with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieIntermediate class.
TYPE:
|
config |
An object containing the configuration parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the configuration parameters are invalid or missing. |
TypeError
|
If the provided hidden activation function is not a string or function. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieIntermediate.forward(hidden_states)
¶
Constructs the intermediate layer of the ERNIE model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the ErnieIntermediate class.
TYPE:
|
hidden_states |
The input hidden states tensor of shape (batch_size, sequence_length, hidden_size). It represents the output from the previous layer of the ERNIE model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The tensor representing the intermediate hidden states of shape (batch_size, sequence_length, hidden_size). It is the result of applying the intermediate layer operations on the input hidden states. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLMPredictionHead
¶
Bases: Module
Represents a prediction head for ERNIE Language Model that performs decoding and transformation operations on hidden states.
This class inherits from nn.Module and provides methods for initializing the prediction head and forwarding predictions based on the input hidden states.
ATTRIBUTE | DESCRIPTION |
---|---|
transform |
ErniePredictionHeadTransform object for transforming hidden states.
|
decoder |
nn.Linear object for decoding hidden states into output predictions.
|
bias |
Parameter object for bias initialization.
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the prediction head with the given configuration. |
forward |
Constructs predictions based on the input hidden states by applying transformation and decoding operations. |
Example
>>> config = get_config()
>>> prediction_head = ErnieLMPredictionHead(config)
>>> hidden_states = get_hidden_states()
>>> predictions = prediction_head.forward(hidden_states)
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLMPredictionHead.__init__(config)
¶
Initializes an instance of the ErnieLMPredictionHead class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieLMPredictionHead class.
|
config |
An object that holds configuration settings for the ErnieLMPredictionHead. It is expected to contain properties like hidden_size, vocab_size, and any other relevant configuration parameters.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLMPredictionHead.forward(hidden_states)
¶
This method 'forward' is part of the class 'ErnieLMPredictionHead' and is responsible for forwarding the hidden states using transformation and decoding.
PARAMETER | DESCRIPTION |
---|---|
self |
Represents the instance of the class. It is implicitly passed and does not need to be provided as an argument.
|
hidden_states |
The input hidden states to be processed. It is expected to be a tensor containing the initial hidden states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
The processed hidden states after transformation and decoding. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input 'hidden_states' is not of type Tensor. |
ValueError
|
If the input 'hidden_states' is empty or invalid for transformation and decoding. |
RuntimeError
|
If there is an issue during the transformation or decoding process. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLayer
¶
Bases: Module
ErnieLayer is a class representing a layer in the Ernie model. This class inherits from nn.Module and contains methods for initializing the layer and forwarding the layer's feed forward chunk.
ATTRIBUTE | DESCRIPTION |
---|---|
chunk_size_feed_forward |
The chunk size for the feed forward operation.
TYPE:
|
seq_len_dim |
The dimension of the sequence length.
TYPE:
|
attention |
The attention mechanism used in the layer.
TYPE:
|
is_decoder |
Indicates whether the layer is a decoder model.
TYPE:
|
add_cross_attention |
Indicates whether cross attention is added to the layer.
TYPE:
|
crossattention |
The cross attention mechanism used in the layer.
TYPE:
|
intermediate |
The intermediate layer in the Ernie model.
TYPE:
|
output |
The output layer in the Ernie model.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the ErnieLayer with the provided configuration. |
forward |
Constructs the layer using the given input tensors and parameters. |
feed_forward_chunk |
Executes the feed forward operation on the attention output. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the layer is not instantiated with cross-attention layers when |
RETURNS | DESCRIPTION |
---|---|
Tuple
|
Outputs of the layer's forward method, including the layer output and present key value if the layer is a decoder model. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLayer.__init__(config)
¶
Initializes an instance of the ErnieLayer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieLayer class.
|
config |
A configuration object containing various settings for the ErnieLayer.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if cross attention is added but the ErnieLayer is not used as a decoder model. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLayer.feed_forward_chunk(attention_output)
¶
This method calculates the feed-forward output for a chunk in the ErnieLayer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ErnieLayer class.
TYPE:
|
attention_output |
The attention output from the previous layer, expected to be a tensor representing the attention scores.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value explicitly but updates the layer_output attribute of the ErnieLayer instance. |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieLayer.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)
¶
Constructs an ERNIE (Enhanced Representation through kNowledge Integration) layer.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
hidden_states |
The input hidden states for the layer.
TYPE:
|
attention_mask |
Mask for the attention mechanism. Defaults to None.
TYPE:
|
head_mask |
Mask for the attention heads. Defaults to None.
TYPE:
|
encoder_hidden_states |
Hidden states from the encoder layer. Defaults to None.
TYPE:
|
encoder_attention_mask |
Mask for the encoder attention mechanism. Defaults to None.
TYPE:
|
past_key_value |
Cached key and value tensors for fast inference. Defaults to None.
TYPE:
|
output_attentions |
Whether to return attentions weights. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the layer output tensor. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieModel
¶
Bases: ErniePreTrainedModel
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the is_decoder
argument of the configuration set
to True
. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder
argument and
add_cross_attention
set to True
; an encoder_hidden_states
is then expected as an input to the forward pass.
Source code in mindnlp/transformers/models/ernie/modeling_ernie.py
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 |
|
mindnlp.transformers.models.ernie.modeling_ernie.ErnieModel.__init__(config, add_pooling_layer=True)
¶
Initializes an instance of the ErnieModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing settings for the Ernie model.
TYPE:
|
add_pooling_layer |
A flag indicating whether to add a pooling layer to the model. Default is True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |