Skip to content

esm

mindnlp.transformers.models.esm.configuration_esm

ESM model configuration

mindnlp.transformers.models.esm.configuration_esm.EsmConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [ESMModel]. It is used to instantiate a ESM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ESM facebook/esm-1b architecture.

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
vocab_size

Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [ESMModel].

TYPE: `int`, *optional* DEFAULT: None

mask_token_id

The index of the mask token in the vocabulary. This must be included in the config because of the "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.

TYPE: `int`, *optional* DEFAULT: None

pad_token_id

The index of the padding token in the vocabulary. This must be included in the config because certain parts of the ESM code use this instead of the attention mask.

TYPE: `int`, *optional* DEFAULT: None

hidden_size

Dimensionality of the encoder layers and the pooler layer.

TYPE: `int`, *optional*, defaults to 768 DEFAULT: 768

num_hidden_layers

Number of hidden layers in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

num_attention_heads

Number of attention heads for each attention layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

intermediate_size

Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 3072 DEFAULT: 3072

hidden_dropout_prob

The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

attention_probs_dropout_prob

The dropout ratio for the attention probabilities.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

max_position_embeddings

The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

TYPE: `int`, *optional*, defaults to 1026 DEFAULT: 1026

initializer_range

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

layer_norm_eps

The epsilon used by the layer normalization layers.

TYPE: `float`, *optional*, defaults to 1e-12 DEFAULT: 1e-12

position_embedding_type

Type of position embedding. Choose one of "absolute", "relative_key", "relative_key_query", "rotary". For positional embeddings use "absolute". For more information on "relative_key", please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on "relative_key_query", please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

TYPE: `str`, *optional*, defaults to `"absolute"` DEFAULT: 'absolute'

is_decoder

Whether the model is used as a decoder or not. If False, the model is used as an encoder.

TYPE: `bool`, *optional*, defaults to `False`

use_cache

Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

emb_layer_norm_before

Whether to apply layer normalization after embeddings but before the main stem of the network.

TYPE: `bool`, *optional* DEFAULT: None

token_dropout

When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.

TYPE: `bool`, defaults to `False` DEFAULT: False

Example
>>> from transformers import EsmModel, EsmConfig
...
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
...
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
...
>>> # Accessing the model configuration >>> configuration = model.config
Source code in mindnlp/transformers/models/esm/configuration_esm.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class EsmConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the ESM
    [facebook/esm-1b](https://hf-mirror.com/facebook/esm-1b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*):
            Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ESMModel`].
        mask_token_id (`int`, *optional*):
            The index of the mask token in the vocabulary. This must be included in the config because of the
            "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
        pad_token_id (`int`, *optional*):
            The index of the padding token in the vocabulary. This must be included in the config because certain parts
            of the ESM code use this instead of the attention mask.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 1026):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
            For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        emb_layer_norm_before (`bool`, *optional*):
            Whether to apply layer normalization after embeddings but before the main stem of the network.
        token_dropout (`bool`, defaults to `False`):
            When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.

    Example:
        ```python
        >>> from transformers import EsmModel, EsmConfig
        ...
        >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
        ...
        >>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
        ...
        >>> # Accessing the model configuration >>> configuration = model.config
        ```
    """
    model_type = "esm"

    def __init__(
        self,
        vocab_size=None,
        mask_token_id=None,
        pad_token_id=None,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=1026,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        position_embedding_type="absolute",
        use_cache=True,
        emb_layer_norm_before=None,
        token_dropout=False,
        is_folding_model=False,
        esmfold_config=None,
        vocab_list=None,
        **kwargs,
    ):
        """
        Initializes an instance of the `EsmConfig` class.

        Args:
            self: The instance of the class.
            vocab_size (int, optional): The size of the vocabulary. Defaults to None.
            mask_token_id (int, optional): The ID of the mask token. Defaults to None.
            pad_token_id (int, optional): The ID of the padding token. Defaults to None.
            hidden_size (int, optional): The size of the hidden layers. Defaults to 768.
            num_hidden_layers (int, optional): The number of hidden layers. Defaults to 12.
            num_attention_heads (int, optional): The number of attention heads. Defaults to 12.
            intermediate_size (int, optional): The size of the intermediate layers. Defaults to 3072.
            hidden_dropout_prob (float, optional): The dropout probability for hidden layers. Defaults to 0.1.
            attention_probs_dropout_prob (float, optional): The dropout probability for attention layers. Defaults to 0.1.
            max_position_embeddings (int, optional): The maximum position embeddings. Defaults to 1026.
            initializer_range (float, optional): The range for initializer values. Defaults to 0.02.
            layer_norm_eps (float, optional): The epsilon value for layer normalization. Defaults to 1e-12.
            position_embedding_type (str, optional): The type of position embedding. Defaults to 'absolute'.
            use_cache (bool, optional): Whether to use cache. Defaults to True.
            emb_layer_norm_before (bool, optional): Whether to normalize embeddings before layers. Defaults to None.
            token_dropout (bool, optional): Whether to apply token dropout. Defaults to False.
            is_folding_model (bool, optional): Whether the model is a folding model. Defaults to False.
            esmfold_config (EsmFoldConfig, optional): The configuration for the folding model. Defaults to None.
            vocab_list (list, optional): The list of vocabulary tokens. Defaults to None.

        Returns:
            None

        Raises:
            ValueError: If the HuggingFace port of ESMFold does not support `use_esm_attn_map`.
        """
        super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache
        self.emb_layer_norm_before = emb_layer_norm_before
        self.token_dropout = token_dropout
        self.is_folding_model = is_folding_model
        if is_folding_model:
            if esmfold_config is None:
                logger.info("No esmfold_config supplied for folding model, using default values.")
                esmfold_config = EsmFoldConfig()
            elif isinstance(esmfold_config, dict):
                esmfold_config = EsmFoldConfig(**esmfold_config)
            self.esmfold_config = esmfold_config
            if vocab_list is None:
                logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
                self.vocab_list = get_default_vocab_list()
            else:
                self.vocab_list = vocab_list
        else:
            self.esmfold_config = None
            self.vocab_list = None
        if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
            raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = super().to_dict()
        if isinstance(self.esmfold_config, EsmFoldConfig):
            output["esmfold_config"] = self.esmfold_config.to_dict()
        return output

mindnlp.transformers.models.esm.configuration_esm.EsmConfig.__init__(vocab_size=None, mask_token_id=None, pad_token_id=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1026, initializer_range=0.02, layer_norm_eps=1e-12, position_embedding_type='absolute', use_cache=True, emb_layer_norm_before=None, token_dropout=False, is_folding_model=False, esmfold_config=None, vocab_list=None, **kwargs)

Initializes an instance of the EsmConfig class.

PARAMETER DESCRIPTION
self

The instance of the class.

vocab_size

The size of the vocabulary. Defaults to None.

TYPE: int DEFAULT: None

mask_token_id

The ID of the mask token. Defaults to None.

TYPE: int DEFAULT: None

pad_token_id

The ID of the padding token. Defaults to None.

TYPE: int DEFAULT: None

hidden_size

The size of the hidden layers. Defaults to 768.

TYPE: int DEFAULT: 768

num_hidden_layers

The number of hidden layers. Defaults to 12.

TYPE: int DEFAULT: 12

num_attention_heads

The number of attention heads. Defaults to 12.

TYPE: int DEFAULT: 12

intermediate_size

The size of the intermediate layers. Defaults to 3072.

TYPE: int DEFAULT: 3072

hidden_dropout_prob

The dropout probability for hidden layers. Defaults to 0.1.

TYPE: float DEFAULT: 0.1

attention_probs_dropout_prob

The dropout probability for attention layers. Defaults to 0.1.

TYPE: float DEFAULT: 0.1

max_position_embeddings

The maximum position embeddings. Defaults to 1026.

TYPE: int DEFAULT: 1026

initializer_range

The range for initializer values. Defaults to 0.02.

TYPE: float DEFAULT: 0.02

layer_norm_eps

The epsilon value for layer normalization. Defaults to 1e-12.

TYPE: float DEFAULT: 1e-12

position_embedding_type

The type of position embedding. Defaults to 'absolute'.

TYPE: str DEFAULT: 'absolute'

use_cache

Whether to use cache. Defaults to True.

TYPE: bool DEFAULT: True

emb_layer_norm_before

Whether to normalize embeddings before layers. Defaults to None.

TYPE: bool DEFAULT: None

token_dropout

Whether to apply token dropout. Defaults to False.

TYPE: bool DEFAULT: False

is_folding_model

Whether the model is a folding model. Defaults to False.

TYPE: bool DEFAULT: False

esmfold_config

The configuration for the folding model. Defaults to None.

TYPE: EsmFoldConfig DEFAULT: None

vocab_list

The list of vocabulary tokens. Defaults to None.

TYPE: list DEFAULT: None

RETURNS DESCRIPTION

None

RAISES DESCRIPTION
ValueError

If the HuggingFace port of ESMFold does not support use_esm_attn_map.

Source code in mindnlp/transformers/models/esm/configuration_esm.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def __init__(
    self,
    vocab_size=None,
    mask_token_id=None,
    pad_token_id=None,
    hidden_size=768,
    num_hidden_layers=12,
    num_attention_heads=12,
    intermediate_size=3072,
    hidden_dropout_prob=0.1,
    attention_probs_dropout_prob=0.1,
    max_position_embeddings=1026,
    initializer_range=0.02,
    layer_norm_eps=1e-12,
    position_embedding_type="absolute",
    use_cache=True,
    emb_layer_norm_before=None,
    token_dropout=False,
    is_folding_model=False,
    esmfold_config=None,
    vocab_list=None,
    **kwargs,
):
    """
    Initializes an instance of the `EsmConfig` class.

    Args:
        self: The instance of the class.
        vocab_size (int, optional): The size of the vocabulary. Defaults to None.
        mask_token_id (int, optional): The ID of the mask token. Defaults to None.
        pad_token_id (int, optional): The ID of the padding token. Defaults to None.
        hidden_size (int, optional): The size of the hidden layers. Defaults to 768.
        num_hidden_layers (int, optional): The number of hidden layers. Defaults to 12.
        num_attention_heads (int, optional): The number of attention heads. Defaults to 12.
        intermediate_size (int, optional): The size of the intermediate layers. Defaults to 3072.
        hidden_dropout_prob (float, optional): The dropout probability for hidden layers. Defaults to 0.1.
        attention_probs_dropout_prob (float, optional): The dropout probability for attention layers. Defaults to 0.1.
        max_position_embeddings (int, optional): The maximum position embeddings. Defaults to 1026.
        initializer_range (float, optional): The range for initializer values. Defaults to 0.02.
        layer_norm_eps (float, optional): The epsilon value for layer normalization. Defaults to 1e-12.
        position_embedding_type (str, optional): The type of position embedding. Defaults to 'absolute'.
        use_cache (bool, optional): Whether to use cache. Defaults to True.
        emb_layer_norm_before (bool, optional): Whether to normalize embeddings before layers. Defaults to None.
        token_dropout (bool, optional): Whether to apply token dropout. Defaults to False.
        is_folding_model (bool, optional): Whether the model is a folding model. Defaults to False.
        esmfold_config (EsmFoldConfig, optional): The configuration for the folding model. Defaults to None.
        vocab_list (list, optional): The list of vocabulary tokens. Defaults to None.

    Returns:
        None

    Raises:
        ValueError: If the HuggingFace port of ESMFold does not support `use_esm_attn_map`.
    """
    super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)

    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.max_position_embeddings = max_position_embeddings
    self.initializer_range = initializer_range
    self.layer_norm_eps = layer_norm_eps
    self.position_embedding_type = position_embedding_type
    self.use_cache = use_cache
    self.emb_layer_norm_before = emb_layer_norm_before
    self.token_dropout = token_dropout
    self.is_folding_model = is_folding_model
    if is_folding_model:
        if esmfold_config is None:
            logger.info("No esmfold_config supplied for folding model, using default values.")
            esmfold_config = EsmFoldConfig()
        elif isinstance(esmfold_config, dict):
            esmfold_config = EsmFoldConfig(**esmfold_config)
        self.esmfold_config = esmfold_config
        if vocab_list is None:
            logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
            self.vocab_list = get_default_vocab_list()
        else:
            self.vocab_list = vocab_list
    else:
        self.esmfold_config = None
        self.vocab_list = None
    if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
        raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")

mindnlp.transformers.models.esm.configuration_esm.EsmConfig.to_dict()

Serializes this instance to a Python dictionary. Override the default [~PretrainedConfig.to_dict].

RETURNS DESCRIPTION

Dict[str, any]: Dictionary of all the attributes that make up this configuration instance,

Source code in mindnlp/transformers/models/esm/configuration_esm.py
192
193
194
195
196
197
198
199
200
201
202
def to_dict(self):
    """
    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

    Returns:
        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
    """
    output = super().to_dict()
    if isinstance(self.esmfold_config, EsmFoldConfig):
        output["esmfold_config"] = self.esmfold_config.to_dict()
    return output

mindnlp.transformers.models.esm.configuration_esm.EsmFoldConfig dataclass

Represents the configuration of an ESM (Efficient Speech Model) fold instance.

This class provides methods to initialize the EsmFoldConfig instance and serialize it to a Python dictionary.

The EsmFoldConfig class inherits from a base class and includes methods for post-initialization and dictionary serialization.

METHOD DESCRIPTION
__post_init__

Initializes the EsmFoldConfig instance, setting defaults for any missing attributes.

to_dict

Serializes the EsmFoldConfig instance to a Python dictionary, including the trunk configuration.

ATTRIBUTE DESCRIPTION
trunk

Represents the configuration of the trunk model used in the ESM fold.

TYPE: TrunkConfig

Note

Ensure that the trunk attribute is either set to a TrunkConfig instance or a dictionary that can be converted to a TrunkConfig.

Return

A Python dictionary containing all the attributes of the EsmFoldConfig instance, including the trunk configuration.

Source code in mindnlp/transformers/models/esm/configuration_esm.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
@dataclass
class EsmFoldConfig:

    """
    Represents the configuration of an ESM (Efficient Speech Model) fold instance.

    This class provides methods to initialize the EsmFoldConfig instance and serialize it to a Python dictionary.

    The EsmFoldConfig class inherits from a base class and includes methods for post-initialization and dictionary serialization.

    Methods:
        __post_init__(self): Initializes the EsmFoldConfig instance, setting defaults for any missing attributes.
        to_dict(self): Serializes the EsmFoldConfig instance to a Python dictionary, including the trunk configuration.

    Attributes:
        trunk: Represents the configuration of the trunk model used in the ESM fold.

    Note:
        Ensure that the trunk attribute is either set to a TrunkConfig instance or a dictionary that can be converted to a TrunkConfig.

    Return:
        A Python dictionary containing all the attributes of the EsmFoldConfig instance, including the trunk configuration.
    """
    esm_type: str = None
    fp16_esm: bool = True
    use_esm_attn_map: bool = False
    esm_ablate_pairwise: bool = False
    esm_ablate_sequence: bool = False
    esm_input_dropout: float = 0

    embed_aa: bool = True
    bypass_lm: bool = False

    lddt_head_hid_dim: int = 128
    trunk: "TrunkConfig" = None

    def __post_init__(self):
        """
        The '__post_init__' method is used in the 'EsmFoldConfig' class to initialize the 'trunk' attribute.

        Args:
            self: An instance of the 'EsmFoldConfig' class.

        Returns:
            None.

        Raises:
            None.

        Description:
            This method checks if the 'trunk' attribute is None. If it is, a new instance of the 'TrunkConfig' class
            is created and assigned to 'self.trunk'. If the 'trunk' attribute is of type dict, it is unpacked and
            passed as keyword arguments to create a new instance of the 'TrunkConfig' class,  which is then assigned to
            'self.trunk'. This method is typically called after the object is initialized to ensure that the 'trunk'
            attribute is properly set.

        Example:
            ```python
            >>> config = EsmFoldConfig()
            >>> config.__post_init__()
            >>> # The 'trunk' attribute will be initialized with a new instance of the 'TrunkConfig' class.
            ...
            >>> config = EsmFoldConfig(trunk={'option1': True, 'option2': False})
            >>> config.__post_init__()
            >>> # The 'trunk' attribute will be initialized with a new instance of the 'TrunkConfig' class,
            >>> # with 'option1' set to True and 'option2' set to False.
            ```
        """
        if self.trunk is None:
            self.trunk = TrunkConfig()
        elif isinstance(self.trunk, dict):
            self.trunk = TrunkConfig(**self.trunk)

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = asdict(self)
        output["trunk"] = self.trunk.to_dict()
        return output

mindnlp.transformers.models.esm.configuration_esm.EsmFoldConfig.__post_init__()

The 'post_init' method is used in the 'EsmFoldConfig' class to initialize the 'trunk' attribute.

PARAMETER DESCRIPTION
self

An instance of the 'EsmFoldConfig' class.

RETURNS DESCRIPTION

None.

Description

This method checks if the 'trunk' attribute is None. If it is, a new instance of the 'TrunkConfig' class is created and assigned to 'self.trunk'. If the 'trunk' attribute is of type dict, it is unpacked and passed as keyword arguments to create a new instance of the 'TrunkConfig' class, which is then assigned to 'self.trunk'. This method is typically called after the object is initialized to ensure that the 'trunk' attribute is properly set.

Example
>>> config = EsmFoldConfig()
>>> config.__post_init__()
>>> # The 'trunk' attribute will be initialized with a new instance of the 'TrunkConfig' class.
...
>>> config = EsmFoldConfig(trunk={'option1': True, 'option2': False})
>>> config.__post_init__()
>>> # The 'trunk' attribute will be initialized with a new instance of the 'TrunkConfig' class,
>>> # with 'option1' set to True and 'option2' set to False.
Source code in mindnlp/transformers/models/esm/configuration_esm.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def __post_init__(self):
    """
    The '__post_init__' method is used in the 'EsmFoldConfig' class to initialize the 'trunk' attribute.

    Args:
        self: An instance of the 'EsmFoldConfig' class.

    Returns:
        None.

    Raises:
        None.

    Description:
        This method checks if the 'trunk' attribute is None. If it is, a new instance of the 'TrunkConfig' class
        is created and assigned to 'self.trunk'. If the 'trunk' attribute is of type dict, it is unpacked and
        passed as keyword arguments to create a new instance of the 'TrunkConfig' class,  which is then assigned to
        'self.trunk'. This method is typically called after the object is initialized to ensure that the 'trunk'
        attribute is properly set.

    Example:
        ```python
        >>> config = EsmFoldConfig()
        >>> config.__post_init__()
        >>> # The 'trunk' attribute will be initialized with a new instance of the 'TrunkConfig' class.
        ...
        >>> config = EsmFoldConfig(trunk={'option1': True, 'option2': False})
        >>> config.__post_init__()
        >>> # The 'trunk' attribute will be initialized with a new instance of the 'TrunkConfig' class,
        >>> # with 'option1' set to True and 'option2' set to False.
        ```
    """
    if self.trunk is None:
        self.trunk = TrunkConfig()
    elif isinstance(self.trunk, dict):
        self.trunk = TrunkConfig(**self.trunk)

mindnlp.transformers.models.esm.configuration_esm.EsmFoldConfig.to_dict()

Serializes this instance to a Python dictionary. Override the default [~PretrainedConfig.to_dict].

RETURNS DESCRIPTION

Dict[str, any]: Dictionary of all the attributes that make up this configuration instance,

Source code in mindnlp/transformers/models/esm/configuration_esm.py
278
279
280
281
282
283
284
285
286
287
def to_dict(self):
    """
    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

    Returns:
        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
    """
    output = asdict(self)
    output["trunk"] = self.trunk.to_dict()
    return output

mindnlp.transformers.models.esm.configuration_esm.StructureModuleConfig dataclass

PARAMETER DESCRIPTION
sequence_dim

Single representation channel dimension

TYPE: int DEFAULT: 384

pairwise_dim

Pair representation channel dimension

TYPE: int DEFAULT: 128

ipa_dim

IPA hidden channel dimension

TYPE: int DEFAULT: 16

resnet_dim

Angle resnet (Alg. 23 lines 11-14) hidden channel dimension

TYPE: int DEFAULT: 128

num_heads_ipa

Number of IPA heads

TYPE: int DEFAULT: 12

num_qk_points

Number of query/key points to generate during IPA

TYPE: int DEFAULT: 4

num_v_points

Number of value points to generate during IPA

TYPE: int DEFAULT: 8

dropout_rate

Dropout rate used throughout the layer

TYPE: float DEFAULT: 0.1

num_blocks

Number of structure module blocks

TYPE: int DEFAULT: 8

num_transition_layers

Number of layers in the single representation transition (Alg. 23 lines 8-9)

TYPE: int DEFAULT: 1

num_resnet_blocks

Number of blocks in the angle resnet

TYPE: int DEFAULT: 2

num_angles

Number of angles to generate in the angle resnet

TYPE: int DEFAULT: 7

trans_scale_factor

Scale of single representation transition hidden dimension

TYPE: int DEFAULT: 10

epsilon

Small number used in angle resnet normalization

TYPE: float DEFAULT: 1e-08

inf

Large number used for attention masking

TYPE: float DEFAULT: 100000.0

Source code in mindnlp/transformers/models/esm/configuration_esm.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
@dataclass
class StructureModuleConfig:
    """
    Args:
        sequence_dim:
            Single representation channel dimension
        pairwise_dim:
            Pair representation channel dimension
        ipa_dim:
            IPA hidden channel dimension
        resnet_dim:
            Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
        num_heads_ipa:
            Number of IPA heads
        num_qk_points:
            Number of query/key points to generate during IPA
        num_v_points:
            Number of value points to generate during IPA
        dropout_rate:
            Dropout rate used throughout the layer
        num_blocks:
            Number of structure module blocks
        num_transition_layers:
            Number of layers in the single representation transition (Alg. 23 lines 8-9)
        num_resnet_blocks:
            Number of blocks in the angle resnet
        num_angles:
            Number of angles to generate in the angle resnet
        trans_scale_factor:
            Scale of single representation transition hidden dimension
        epsilon:
            Small number used in angle resnet normalization
        inf:
            Large number used for attention masking
    """
    sequence_dim: int = 384
    pairwise_dim: int = 128
    ipa_dim: int = 16
    resnet_dim: int = 128
    num_heads_ipa: int = 12
    num_qk_points: int = 4
    num_v_points: int = 8
    dropout_rate: float = 0.1
    num_blocks: int = 8
    num_transition_layers: int = 1
    num_resnet_blocks: int = 2
    num_angles: int = 7
    trans_scale_factor: int = 10
    epsilon: float = 1e-8
    inf: float = 1e5

    def to_dict(self):
        """
        Converts the current instance of the StructureModuleConfig class to a dictionary.

        Args:
            self (StructureModuleConfig): The current instance of the StructureModuleConfig class.

        Returns:
            dict: A dictionary representation of the current StructureModuleConfig instance.

        Raises:
            None.
        """
        return asdict(self)

mindnlp.transformers.models.esm.configuration_esm.StructureModuleConfig.to_dict()

Converts the current instance of the StructureModuleConfig class to a dictionary.

PARAMETER DESCRIPTION
self

The current instance of the StructureModuleConfig class.

TYPE: StructureModuleConfig

RETURNS DESCRIPTION
dict

A dictionary representation of the current StructureModuleConfig instance.

Source code in mindnlp/transformers/models/esm/configuration_esm.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def to_dict(self):
    """
    Converts the current instance of the StructureModuleConfig class to a dictionary.

    Args:
        self (StructureModuleConfig): The current instance of the StructureModuleConfig class.

    Returns:
        dict: A dictionary representation of the current StructureModuleConfig instance.

    Raises:
        None.
    """
    return asdict(self)

mindnlp.transformers.models.esm.configuration_esm.TrunkConfig dataclass

Represents the configuration settings for the Trunk model. This class defines the configuration attributes and their validations for the Trunk model.

ATTRIBUTE DESCRIPTION
structure_module

The configuration for the structure module.

TYPE: StructureModuleConfig

max_recycles

The maximum number of recycles, should be a positive integer.

TYPE: int

sequence_state_dim

The dimension of the sequence state.

TYPE: int

pairwise_state_dim

The dimension of the pairwise state.

TYPE: int

sequence_head_width

The width of the sequence head.

TYPE: int

pairwise_head_width

The width of the pairwise head.

TYPE: int

dropout

The dropout rate, should not be greater than 0.4.

TYPE: float

RAISES DESCRIPTION
ValueError

If any of the following conditions are not met:

  • max_recycles is not a positive integer.
  • sequence_state_dim is not a round multiple of itself.
  • pairwise_state_dim is not a round multiple of itself.
  • sequence_state_dim is not equal to sequence_num_heads * sequence_head_width.
  • pairwise_state_dim is not equal to pairwise_num_heads * pairwise_head_width.
  • pairwise_state_dim is not an even number.
  • dropout is greater than 0.4.
METHOD DESCRIPTION
__post_init__

Performs post-initialization validations for the configuration attributes.

to_dict

Serializes the instance to a Python dictionary, including the structure module configuration.

Overrides

~PretrainedConfig.to_dict: Overrides the default to_dict method to include the structure module configuration in the dictionary output.

Source code in mindnlp/transformers/models/esm/configuration_esm.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
@dataclass
class TrunkConfig:

    """
    Represents the configuration settings for the Trunk model.
    This class defines the configuration attributes and their validations for the Trunk model.

    Attributes:
        structure_module (StructureModuleConfig): The configuration for the structure module.
        max_recycles (int): The maximum number of recycles, should be a positive integer.
        sequence_state_dim (int): The dimension of the sequence state.
        pairwise_state_dim (int): The dimension of the pairwise state.
        sequence_head_width (int): The width of the sequence head.
        pairwise_head_width (int): The width of the pairwise head.
        dropout (float): The dropout rate, should not be greater than 0.4.

    Raises:
        ValueError:
            If any of the following conditions are not met:

            - `max_recycles` is not a positive integer.
            - `sequence_state_dim` is not a round multiple of itself.
            - `pairwise_state_dim` is not a round multiple of itself.
            - `sequence_state_dim` is not equal to `sequence_num_heads * sequence_head_width`.
            - `pairwise_state_dim` is not equal to `pairwise_num_heads * pairwise_head_width`.
            - `pairwise_state_dim` is not an even number.
            - `dropout` is greater than 0.4.

    Methods:
        __post_init__(self): Performs post-initialization validations for the configuration attributes.
        to_dict(self): Serializes the instance to a Python dictionary, including the structure module configuration.

    Overrides:
        `~PretrainedConfig.to_dict`: Overrides the default `to_dict` method to include the structure module
        configuration in the dictionary output.
    """
    num_blocks: int = 48
    sequence_state_dim: int = 1024
    pairwise_state_dim: int = 128
    sequence_head_width: int = 32
    pairwise_head_width: int = 32
    position_bins: int = 32
    dropout: float = 0
    layer_drop: float = 0
    cpu_grad_checkpoint: bool = False
    max_recycles: int = 4
    chunk_size: Optional[int] = 128
    structure_module: "StructureModuleConfig" = None

    def __post_init__(self):
        """
        This method initializes the TrunkConfig class after its instantiation.

        Args:
            self: The instance of the TrunkConfig class.

        Returns:
            None.

        Raises:
            ValueError: If `max_recycles` is not a positive value.
            ValueError: If `sequence_state_dim` is not a round multiple of itself.
            ValueError: If `pairwise_state_dim` is not a round multiple of itself.
            ValueError: If `sequence_state_dim` is not equal to `sequence_num_heads * sequence_head_width`.
            ValueError: If `pairwise_state_dim` is not equal to `pairwise_num_heads * pairwise_head_width`.
            ValueError: If `pairwise_state_dim` is not an even number.
            ValueError: If `dropout` is greater than or equal to 0.4.
        """
        if self.structure_module is None:
            self.structure_module = StructureModuleConfig()
        elif isinstance(self.structure_module, dict):
            self.structure_module = StructureModuleConfig(**self.structure_module)

        if self.max_recycles <= 0:
            raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
        if self.sequence_state_dim % self.sequence_state_dim != 0:
            raise ValueError(
                "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
                f" {self.sequence_state_dim} and {self.sequence_state_dim}."
            )
        if self.pairwise_state_dim % self.pairwise_state_dim != 0:
            raise ValueError(
                "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
                f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
            )

        sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
        pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width

        if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
            raise ValueError(
                "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
                f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
            )
        if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
            raise ValueError(
                "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
                f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
            )
        if self.pairwise_state_dim % 2 != 0:
            raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")

        if self.dropout >= 0.4:
            raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = asdict(self)
        output["structure_module"] = self.structure_module.to_dict()
        return output

mindnlp.transformers.models.esm.configuration_esm.TrunkConfig.__post_init__()

This method initializes the TrunkConfig class after its instantiation.

PARAMETER DESCRIPTION
self

The instance of the TrunkConfig class.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If max_recycles is not a positive value.

ValueError

If sequence_state_dim is not a round multiple of itself.

ValueError

If pairwise_state_dim is not a round multiple of itself.

ValueError

If sequence_state_dim is not equal to sequence_num_heads * sequence_head_width.

ValueError

If pairwise_state_dim is not equal to pairwise_num_heads * pairwise_head_width.

ValueError

If pairwise_state_dim is not an even number.

ValueError

If dropout is greater than or equal to 0.4.

Source code in mindnlp/transformers/models/esm/configuration_esm.py
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def __post_init__(self):
    """
    This method initializes the TrunkConfig class after its instantiation.

    Args:
        self: The instance of the TrunkConfig class.

    Returns:
        None.

    Raises:
        ValueError: If `max_recycles` is not a positive value.
        ValueError: If `sequence_state_dim` is not a round multiple of itself.
        ValueError: If `pairwise_state_dim` is not a round multiple of itself.
        ValueError: If `sequence_state_dim` is not equal to `sequence_num_heads * sequence_head_width`.
        ValueError: If `pairwise_state_dim` is not equal to `pairwise_num_heads * pairwise_head_width`.
        ValueError: If `pairwise_state_dim` is not an even number.
        ValueError: If `dropout` is greater than or equal to 0.4.
    """
    if self.structure_module is None:
        self.structure_module = StructureModuleConfig()
    elif isinstance(self.structure_module, dict):
        self.structure_module = StructureModuleConfig(**self.structure_module)

    if self.max_recycles <= 0:
        raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
    if self.sequence_state_dim % self.sequence_state_dim != 0:
        raise ValueError(
            "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
            f" {self.sequence_state_dim} and {self.sequence_state_dim}."
        )
    if self.pairwise_state_dim % self.pairwise_state_dim != 0:
        raise ValueError(
            "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
            f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
        )

    sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
    pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width

    if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
        raise ValueError(
            "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
            f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
        )
    if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
        raise ValueError(
            "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
            f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
        )
    if self.pairwise_state_dim % 2 != 0:
        raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")

    if self.dropout >= 0.4:
        raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")

mindnlp.transformers.models.esm.configuration_esm.TrunkConfig.to_dict()

Serializes this instance to a Python dictionary. Override the default [~PretrainedConfig.to_dict].

RETURNS DESCRIPTION

Dict[str, any]: Dictionary of all the attributes that make up this configuration instance,

Source code in mindnlp/transformers/models/esm/configuration_esm.py
395
396
397
398
399
400
401
402
403
404
def to_dict(self):
    """
    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

    Returns:
        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
    """
    output = asdict(self)
    output["structure_module"] = self.structure_module.to_dict()
    return output

mindnlp.transformers.models.esm.configuration_esm.get_default_vocab_list()

This function returns a list of default vocabulary items including special tokens and characters used in natural language processing tasks.

RETURNS DESCRIPTION
List

A list of default vocabulary items including '', '', '', '', 'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', '.', '-', '', ''.

Source code in mindnlp/transformers/models/esm/configuration_esm.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def get_default_vocab_list():
    '''
    This function returns a list of default vocabulary items including special tokens and characters used in natural
    language processing tasks.

    Args:
        None.

    Returns:
        List:
            A list of default vocabulary items including '<cls>', '<pad>', '<eos>', '<unk>', 'L', 'A', 'G', 'V', 'S',
            'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U',
            'Z', 'O', '.', '-', '<null_1>', '<mask>'.

    Raises:
        None.
    '''
    return (
        "<cls>",
        "<pad>",
        "<eos>",
        "<unk>",
        "L",
        "A",
        "G",
        "V",
        "S",
        "E",
        "R",
        "T",
        "I",
        "D",
        "P",
        "K",
        "Q",
        "N",
        "F",
        "Y",
        "M",
        "H",
        "W",
        "C",
        "X",
        "B",
        "U",
        "Z",
        "O",
        ".",
        "-",
        "<null_1>",
        "<mask>",
    )

mindnlp.transformers.models.esm.modeling_esm.ESM_PRETRAINED_MODEL_ARCHIVE_LIST = ['facebook/esm2_t6_8M_UR50D', 'facebook/esm2_t12_35M_UR50D'] module-attribute

mindnlp.transformers.models.esm.modeling_esm.EsmForMaskedLM

Bases: EsmPreTrainedModel

Represents an ESM (Evolutionary Scale Modeling) model for masked language modeling (MLM), inheriting from EsmPreTrainedModel. This class provides the functionality to perform masked language modeling using the ESM model.

The EsmForMaskedLM class contains methods for initializing the model, getting and setting output embeddings, forwarding the model, and predicting contacts. The model architecture includes an ESM model and a language modeling head (lm_head). The forward method takes input_ids, attention_mask, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, labels, output_attentions, output_hidden_states, and return_dict as input arguments and returns the masked language modeling loss and other outputs. The predict_contacts method takes tokens and attention_mask as input and returns the predicted contacts using the ESM model.

Note
  • If using EsmForMaskedLM, ensure config.is_decoder=False for bi-directional self-attention.
  • Labels for computing the masked language modeling loss should be indices in [-100, 0, ..., config.vocab_size]. Tokens with indices set to -100 are ignored (masked), and the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].
Source code in mindnlp/transformers/models/esm/modeling_esm.py
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
class EsmForMaskedLM(EsmPreTrainedModel):

    """
    Represents an ESM (Evolutionary Scale Modeling) model for masked language modeling (MLM), inheriting from EsmPreTrainedModel.
    This class provides the functionality to perform masked language modeling using the ESM model.

    The EsmForMaskedLM class contains methods for initializing the model, getting and setting output embeddings,
    forwarding the model, and predicting contacts.
    The model architecture includes an ESM model and a language modeling head (lm_head).
    The forward method takes input_ids, attention_mask, position_ids, head_mask, inputs_embeds, encoder_hidden_states,
    encoder_attention_mask, labels, output_attentions, output_hidden_states, and return_dict as input arguments and
    returns the masked language modeling loss and other outputs.
    The predict_contacts method takes tokens and attention_mask as input and returns the predicted contacts using the
    ESM model.

    Note:
        - If using `EsmForMaskedLM`, ensure `config.is_decoder=False` for bi-directional self-attention.
        - Labels for computing the masked language modeling loss should be indices in `[-100, 0, ..., config.vocab_size]`.
        Tokens with indices set to `-100` are ignored (masked), and the loss is only computed for the tokens with labels
        in `[0, ..., config.vocab_size]`.

    """
    _tied_weights_keys = ["lm_head.decoder.weight"]

    def __init__(self, config):
        """
        Initializes an instance of EsmForMaskedLM.

        Args:
            self: The instance of the class.
            config (object): The configuration object containing model hyperparameters.
                It must have attributes like 'is_decoder', 'add_pooling_layer', and 'init_weights'.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.esm = EsmModel(config, add_pooling_layer=False)
        self.lm_head = EsmLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        """
        This method returns the output embeddings for the language model head.

        Args:
            self: An instance of the EsmForMaskedLM class.

        Returns:
            decoder: The method returns the output embeddings for the language model head.

        Raises:
            None.
        """
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        """
        Set the output embeddings for the ESM model.

        Args:
            self (EsmForMaskedLM): The instance of the EsmForMaskedLM class.
            new_embeddings (torch.nn.Module): The new embeddings to be set as output embeddings for the model.

        Returns:
            None.

        Raises:
            TypeError: If the provided new_embeddings is not of type torch.nn.Module.
            AttributeError: If the lm_head.decoder attribute is not present in the EsmForMaskedLM instance.
        """
        self.lm_head.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MaskedLMOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
                config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
                loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
            kwargs (`Dict[str, any]`, optional, defaults to *{}*):
                Used to hide legacy arguments that have been deprecated.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def predict_contacts(self, tokens, attention_mask):
        """
        This method predicts contacts using the ESM (Evolutionary Scale Modeling) for Masked Language Modeling.

        Args:
            self (EsmForMaskedLM): The instance of the EsmForMaskedLM class.
            tokens (Tensor): The input tokens for prediction.
            attention_mask (Tensor): The attention mask for the input tokens.
                It masks the tokens that should not be attended to, specifying which tokens should be attended to
                and which should not.

        Returns:
            None.

        Raises:
            None.
        """
        return self.esm.predict_contacts(tokens, attention_mask=attention_mask)

mindnlp.transformers.models.esm.modeling_esm.EsmForMaskedLM.__init__(config)

Initializes an instance of EsmForMaskedLM.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing model hyperparameters. It must have attributes like 'is_decoder', 'add_pooling_layer', and 'init_weights'.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
def __init__(self, config):
    """
    Initializes an instance of EsmForMaskedLM.

    Args:
        self: The instance of the class.
        config (object): The configuration object containing model hyperparameters.
            It must have attributes like 'is_decoder', 'add_pooling_layer', and 'init_weights'.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    if config.is_decoder:
        logger.warning(
            "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
            "bi-directional self-attention."
        )

    self.esm = EsmModel(config, add_pooling_layer=False)
    self.lm_head = EsmLMHead(config)

    self.init_weights()

mindnlp.transformers.models.esm.modeling_esm.EsmForMaskedLM.forward(input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

kwargs

Used to hide legacy arguments that have been deprecated.

TYPE: `Dict[str, any]`, optional, defaults to *{}*

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        kwargs (`Dict[str, any]`, optional, defaults to *{}*):
            Used to hide legacy arguments that have been deprecated.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.esm(
        input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        encoder_hidden_states=encoder_hidden_states,
        encoder_attention_mask=encoder_attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]
    prediction_scores = self.lm_head(sequence_output)

    masked_lm_loss = None
    if labels is not None:
        masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

    if not return_dict:
        output = (prediction_scores,) + outputs[2:]
        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

    return MaskedLMOutput(
        loss=masked_lm_loss,
        logits=prediction_scores,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.esm.modeling_esm.EsmForMaskedLM.get_output_embeddings()

This method returns the output embeddings for the language model head.

PARAMETER DESCRIPTION
self

An instance of the EsmForMaskedLM class.

RETURNS DESCRIPTION
decoder

The method returns the output embeddings for the language model head.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
def get_output_embeddings(self):
    """
    This method returns the output embeddings for the language model head.

    Args:
        self: An instance of the EsmForMaskedLM class.

    Returns:
        decoder: The method returns the output embeddings for the language model head.

    Raises:
        None.
    """
    return self.lm_head.decoder

mindnlp.transformers.models.esm.modeling_esm.EsmForMaskedLM.predict_contacts(tokens, attention_mask)

This method predicts contacts using the ESM (Evolutionary Scale Modeling) for Masked Language Modeling.

PARAMETER DESCRIPTION
self

The instance of the EsmForMaskedLM class.

TYPE: EsmForMaskedLM

tokens

The input tokens for prediction.

TYPE: Tensor

attention_mask

The attention mask for the input tokens. It masks the tokens that should not be attended to, specifying which tokens should be attended to and which should not.

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
def predict_contacts(self, tokens, attention_mask):
    """
    This method predicts contacts using the ESM (Evolutionary Scale Modeling) for Masked Language Modeling.

    Args:
        self (EsmForMaskedLM): The instance of the EsmForMaskedLM class.
        tokens (Tensor): The input tokens for prediction.
        attention_mask (Tensor): The attention mask for the input tokens.
            It masks the tokens that should not be attended to, specifying which tokens should be attended to
            and which should not.

    Returns:
        None.

    Raises:
        None.
    """
    return self.esm.predict_contacts(tokens, attention_mask=attention_mask)

mindnlp.transformers.models.esm.modeling_esm.EsmForMaskedLM.set_output_embeddings(new_embeddings)

Set the output embeddings for the ESM model.

PARAMETER DESCRIPTION
self

The instance of the EsmForMaskedLM class.

TYPE: EsmForMaskedLM

new_embeddings

The new embeddings to be set as output embeddings for the model.

TYPE: Module

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided new_embeddings is not of type torch.nn.Module.

AttributeError

If the lm_head.decoder attribute is not present in the EsmForMaskedLM instance.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
def set_output_embeddings(self, new_embeddings):
    """
    Set the output embeddings for the ESM model.

    Args:
        self (EsmForMaskedLM): The instance of the EsmForMaskedLM class.
        new_embeddings (torch.nn.Module): The new embeddings to be set as output embeddings for the model.

    Returns:
        None.

    Raises:
        TypeError: If the provided new_embeddings is not of type torch.nn.Module.
        AttributeError: If the lm_head.decoder attribute is not present in the EsmForMaskedLM instance.
    """
    self.lm_head.decoder = new_embeddings

mindnlp.transformers.models.esm.modeling_esm.EsmForSequenceClassification

Bases: EsmPreTrainedModel

This class represents an ESM (Evoformer) model for sequence classification tasks. It is a subclass of EsmPreTrainedModel, which provides the underlying architecture and functionality.

ATTRIBUTE DESCRIPTION
num_labels

The number of labels for the classification task.

TYPE: int

config

The configuration object for the ESM model.

TYPE: EsmConfig

esm

The ESM model instance.

TYPE: EsmModel

classifier

The classification head for the ESM model.

TYPE: EsmClassificationHead

METHOD DESCRIPTION
__init__

Initializes the EsmForSequenceClassification instance.

forward

Constructs the ESM model for sequence classification.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
class EsmForSequenceClassification(EsmPreTrainedModel):

    """
    This class represents an ESM (Evoformer) model for sequence classification tasks.
    It is a subclass of EsmPreTrainedModel, which provides the underlying architecture and functionality.

    Attributes:
        num_labels (int): The number of labels for the classification task.
        config (EsmConfig): The configuration object for the ESM model.
        esm (EsmModel): The ESM model instance.
        classifier (EsmClassificationHead): The classification head for the ESM model.

    Methods:
        __init__: Initializes the EsmForSequenceClassification instance.
        forward: Constructs the ESM model for sequence classification.

    """
    def __init__(self, config):
        """
        Initializes an instance of EsmForSequenceClassification.

        Args:
            self: The instance of the class.
            config:
                An object containing the configuration parameters for the model.

                - Type: object
                - Purpose: To configure the model and its components.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.esm = EsmModel(config, add_pooling_layer=False)
        self.classifier = EsmClassificationHead(config)

        self.init_weights()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy_with_logits(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.esm.modeling_esm.EsmForSequenceClassification.__init__(config)

Initializes an instance of EsmForSequenceClassification.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object containing the configuration parameters for the model.

  • Type: object
  • Purpose: To configure the model and its components.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
def __init__(self, config):
    """
    Initializes an instance of EsmForSequenceClassification.

    Args:
        self: The instance of the class.
        config:
            An object containing the configuration parameters for the model.

            - Type: object
            - Purpose: To configure the model and its components.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.num_labels = config.num_labels
    self.config = config

    self.esm = EsmModel(config, add_pooling_layer=False)
    self.classifier = EsmClassificationHead(config)

    self.init_weights()

mindnlp.transformers.models.esm.modeling_esm.EsmForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.esm(
        input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy_with_logits(logits, labels)

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.esm.modeling_esm.EsmForTokenClassification

Bases: EsmPreTrainedModel

EsmForTokenClassification is a class that represents a token classification model based on the ESM (Evoformer Sequence Model) architecture. This class extends EsmPreTrainedModel to leverage pre-trained weights and configurations for efficient token classification tasks. It includes methods for initializing the model, forwarding the forward pass, and computing the token classification loss.

The init method initializes the EsmForTokenClassification model with configurable parameters such as the number of labels, dropout probability, and hidden layer sizes. It also sets up the ESM model, dropout layer, and the classifier for token classification.

The forward method defines the forward pass of the model, taking input tensors such as input_ids, attention_mask, position_ids, etc., and returning the token classification output. It computes the logits for token classification based on the sequence_output from the ESM model and calculates the cross-entropy loss if labels are provided. The method allows for returning additional outputs like hidden states and attentions based on the return_dict parameter.

Note

This docstring is a high-level summary and does not include method signatures or implementation details.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
class EsmForTokenClassification(EsmPreTrainedModel):

    """
    EsmForTokenClassification is a class that represents a token classification model based on the ESM
    (Evoformer Sequence Model) architecture. This class extends EsmPreTrainedModel to leverage pre-trained
    weights and configurations for efficient token classification tasks. It includes methods for initializing the model,
    forwarding the forward pass, and computing the token classification loss.

    The __init__ method initializes the EsmForTokenClassification model with configurable parameters such as the number
    of labels, dropout probability, and hidden layer sizes. It also sets up the ESM model, dropout layer, and the
    classifier for token classification.

    The forward method defines the forward pass of the model, taking input tensors such as input_ids, attention_mask,
    position_ids, etc., and returning the token classification output.
    It computes the logits for token classification based on the sequence_output from the ESM model and calculates the
    cross-entropy loss if labels are provided. The method allows for returning additional outputs like hidden states and
    attentions based on the return_dict parameter.

    Note:
        This docstring is a high-level summary and does not include method signatures or implementation details.
    """
    def __init__(self, config):
        """
        Initializes an instance of the EsmForTokenClassification class.

        Args:
            self: The instance of the EsmForTokenClassification class.
            config:
                An instance of the configuration class containing the model configuration parameters.

                - Type: object
                - Purpose: Specifies the configuration settings for the model.
                - Restrictions: Must be a valid instance of the configuration class.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of the correct type.
            ValueError: If the config.num_labels is not provided or is invalid.
            RuntimeError: If an error occurs during the initialization process.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.esm = EsmModel(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.esm.modeling_esm.EsmForTokenClassification.__init__(config)

Initializes an instance of the EsmForTokenClassification class.

PARAMETER DESCRIPTION
self

The instance of the EsmForTokenClassification class.

config

An instance of the configuration class containing the model configuration parameters.

  • Type: object
  • Purpose: Specifies the configuration settings for the model.
  • Restrictions: Must be a valid instance of the configuration class.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of the correct type.

ValueError

If the config.num_labels is not provided or is invalid.

RuntimeError

If an error occurs during the initialization process.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
def __init__(self, config):
    """
    Initializes an instance of the EsmForTokenClassification class.

    Args:
        self: The instance of the EsmForTokenClassification class.
        config:
            An instance of the configuration class containing the model configuration parameters.

            - Type: object
            - Purpose: Specifies the configuration settings for the model.
            - Restrictions: Must be a valid instance of the configuration class.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of the correct type.
        ValueError: If the config.num_labels is not provided or is invalid.
        RuntimeError: If an error occurs during the initialization process.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.esm = EsmModel(config, add_pooling_layer=False)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    self.init_weights()

mindnlp.transformers.models.esm.modeling_esm.EsmForTokenClassification.forward(input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/esm/modeling_esm.py
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.esm(
        input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    sequence_output = self.dropout(sequence_output)
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return TokenClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.esm.modeling_esm.EsmModel

Bases: EsmPreTrainedModel

The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set to True. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder argument and add_cross_attention set to True; an encoder_hidden_states is then expected as an input to the forward pass.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
class EsmModel(EsmPreTrainedModel):
    """

    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in [Attention is
    all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

    To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
    to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
    `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
    """
    def __init__(self, config, add_pooling_layer=True):
        """
        Initializes an instance of the EsmModel class.

        Args:
            self: The instance of the class.
            config (object): The configuration object containing various settings for the model.
            add_pooling_layer (bool, optional): A flag indicating whether to include a pooling layer in the model.
                Default is True.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.config = config

        self.embeddings = EsmEmbeddings(config)
        self.encoder = EsmEncoder(config)

        self.pooler = EsmPooler(config) if add_pooling_layer else None

        self.contact_head = EsmContactPredictionHead(
            in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        This method returns the input embeddings for the ESMM model.

        Args:
            self: An instance of the EsmModel class.

        Returns:
            word_embeddings: This method returns the word embeddings for input data, represented as a tensor.

        Raises:
            None.
        """
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        """
        Sets the input embeddings for the EsmModel.

        Args:
            self (EsmModel): The instance of the EsmModel class.
            value: The input embeddings to be set. This should be of type `torch.Tensor`.

        Returns:
            None.

        Raises:
            None.
        """
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[List[mindspore.Tensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        r"""
        Args:
            encoder_hidden_states  (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
                the model is configured as a decoder.
            encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
                the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
            past_key_values (`tuple(tuple(mindspore.Tensor))` of length `config.n_layers` with each tuple having 4 tensors
                of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
                Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
                don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
                `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
                `past_key_values`).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if attention_mask is None:
            attention_mask = ops.ones(((batch_size, seq_length + past_key_values_length)))

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.shape
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = ops.ones(encoder_hidden_shape)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )

    def predict_contacts(self, tokens, attention_mask):
        """
        Predicts contacts using the EsmModel.

        Args:
            self (EsmModel): An instance of the EsmModel class.
            tokens (Tensor): The input tokens for prediction.
            attention_mask (Tensor): The attention mask for the input tokens.

        Returns:
            None.

        Raises:
            None.
        """
        attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
        attns = ops.stack(attns, axis=1)  # Matches the original model layout
        # In the original model, attentions for padding tokens are completely zeroed out.
        # This makes no difference most of the time because the other tokens won't attend to them,
        # but it does for the contact prediction task, which takes attentions as input,
        # so we have to mimic that here.
        attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
        attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
        return self.contact_head(tokens, attns)

mindnlp.transformers.models.esm.modeling_esm.EsmModel.__init__(config, add_pooling_layer=True)

Initializes an instance of the EsmModel class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing various settings for the model.

TYPE: object

add_pooling_layer

A flag indicating whether to include a pooling layer in the model. Default is True.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
def __init__(self, config, add_pooling_layer=True):
    """
    Initializes an instance of the EsmModel class.

    Args:
        self: The instance of the class.
        config (object): The configuration object containing various settings for the model.
        add_pooling_layer (bool, optional): A flag indicating whether to include a pooling layer in the model.
            Default is True.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.config = config

    self.embeddings = EsmEmbeddings(config)
    self.encoder = EsmEncoder(config)

    self.pooler = EsmPooler(config) if add_pooling_layer else None

    self.contact_head = EsmContactPredictionHead(
        in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
    )

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.esm.modeling_esm.EsmModel.forward(input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
encoder_hidden_states

Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

TYPE: (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

encoder_attention_mask

Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

use_cache

If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

TYPE: `bool`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[List[mindspore.Tensor]] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
    r"""
    Args:
        encoder_hidden_states  (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (`tuple(tuple(mindspore.Tensor))` of length `config.n_layers` with each tuple having 4 tensors
            of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if self.config.is_decoder:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
    else:
        use_cache = False

    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
    if input_ids is not None:
        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
        input_shape = input_ids.shape
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    batch_size, seq_length = input_shape

    # past_key_values_length
    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

    if attention_mask is None:
        attention_mask = ops.ones(((batch_size, seq_length + past_key_values_length)))

    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
    # ourselves in which case we just need to make it broadcastable to all heads.
    extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

    # If a 2D or 3D attention mask is provided for the cross-attention
    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
    if self.config.is_decoder and encoder_hidden_states is not None:
        encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.shape
        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
        if encoder_attention_mask is None:
            encoder_attention_mask = ops.ones(encoder_hidden_shape)
        encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
    else:
        encoder_extended_attention_mask = None

    # Prepare head mask if needed
    # 1.0 in head_mask indicate we keep the head
    # attention_probs has shape bsz x n_heads x N x N
    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

    embedding_output = self.embeddings(
        input_ids=input_ids,
        position_ids=position_ids,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        past_key_values_length=past_key_values_length,
    )
    encoder_outputs = self.encoder(
        embedding_output,
        attention_mask=extended_attention_mask,
        head_mask=head_mask,
        encoder_hidden_states=encoder_hidden_states,
        encoder_attention_mask=encoder_extended_attention_mask,
        past_key_values=past_key_values,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = encoder_outputs[0]
    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

    if not return_dict:
        return (sequence_output, pooled_output) + encoder_outputs[1:]

    return BaseModelOutputWithPoolingAndCrossAttentions(
        last_hidden_state=sequence_output,
        pooler_output=pooled_output,
        past_key_values=encoder_outputs.past_key_values,
        hidden_states=encoder_outputs.hidden_states,
        attentions=encoder_outputs.attentions,
        cross_attentions=encoder_outputs.cross_attentions,
    )

mindnlp.transformers.models.esm.modeling_esm.EsmModel.get_input_embeddings()

This method returns the input embeddings for the ESMM model.

PARAMETER DESCRIPTION
self

An instance of the EsmModel class.

RETURNS DESCRIPTION
word_embeddings

This method returns the word embeddings for input data, represented as a tensor.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
def get_input_embeddings(self):
    """
    This method returns the input embeddings for the ESMM model.

    Args:
        self: An instance of the EsmModel class.

    Returns:
        word_embeddings: This method returns the word embeddings for input data, represented as a tensor.

    Raises:
        None.
    """
    return self.embeddings.word_embeddings

mindnlp.transformers.models.esm.modeling_esm.EsmModel.predict_contacts(tokens, attention_mask)

Predicts contacts using the EsmModel.

PARAMETER DESCRIPTION
self

An instance of the EsmModel class.

TYPE: EsmModel

tokens

The input tokens for prediction.

TYPE: Tensor

attention_mask

The attention mask for the input tokens.

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
def predict_contacts(self, tokens, attention_mask):
    """
    Predicts contacts using the EsmModel.

    Args:
        self (EsmModel): An instance of the EsmModel class.
        tokens (Tensor): The input tokens for prediction.
        attention_mask (Tensor): The attention mask for the input tokens.

    Returns:
        None.

    Raises:
        None.
    """
    attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
    attns = ops.stack(attns, axis=1)  # Matches the original model layout
    # In the original model, attentions for padding tokens are completely zeroed out.
    # This makes no difference most of the time because the other tokens won't attend to them,
    # but it does for the contact prediction task, which takes attentions as input,
    # so we have to mimic that here.
    attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
    attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
    return self.contact_head(tokens, attns)

mindnlp.transformers.models.esm.modeling_esm.EsmModel.set_input_embeddings(value)

Sets the input embeddings for the EsmModel.

PARAMETER DESCRIPTION
self

The instance of the EsmModel class.

TYPE: EsmModel

value

The input embeddings to be set. This should be of type torch.Tensor.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
def set_input_embeddings(self, value):
    """
    Sets the input embeddings for the EsmModel.

    Args:
        self (EsmModel): The instance of the EsmModel class.
        value: The input embeddings to be set. This should be of type `torch.Tensor`.

    Returns:
        None.

    Raises:
        None.
    """
    self.embeddings.word_embeddings = value

mindnlp.transformers.models.esm.modeling_esm.EsmPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/esm/modeling_esm.py
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
class EsmPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = EsmConfig
    base_model_prefix = "esm"
    supports_gradient_checkpointing = True
    _no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, self.config.initializer_range, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0

            cell.weight.set_data(Tensor(weight, cell.weight.dtype))
        elif isinstance(cell, nn.LayerNorm):
            cell.weight.set_data(initializer('ones', cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))

mindnlp.transformers.models.esm.modeling_esmfold

MindSpore ESMFold model

mindnlp.transformers.models.esm.modeling_esmfold.EsmCategoricalMixture

EsmCategoricalMixture represents a categorical mixture distribution for probability calculations based on given logits.

This class provides methods for initializing the distribution, calculating the log probability of a given value, and computing the mean of the distribution.

ATTRIBUTE DESCRIPTION
param

The logits parameter for the categorical mixture distribution.

bins

The number of bins for the distribution (default is 50).

start

The starting value for the bins (default is 0).

end

The ending value for the bins (default is 1).

METHOD DESCRIPTION
__init__

Initializes the categorical mixture distribution with the given parameters.

log_prob

Calculates the log probability of a given value within the distribution.

mean

Computes the mean of the categorical mixture distribution.

Note

This class inherits from an unspecified parent class.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
class EsmCategoricalMixture:

    """
    EsmCategoricalMixture represents a categorical mixture distribution for probability calculations based on given logits.

    This class provides methods for initializing the distribution, calculating the log probability of a given value,
    and computing the mean of the distribution.

    Attributes:
        param: The logits parameter for the categorical mixture distribution.
        bins: The number of bins for the distribution (default is 50).
        start: The starting value for the bins (default is 0).
        end: The ending value for the bins (default is 1).

    Methods:
        __init__: Initializes the categorical mixture distribution with the given parameters.
        log_prob: Calculates the log probability of a given value within the distribution.
        mean: Computes the mean of the categorical mixture distribution.

    Note:
        This class inherits from an unspecified parent class.
    """
    def __init__(self, param, bins=50, start=0, end=1):
        """
        Initializes an instance of the EsmCategoricalMixture class.

        Args:
            self: Instance of the EsmCategoricalMixture class.
            param: The logits parameter to be assigned to the instance.
            bins: Number of bins for creating the v_bins attribute. Default is 50.
            start: The starting value for the linspace function. Default is 0.
            end: The ending value for the linspace function. Default is 1.

        Returns:
            None.

        Raises:
            ValueError: If the start value is greater than or equal to the end value.
            TypeError: If the param or bins parameter types are incompatible.
            ValueError: If the bins parameter is less than 1.
        """
        # All tensors are of shape ..., bins.
        self.logits = param
        bins = ops.linspace(start, end, bins + 1).astype(self.logits.dtype)
        self.v_bins = (bins[:-1] + bins[1:]) / 2

    def log_prob(self, true):
        """
        This method calculates the log probability of a given true value in the context of a categorical mixture model.

        Args:
            self: EsmCategoricalMixture
                The instance of the EsmCategoricalMixture class.
            true: torch.Tensor
                The true value for which the log probability needs to be calculated.
                It should be a tensor of shape (batch_size,) where batch_size is the number of samples.
                The true values should be within the range of valid classes for the categorical mixture model.

        Returns:
            None:
                This method does not return any value. The log probability is calculated and stored internally within
                the EsmCategoricalMixture instance.

        Raises:
            ValueError: If the true tensor does not have the expected shape or if it contains values outside the
                range of valid classes for the categorical mixture model.
            IndexError: If the true tensor index is out of bounds.
        """
        # Shapes are:
        #     self.probs: ... x bins
        #     true      : ...
        true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
        nll = self.logits.log_softmax(-1)
        return ops.gather_elements(nll, -1, true_index.unsqueeze(-1)).squeeze(-1)

    def mean(self):
        """
        Method 'mean' calculates the mean value of the categorical mixture distribution in the EsmCategoricalMixture class.

        Args:
            self: The instance of the EsmCategoricalMixture class.

        Returns:
            None.

        Raises:
            NotImplementedError: If the method is called without implementing it in a subclass.
            ValueError: If the input data is not in the expected format.
            RuntimeError: If the operation fails due to unforeseen circumstances.
        """
        return (ops.softmax(self.logits, -1) @ self.v_bins.unsqueeze(1)).squeeze(-1)

mindnlp.transformers.models.esm.modeling_esmfold.EsmCategoricalMixture.__init__(param, bins=50, start=0, end=1)

Initializes an instance of the EsmCategoricalMixture class.

PARAMETER DESCRIPTION
self

Instance of the EsmCategoricalMixture class.

param

The logits parameter to be assigned to the instance.

bins

Number of bins for creating the v_bins attribute. Default is 50.

DEFAULT: 50

start

The starting value for the linspace function. Default is 0.

DEFAULT: 0

end

The ending value for the linspace function. Default is 1.

DEFAULT: 1

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the start value is greater than or equal to the end value.

TypeError

If the param or bins parameter types are incompatible.

ValueError

If the bins parameter is less than 1.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
def __init__(self, param, bins=50, start=0, end=1):
    """
    Initializes an instance of the EsmCategoricalMixture class.

    Args:
        self: Instance of the EsmCategoricalMixture class.
        param: The logits parameter to be assigned to the instance.
        bins: Number of bins for creating the v_bins attribute. Default is 50.
        start: The starting value for the linspace function. Default is 0.
        end: The ending value for the linspace function. Default is 1.

    Returns:
        None.

    Raises:
        ValueError: If the start value is greater than or equal to the end value.
        TypeError: If the param or bins parameter types are incompatible.
        ValueError: If the bins parameter is less than 1.
    """
    # All tensors are of shape ..., bins.
    self.logits = param
    bins = ops.linspace(start, end, bins + 1).astype(self.logits.dtype)
    self.v_bins = (bins[:-1] + bins[1:]) / 2

mindnlp.transformers.models.esm.modeling_esmfold.EsmCategoricalMixture.log_prob(true)

This method calculates the log probability of a given true value in the context of a categorical mixture model.

PARAMETER DESCRIPTION
self

EsmCategoricalMixture The instance of the EsmCategoricalMixture class.

true

torch.Tensor The true value for which the log probability needs to be calculated. It should be a tensor of shape (batch_size,) where batch_size is the number of samples. The true values should be within the range of valid classes for the categorical mixture model.

RETURNS DESCRIPTION
None

This method does not return any value. The log probability is calculated and stored internally within the EsmCategoricalMixture instance.

RAISES DESCRIPTION
ValueError

If the true tensor does not have the expected shape or if it contains values outside the range of valid classes for the categorical mixture model.

IndexError

If the true tensor index is out of bounds.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
def log_prob(self, true):
    """
    This method calculates the log probability of a given true value in the context of a categorical mixture model.

    Args:
        self: EsmCategoricalMixture
            The instance of the EsmCategoricalMixture class.
        true: torch.Tensor
            The true value for which the log probability needs to be calculated.
            It should be a tensor of shape (batch_size,) where batch_size is the number of samples.
            The true values should be within the range of valid classes for the categorical mixture model.

    Returns:
        None:
            This method does not return any value. The log probability is calculated and stored internally within
            the EsmCategoricalMixture instance.

    Raises:
        ValueError: If the true tensor does not have the expected shape or if it contains values outside the
            range of valid classes for the categorical mixture model.
        IndexError: If the true tensor index is out of bounds.
    """
    # Shapes are:
    #     self.probs: ... x bins
    #     true      : ...
    true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
    nll = self.logits.log_softmax(-1)
    return ops.gather_elements(nll, -1, true_index.unsqueeze(-1)).squeeze(-1)

mindnlp.transformers.models.esm.modeling_esmfold.EsmCategoricalMixture.mean()

Method 'mean' calculates the mean value of the categorical mixture distribution in the EsmCategoricalMixture class.

PARAMETER DESCRIPTION
self

The instance of the EsmCategoricalMixture class.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
NotImplementedError

If the method is called without implementing it in a subclass.

ValueError

If the input data is not in the expected format.

RuntimeError

If the operation fails due to unforeseen circumstances.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
def mean(self):
    """
    Method 'mean' calculates the mean value of the categorical mixture distribution in the EsmCategoricalMixture class.

    Args:
        self: The instance of the EsmCategoricalMixture class.

    Returns:
        None.

    Raises:
        NotImplementedError: If the method is called without implementing it in a subclass.
        ValueError: If the input data is not in the expected format.
        RuntimeError: If the operation fails due to unforeseen circumstances.
    """
    return (ops.softmax(self.logits, -1) @ self.v_bins.unsqueeze(1)).squeeze(-1)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAngleResnet

Bases: Module

Implements Algorithm 20, lines 11-14

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
class EsmFoldAngleResnet(nn.Module):
    """
    Implements Algorithm 20, lines 11-14
    """
    def __init__(self, config):
        '''
        Initializes the EsmFoldAngleResnet class.

        Args:
            self (EsmFoldAngleResnet): The instance of the EsmFoldAngleResnet class.
            config:
                The configuration object containing parameters for the EsmFoldAngleResnet initialization.

                - Type: object
                - Purpose: Specifies the configuration settings for the EsmFoldAngleResnet class.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            None
        '''
        super().__init__()
        self.config = config

        self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
        self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)

        self.layers = nn.ModuleList()
        for _ in range(config.num_resnet_blocks):
            layer = EsmFoldAngleResnetBlock(config)
            self.layers.append(layer)

        self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)

        self.relu = nn.ReLU()

    def forward(self, s: mindspore.Tensor, s_initial: mindspore.Tensor) -> Tuple[mindspore.Tensor, mindspore.Tensor]:
        """
        Args:
            s:
                [*, C_hidden] single embedding
            s_initial:
                [*, C_hidden] single embedding as of the start of the StructureModule
        Returns:
            [*, no_angles, 2] predicted angles
        """
        # NOTE: The ReLU's applied to the inputs are absent from the supplement
        # pseudocode but present in the source. For maximal compatibility with
        # the pretrained weights, I'm going with the source.

        # [*, C_hidden]
        s_initial = self.relu(s_initial)
        s_initial = self.linear_initial(s_initial)
        s = self.relu(s)
        s = self.linear_in(s)
        s = s + s_initial

        for l in self.layers:
            s = l(s)

        s = self.relu(s)

        # [*, no_angles * 2]
        s = self.linear_out(s)

        # [*, no_angles, 2]
        s = s.view(s.shape[:-1] + (-1, 2))

        unnormalized_s = s
        norm_denom = ops.sqrt(
            ops.clamp(
                ops.sum(s**2, dim=-1, keepdim=True),
                min=self.config.epsilon,
            )
        )

        s = s / norm_denom

        return unnormalized_s, s

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAngleResnet.__init__(config)

Initializes the EsmFoldAngleResnet class.

PARAMETER DESCRIPTION
self

The instance of the EsmFoldAngleResnet class.

TYPE: EsmFoldAngleResnet

config

The configuration object containing parameters for the EsmFoldAngleResnet initialization.

  • Type: object
  • Purpose: Specifies the configuration settings for the EsmFoldAngleResnet class.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
def __init__(self, config):
    '''
    Initializes the EsmFoldAngleResnet class.

    Args:
        self (EsmFoldAngleResnet): The instance of the EsmFoldAngleResnet class.
        config:
            The configuration object containing parameters for the EsmFoldAngleResnet initialization.

            - Type: object
            - Purpose: Specifies the configuration settings for the EsmFoldAngleResnet class.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        None
    '''
    super().__init__()
    self.config = config

    self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
    self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)

    self.layers = nn.ModuleList()
    for _ in range(config.num_resnet_blocks):
        layer = EsmFoldAngleResnetBlock(config)
        self.layers.append(layer)

    self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)

    self.relu = nn.ReLU()

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAngleResnet.forward(s, s_initial)

PARAMETER DESCRIPTION
s

[*, C_hidden] single embedding

TYPE: Tensor

s_initial

[*, C_hidden] single embedding as of the start of the StructureModule

TYPE: Tensor

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
def forward(self, s: mindspore.Tensor, s_initial: mindspore.Tensor) -> Tuple[mindspore.Tensor, mindspore.Tensor]:
    """
    Args:
        s:
            [*, C_hidden] single embedding
        s_initial:
            [*, C_hidden] single embedding as of the start of the StructureModule
    Returns:
        [*, no_angles, 2] predicted angles
    """
    # NOTE: The ReLU's applied to the inputs are absent from the supplement
    # pseudocode but present in the source. For maximal compatibility with
    # the pretrained weights, I'm going with the source.

    # [*, C_hidden]
    s_initial = self.relu(s_initial)
    s_initial = self.linear_initial(s_initial)
    s = self.relu(s)
    s = self.linear_in(s)
    s = s + s_initial

    for l in self.layers:
        s = l(s)

    s = self.relu(s)

    # [*, no_angles * 2]
    s = self.linear_out(s)

    # [*, no_angles, 2]
    s = s.view(s.shape[:-1] + (-1, 2))

    unnormalized_s = s
    norm_denom = ops.sqrt(
        ops.clamp(
            ops.sum(s**2, dim=-1, keepdim=True),
            min=self.config.epsilon,
        )
    )

    s = s / norm_denom

    return unnormalized_s, s

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAngleResnetBlock

Bases: Module

This class represents an EsmFoldAngleResnetBlock, which is a block used in the forwardion of an EsmFold model. It inherits from the nn.Module class.

ATTRIBUTE DESCRIPTION
linear_1

A linear layer used in the block, initialized with a rectified linear unit (ReLU) activation function.

TYPE: EsmFoldLinear

linear_2

Another linear layer used in the block, initialized with a final activation function.

TYPE: EsmFoldLinear

relu

An instance of the ReLU activation function.

TYPE: ReLU

METHOD DESCRIPTION
__init__

Initializes the EsmFoldAngleResnetBlock with the given configuration.

forward

Constructs the EsmFoldAngleResnetBlock using the input tensor.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
class EsmFoldAngleResnetBlock(nn.Module):

    """
    This class represents an EsmFoldAngleResnetBlock, which is a block used in the forwardion of an EsmFold model.
    It inherits from the nn.Module class.

    Attributes:
        linear_1 (EsmFoldLinear):
            A linear layer used in the block, initialized with a rectified linear unit (ReLU) activation function.
        linear_2 (EsmFoldLinear):
            Another linear layer used in the block, initialized with a final activation function.
        relu (nn.ReLU): An instance of the ReLU activation function.

    Methods:
        __init__: Initializes the EsmFoldAngleResnetBlock with the given configuration.
        forward: Constructs the EsmFoldAngleResnetBlock using the input tensor.

    """
    def __init__(self, config):
        """
        Initializes an EsmFoldAngleResnetBlock object.

        Args:
            self (EsmFoldAngleResnetBlock): The current instance of the EsmFoldAngleResnetBlock class.
            config (object):
                A configuration object containing the parameters for initializing the EsmFoldAngleResnetBlock.

                - resnet_dim (int): The dimension of the resnet block.
                - init (str): The initialization method for the linear layers. Possible values are 'relu' and 'final'.

        Returns:
            None.

        Raises:
            TypeError: If the provided config object is not of the expected type.
            ValueError: If the config object does not contain the required parameters.
        """
        super().__init__()

        self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
        self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")

        self.relu = nn.ReLU()

    def forward(self, a: mindspore.Tensor) -> mindspore.Tensor:
        """
        This method forwards a computation graph for the EsmFoldAngleResnetBlock.

        Args:
            self (EsmFoldAngleResnetBlock): The instance of the EsmFoldAngleResnetBlock class.
            a (mindspore.Tensor): The input tensor for the computation graph.

        Returns:
            mindspore.Tensor: The output tensor resulting from the computation graph.

        Raises:
            None
        """
        s_initial = a

        a = self.relu(a)
        a = self.linear_1(a)
        a = self.relu(a)
        a = self.linear_2(a)

        return a + s_initial

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAngleResnetBlock.__init__(config)

Initializes an EsmFoldAngleResnetBlock object.

PARAMETER DESCRIPTION
self

The current instance of the EsmFoldAngleResnetBlock class.

TYPE: EsmFoldAngleResnetBlock

config

A configuration object containing the parameters for initializing the EsmFoldAngleResnetBlock.

  • resnet_dim (int): The dimension of the resnet block.
  • init (str): The initialization method for the linear layers. Possible values are 'relu' and 'final'.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided config object is not of the expected type.

ValueError

If the config object does not contain the required parameters.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
def __init__(self, config):
    """
    Initializes an EsmFoldAngleResnetBlock object.

    Args:
        self (EsmFoldAngleResnetBlock): The current instance of the EsmFoldAngleResnetBlock class.
        config (object):
            A configuration object containing the parameters for initializing the EsmFoldAngleResnetBlock.

            - resnet_dim (int): The dimension of the resnet block.
            - init (str): The initialization method for the linear layers. Possible values are 'relu' and 'final'.

    Returns:
        None.

    Raises:
        TypeError: If the provided config object is not of the expected type.
        ValueError: If the config object does not contain the required parameters.
    """
    super().__init__()

    self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
    self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")

    self.relu = nn.ReLU()

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAngleResnetBlock.forward(a)

This method forwards a computation graph for the EsmFoldAngleResnetBlock.

PARAMETER DESCRIPTION
self

The instance of the EsmFoldAngleResnetBlock class.

TYPE: EsmFoldAngleResnetBlock

a

The input tensor for the computation graph.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The output tensor resulting from the computation graph.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
def forward(self, a: mindspore.Tensor) -> mindspore.Tensor:
    """
    This method forwards a computation graph for the EsmFoldAngleResnetBlock.

    Args:
        self (EsmFoldAngleResnetBlock): The instance of the EsmFoldAngleResnetBlock class.
        a (mindspore.Tensor): The input tensor for the computation graph.

    Returns:
        mindspore.Tensor: The output tensor resulting from the computation graph.

    Raises:
        None
    """
    s_initial = a

    a = self.relu(a)
    a = self.linear_1(a)
    a = self.relu(a)
    a = self.linear_2(a)

    return a + s_initial

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAttention

Bases: Module

Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
class EsmFoldAttention(nn.Module):
    """
    Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.
    """
    def __init__(
        self,
        c_q: int,
        c_k: int,
        c_v: int,
        c_hidden: int,
        no_heads: int,
        gating: bool = True,
    ):
        """
        Args:
            c_q:
                Input dimension of query data
            c_k:
                Input dimension of key data
            c_v:
                Input dimension of value data
            c_hidden:
                Per-head hidden dimension
            no_heads:
                Number of attention heads
            gating:
                Whether the output should be gated using query data
        """
        super().__init__()

        self.c_q = c_q
        self.c_k = c_k
        self.c_v = c_v
        self.c_hidden = c_hidden
        self.no_heads = no_heads
        self.gating = gating

        # DISCREPANCY: c_hidden is not the per-head channel dimension, as
        # stated in the supplement, but the overall channel dimension.

        self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
        self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
        self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
        self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")

        self.linear_g = None
        if self.gating:
            self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")

        self.sigmoid = nn.Sigmoid()

    def _prep_qkv(self, q_x: mindspore.Tensor, kv_x: mindspore.Tensor) -> Tuple[mindspore.Tensor, mindspore.Tensor, mindspore.Tensor]:
        """
        Prepares the query, key, and value tensors for the EsmFoldAttention module.

        Args:
            self (EsmFoldAttention): The instance of the EsmFoldAttention module.
            q_x (mindspore.Tensor): The query tensor.
                It should have a shape of (batch_size, seq_length, hidden_size).
            kv_x (mindspore.Tensor): The key-value tensor.
                It should have a shape of (batch_size, seq_length, hidden_size).

        Returns:
            Tuple[mindspore.Tensor, mindspore.Tensor, mindspore.Tensor]:
                A tuple containing the query, key, and value tensors.

                - q: The transformed query tensor with a shape of (batch_size, seq_length, no_heads, hidden_size//no_heads).
                - k: The transformed key tensor with a shape of (batch_size, seq_length, no_heads, hidden_size//no_heads).
                - v: The transformed value tensor with a shape of (batch_size, seq_length, no_heads, hidden_size//no_heads).

        Raises:
            None.
        """
        # [*, Q/K/V, H * C_hidden]
        q = self.linear_q(q_x)
        k = self.linear_k(kv_x)
        v = self.linear_v(kv_x)

        # [*, Q/K, H, C_hidden]
        q = q.view(q.shape[:-1] + (self.no_heads, -1))
        k = k.view(k.shape[:-1] + (self.no_heads, -1))
        v = v.view(v.shape[:-1] + (self.no_heads, -1))

        # [*, H, Q/K, C_hidden]
        q = q.swapaxes(-2, -3)
        k = k.swapaxes(-2, -3)
        v = v.swapaxes(-2, -3)

        q /= math.sqrt(self.c_hidden)

        return q, k, v

    def _wrap_up(self, o: mindspore.Tensor, q_x: mindspore.Tensor) -> mindspore.Tensor:
        """
        This method '_wrap_up' in the class 'EsmFoldAttention' performs a wrapping up operation on the input tensors.

        Args:
            self: An instance of the 'EsmFoldAttention' class.
            o (mindspore.Tensor): Input tensor representing the output from previous layers.
                Shape should be compatible with the subsequent operations.
            q_x (mindspore.Tensor): Input tensor representing the query tensor.
                Shape should be compatible with the subsequent operations.

        Returns:
            mindspore.Tensor: A tensor resulting from the wrapping up operation.
                The shape and content of the tensor depend on the operations performed within the method.

        Raises:
            No specific exceptions are documented to be raised by this method under normal operation.
        """
        if self.linear_g is not None:
            g = self.sigmoid(self.linear_g(q_x))

            # [*, Q, H, C_hidden]
            g = g.view(g.shape[:-1] + (self.no_heads, -1))
            o = o * g

        # [*, Q, H * C_hidden]
        o = flatten_final_dims(o, 2)

        # [*, Q, C_q]
        o = self.linear_o(o)

        return o

    def forward(
        self,
        q_x: mindspore.Tensor,
        kv_x: mindspore.Tensor,
        biases: Optional[List[mindspore.Tensor]] = None,
        use_memory_efficient_kernel: bool = False,
        use_lma: bool = False,
        lma_q_chunk_size: int = 1024,
        lma_kv_chunk_size: int = 4096,
        use_flash: bool = False,
        flash_mask: Optional[mindspore.Tensor] = None,
    ) -> mindspore.Tensor:
        """
        Args:
            q_x:
                [*, Q, C_q] query data
            kv_x:
                [*, K, C_k] key data
            biases:
                List of biases that broadcast to [*, H, Q, K]
            use_memory_efficient_kernel:
                Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
                If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
            use_lma:
                Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
                stock PyTorch implementation is used instead
            lma_q_chunk_size:
                Query chunk size (for LMA)
            lma_kv_chunk_size:
                Key/Value chunk size (for LMA)
        Returns
            [*, Q, C_q] attention update
        """
        if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
            raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")

        if use_flash and biases is not None:
            raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")

        attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
        if sum(attn_options) > 1:
            raise ValueError("Choose at most one alternative attention algorithm")

        if biases is None:
            biases = []

        # [*, H, Q/K, C_hidden]
        query, key, value = self._prep_qkv(q_x, kv_x)
        key = permute_final_dims(key, (1, 0))

        # [*, H, Q, K]
        output = ops.matmul(query, key)
        for b in biases:
            output += b
        output = softmax_no_cast(output, -1)

        # [*, H, Q, C_hidden]
        output = ops.matmul(output, value)
        output = output.swapaxes(-2, -3)
        output = self._wrap_up(output, q_x)

        return output

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAttention.__init__(c_q, c_k, c_v, c_hidden, no_heads, gating=True)

PARAMETER DESCRIPTION
c_q

Input dimension of query data

TYPE: int

c_k

Input dimension of key data

TYPE: int

c_v

Input dimension of value data

TYPE: int

c_hidden

Per-head hidden dimension

TYPE: int

no_heads

Number of attention heads

TYPE: int

gating

Whether the output should be gated using query data

TYPE: bool DEFAULT: True

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def __init__(
    self,
    c_q: int,
    c_k: int,
    c_v: int,
    c_hidden: int,
    no_heads: int,
    gating: bool = True,
):
    """
    Args:
        c_q:
            Input dimension of query data
        c_k:
            Input dimension of key data
        c_v:
            Input dimension of value data
        c_hidden:
            Per-head hidden dimension
        no_heads:
            Number of attention heads
        gating:
            Whether the output should be gated using query data
    """
    super().__init__()

    self.c_q = c_q
    self.c_k = c_k
    self.c_v = c_v
    self.c_hidden = c_hidden
    self.no_heads = no_heads
    self.gating = gating

    # DISCREPANCY: c_hidden is not the per-head channel dimension, as
    # stated in the supplement, but the overall channel dimension.

    self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
    self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
    self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
    self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")

    self.linear_g = None
    if self.gating:
        self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")

    self.sigmoid = nn.Sigmoid()

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldAttention.forward(q_x, kv_x, biases=None, use_memory_efficient_kernel=False, use_lma=False, lma_q_chunk_size=1024, lma_kv_chunk_size=4096, use_flash=False, flash_mask=None)

PARAMETER DESCRIPTION
q_x

[*, Q, C_q] query data

TYPE: Tensor

kv_x

[*, K, C_k] key data

TYPE: Tensor

biases

List of biases that broadcast to [*, H, Q, K]

TYPE: Optional[List[Tensor]] DEFAULT: None

use_memory_efficient_kernel

Whether to use a custom memory-efficient attention kernel. This should be the default choice for most. If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead

TYPE: bool DEFAULT: False

use_lma

Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead

TYPE: bool DEFAULT: False

lma_q_chunk_size

Query chunk size (for LMA)

TYPE: int DEFAULT: 1024

lma_kv_chunk_size

Key/Value chunk size (for LMA)

TYPE: int DEFAULT: 4096

Returns [*, Q, C_q] attention update

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def forward(
    self,
    q_x: mindspore.Tensor,
    kv_x: mindspore.Tensor,
    biases: Optional[List[mindspore.Tensor]] = None,
    use_memory_efficient_kernel: bool = False,
    use_lma: bool = False,
    lma_q_chunk_size: int = 1024,
    lma_kv_chunk_size: int = 4096,
    use_flash: bool = False,
    flash_mask: Optional[mindspore.Tensor] = None,
) -> mindspore.Tensor:
    """
    Args:
        q_x:
            [*, Q, C_q] query data
        kv_x:
            [*, K, C_k] key data
        biases:
            List of biases that broadcast to [*, H, Q, K]
        use_memory_efficient_kernel:
            Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
            If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
        use_lma:
            Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
            stock PyTorch implementation is used instead
        lma_q_chunk_size:
            Query chunk size (for LMA)
        lma_kv_chunk_size:
            Key/Value chunk size (for LMA)
    Returns
        [*, Q, C_q] attention update
    """
    if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
        raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")

    if use_flash and biases is not None:
        raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")

    attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
    if sum(attn_options) > 1:
        raise ValueError("Choose at most one alternative attention algorithm")

    if biases is None:
        biases = []

    # [*, H, Q/K, C_hidden]
    query, key, value = self._prep_qkv(q_x, kv_x)
    key = permute_final_dims(key, (1, 0))

    # [*, H, Q, K]
    output = ops.matmul(query, key)
    for b in biases:
        output += b
    output = softmax_no_cast(output, -1)

    # [*, H, Q, C_hidden]
    output = ops.matmul(output, value)
    output = output.swapaxes(-2, -3)
    output = self._wrap_up(output, q_x)

    return output

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldBackboneUpdate

Bases: Module

Implements part of Algorithm 23.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
class EsmFoldBackboneUpdate(nn.Module):
    """
    Implements part of Algorithm 23.
    """
    def __init__(self, config):
        """
        Initializes the EsmFoldBackboneUpdate class.

        Args:
            self: The instance of the class.
            config: A dictionary containing configuration parameters for the backbone update.
                It should include the 'sequence_dim' parameter representing the dimension of the input sequence.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not provided or is not a dictionary.
            ValueError: If the 'sequence_dim' parameter is missing in the config dictionary.
            ValueError: If the 'sequence_dim' parameter in the config dictionary is not a positive integer.
        """
        super().__init__()

        self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")

    def forward(self, s: mindspore.Tensor) -> Tuple[mindspore.Tensor, mindspore.Tensor]:
        """
        Args:
            [*, N_res, C_s] single representation
        Returns:
            [*, N_res, 6] update vector
        """
        # [*, 6]
        update = self.linear(s)

        return update

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldBackboneUpdate.__init__(config)

Initializes the EsmFoldBackboneUpdate class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

A dictionary containing configuration parameters for the backbone update. It should include the 'sequence_dim' parameter representing the dimension of the input sequence.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not provided or is not a dictionary.

ValueError

If the 'sequence_dim' parameter is missing in the config dictionary.

ValueError

If the 'sequence_dim' parameter in the config dictionary is not a positive integer.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
def __init__(self, config):
    """
    Initializes the EsmFoldBackboneUpdate class.

    Args:
        self: The instance of the class.
        config: A dictionary containing configuration parameters for the backbone update.
            It should include the 'sequence_dim' parameter representing the dimension of the input sequence.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not provided or is not a dictionary.
        ValueError: If the 'sequence_dim' parameter is missing in the config dictionary.
        ValueError: If the 'sequence_dim' parameter in the config dictionary is not a positive integer.
    """
    super().__init__()

    self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldBackboneUpdate.forward(s)

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
def forward(self, s: mindspore.Tensor) -> Tuple[mindspore.Tensor, mindspore.Tensor]:
    """
    Args:
        [*, N_res, C_s] single representation
    Returns:
        [*, N_res, 6] update vector
    """
    # [*, 6]
    update = self.linear(s)

    return update

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldDropout

Bases: Module

Implementation of dropout with the ability to share the dropout mask along a particular dimension.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
class EsmFoldDropout(nn.Module):
    """
    Implementation of dropout with the ability to share the dropout mask along a particular dimension.
    """
    def __init__(self, r: float, batch_dim: Union[int, List[int]]):
        """
        Initializes an instance of the EsmFoldDropout class.

        Args:
            self: The instance of the class.
            r (float): The dropout rate value.
            batch_dim (Union[int, List[int]]):
                The dimension(s) of the input batch.
                If an integer is provided, it will be converted to a list with that integer as the only element.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()

        self.r = r
        if isinstance(batch_dim, int):
            batch_dim = [batch_dim]
        self.batch_dim = batch_dim
        self.dropout = nn.Dropout(p=self.r)

    def forward(self, x: mindspore.Tensor) -> mindspore.Tensor:
        """
        This method forwards a modified tensor with dropout for the EsmFoldDropout class.

        Args:
            self: An instance of the EsmFoldDropout class.
            x (mindspore.Tensor): The input tensor for which the modified tensor is forwarded.

        Returns:
            mindspore.Tensor: Returns a new tensor, which is the result of applying dropout to the input tensor.

        Raises:
            TypeError: If the input x is not of type mindspore.Tensor.
            ValueError: If the shape manipulation encounters an error during the forwardion process.
            RuntimeError: If there is a runtime issue during the execution of the method.
        """
        shape = list(x.shape)
        if self.batch_dim is not None:
            for bd in self.batch_dim:
                shape[bd] = 1
        return x * self.dropout(x.new_ones(shape))

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldDropout.__init__(r, batch_dim)

Initializes an instance of the EsmFoldDropout class.

PARAMETER DESCRIPTION
self

The instance of the class.

r

The dropout rate value.

TYPE: float

batch_dim

The dimension(s) of the input batch. If an integer is provided, it will be converted to a list with that integer as the only element.

TYPE: Union[int, List[int]]

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
    """
    Initializes an instance of the EsmFoldDropout class.

    Args:
        self: The instance of the class.
        r (float): The dropout rate value.
        batch_dim (Union[int, List[int]]):
            The dimension(s) of the input batch.
            If an integer is provided, it will be converted to a list with that integer as the only element.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()

    self.r = r
    if isinstance(batch_dim, int):
        batch_dim = [batch_dim]
    self.batch_dim = batch_dim
    self.dropout = nn.Dropout(p=self.r)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldDropout.forward(x)

This method forwards a modified tensor with dropout for the EsmFoldDropout class.

PARAMETER DESCRIPTION
self

An instance of the EsmFoldDropout class.

x

The input tensor for which the modified tensor is forwarded.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: Returns a new tensor, which is the result of applying dropout to the input tensor.

RAISES DESCRIPTION
TypeError

If the input x is not of type mindspore.Tensor.

ValueError

If the shape manipulation encounters an error during the forwardion process.

RuntimeError

If there is a runtime issue during the execution of the method.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
def forward(self, x: mindspore.Tensor) -> mindspore.Tensor:
    """
    This method forwards a modified tensor with dropout for the EsmFoldDropout class.

    Args:
        self: An instance of the EsmFoldDropout class.
        x (mindspore.Tensor): The input tensor for which the modified tensor is forwarded.

    Returns:
        mindspore.Tensor: Returns a new tensor, which is the result of applying dropout to the input tensor.

    Raises:
        TypeError: If the input x is not of type mindspore.Tensor.
        ValueError: If the shape manipulation encounters an error during the forwardion process.
        RuntimeError: If there is a runtime issue during the execution of the method.
    """
    shape = list(x.shape)
    if self.batch_dim is not None:
        for bd in self.batch_dim:
            shape[bd] = 1
    return x * self.dropout(x.new_ones(shape))

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldInvariantPointAttention

Bases: Module

Implements Algorithm 22.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
class EsmFoldInvariantPointAttention(nn.Module):
    """
    Implements Algorithm 22.
    """
    def __init__(self, config):
        '''
        Initializes an instance of the EsmFoldInvariantPointAttention class.

        Args:
            self: The instance of the class.
            config: An object containing the configuration settings.

        Returns:
            None

        Raises:
            None

        Description:
            This method initializes the EsmFoldInvariantPointAttention instance by setting various parameters and
            creating necessary objects.

        Parameters:
            self: The instance of the class.
            config: An object containing the configuration settings.

        The config object must have the following attributes:

        - sequence_dim: An integer representing the dimension of the sequence.
        - pairwise_dim: An integer representing the dimension of the pairwise data.
        - ipa_dim: An integer representing the dimension of the ipa data.
        - num_heads_ipa: An integer representing the number of heads for the ipa.
        - num_qk_points: An integer representing the number of query and key points.
        - num_v_points: An integer representing the number of value points.

        Attributes:
            hidden_dim: An integer representing the ipa dimension.
            num_heads: An integer representing the number of ipa heads.
            num_qk_points: An integer representing the number of query and key points.
            num_v_points: An integer representing the number of value points.
            linear_q: An instance of the EsmFoldLinear class with input dimension c_s and output dimension hc.
            linear_kv: An instance of the EsmFoldLinear class with input dimension c_s and output dimension 2 * hc.
            linear_q_points: An instance of the EsmFoldLinear class with input dimension c_s and output dimension hpq.
            linear_kv_points: An instance of the EsmFoldLinear class with input dimension c_s and output dimension hpkv.
            linear_b: An instance of the EsmFoldLinear class with input dimension c_z and output dimension num_heads_ipa.
            head_weights: A Parameter object representing the weights of the ipa heads.
            linear_out: An instance of the EsmFoldLinear class with input dimension concat_out_dim and output dimension c_s.
            softmax: An instance of the Softmax class used for softmax activation.
            softplus: An instance of the Softplus class used for softplus activation.
        '''
        super().__init__()
        self.config = config

        c_s = config.sequence_dim
        c_z = config.pairwise_dim
        self.hidden_dim = config.ipa_dim
        self.num_heads = config.num_heads_ipa
        self.num_qk_points = config.num_qk_points
        self.num_v_points = config.num_v_points

        # These linear layers differ from their specifications in the
        # supplement. There, they lack bias and use Glorot initialization.
        # Here as in the official source, they have bias and use the default
        # Lecun initialization.
        hc = config.ipa_dim * config.num_heads_ipa
        self.linear_q = EsmFoldLinear(c_s, hc)
        self.linear_kv = EsmFoldLinear(c_s, 2 * hc)

        hpq = config.num_heads_ipa * config.num_qk_points * 3
        self.linear_q_points = EsmFoldLinear(c_s, hpq)

        hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
        self.linear_kv_points = EsmFoldLinear(c_s, hpkv)

        self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)

        self.head_weights = Parameter(ops.zeros((config.num_heads_ipa)))

        concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
        self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")

        self.softmax = nn.Softmax(axis=-1)
        self.softplus = ops.softplus

    def forward(
        self,
        s: mindspore.Tensor,
        z: Optional[mindspore.Tensor],
        r: Rigid,
        mask: mindspore.Tensor,
    ) -> mindspore.Tensor:
        """
        Args:
            s:
                [*, N_res, C_s] single representation
            z:
                [*, N_res, N_res, C_z] pair representation
            r:
                [*, N_res] transformation object
            mask:
                [*, N_res] mask
        Returns:
            [*, N_res, C_s] single representation update
        """
        z = [z]

        #######################################
        # Generate scalar and point activations
        #######################################
        # [*, N_res, H * C_hidden]
        q = self.linear_q(s)
        kv = self.linear_kv(s)

        # [*, N_res, H, C_hidden]
        q = q.view(q.shape[:-1] + (self.num_heads, -1))

        # [*, N_res, H, 2 * C_hidden]
        kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))

        # [*, N_res, H, C_hidden]
        k, v = ops.split(kv, self.hidden_dim, axis=-1)

        # [*, N_res, H * P_q * 3]
        q_pts = self.linear_q_points(s)

        # This is kind of clunky, but it's how the original does it
        # [*, N_res, H * P_q, 3]
        q_pts = ops.split(q_pts, q_pts.shape[-1] // 3, axis=-1)
        q_pts = ops.stack(q_pts, axis=-1)
        q_pts = r[..., None].apply(q_pts)

        # [*, N_res, H, P_q, 3]
        q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))

        # [*, N_res, H * (P_q + P_v) * 3]
        kv_pts = self.linear_kv_points(s)

        # [*, N_res, H * (P_q + P_v), 3]
        kv_pts = ops.split(kv_pts, kv_pts.shape[-1] // 3, axis=-1)
        kv_pts = ops.stack(kv_pts, axis=-1)
        kv_pts = r[..., None].apply(kv_pts)

        # [*, N_res, H, (P_q + P_v), 3]
        kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))

        # [*, N_res, H, P_q/P_v, 3]
        k_pts, v_pts = ops.split(kv_pts, [self.num_qk_points, self.num_v_points], axis=-2)

        ##########################
        # Compute attention scores
        ##########################
        # [*, N_res, N_res, H]
        b = self.linear_b(z[0])
        # [*, H, N_res, N_res]
        a = ops.matmul(
            permute_final_dims(q, (1, 0, 2)),  # [*, H, N_res, C_hidden]
            permute_final_dims(k, (1, 2, 0)),  # [*, H, C_hidden, N_res]
        )

        a *= math.sqrt(1.0 / (3 * self.hidden_dim))
        a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))

        # [*, N_res, N_res, H, P_q, 3]
        pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
        pt_att = pt_att**2

        # [*, N_res, N_res, H, P_q]
        pt_att = sum(ops.unbind(pt_att, dim=-1))
        head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
        head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
        pt_att = pt_att * head_weights

        # [*, N_res, N_res, H]
        pt_att = ops.sum(pt_att, dim=-1) * (-0.5)
        # [*, N_res, N_res]
        square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
        square_mask = self.config.inf * (square_mask - 1)

        # [*, H, N_res, N_res]
        pt_att = permute_final_dims(pt_att, (2, 0, 1))

        a = a + pt_att
        a = a + square_mask.unsqueeze(-3)
        a = self.softmax(a)

        ################
        # Compute output
        ################
        # [*, N_res, H, C_hidden]
        o = ops.matmul(a, v.swapaxes(-2, -3).to(dtype=a.dtype)).swapaxes(-2, -3)

        # [*, N_res, H * C_hidden]
        o = flatten_final_dims(o, 2)

        # [*, H, 3, N_res, P_v]
        o_pt = ops.sum(
            (a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
            dim=-2,
        )

        # [*, N_res, H, P_v, 3]
        o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
        o_pt = r[..., None, None].invert_apply(o_pt)

        # [*, N_res, H * P_v]
        o_pt_norm = flatten_final_dims(ops.sqrt(ops.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)

        # [*, N_res, H * P_v, 3]
        o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)

        # [*, N_res, H, C_z]
        o_pair = ops.matmul(a.swapaxes(-2, -3), z[0].to(dtype=a.dtype))

        # [*, N_res, H * C_z]
        o_pair = flatten_final_dims(o_pair, 2)

        # [*, N_res, C_s]
        s = self.linear_out(
            ops.cat((o, *ops.unbind(o_pt, dim=-1), o_pt_norm, o_pair), axis=-1).to(dtype=z[0].dtype)
        )

        return s

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldInvariantPointAttention.__init__(config)

Initializes an instance of the EsmFoldInvariantPointAttention class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object containing the configuration settings.

RETURNS DESCRIPTION

None

Description

This method initializes the EsmFoldInvariantPointAttention instance by setting various parameters and creating necessary objects.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object containing the configuration settings.

The config object must have the following attributes:

  • sequence_dim: An integer representing the dimension of the sequence.
  • pairwise_dim: An integer representing the dimension of the pairwise data.
  • ipa_dim: An integer representing the dimension of the ipa data.
  • num_heads_ipa: An integer representing the number of heads for the ipa.
  • num_qk_points: An integer representing the number of query and key points.
  • num_v_points: An integer representing the number of value points.
ATTRIBUTE DESCRIPTION
hidden_dim

An integer representing the ipa dimension.

num_heads

An integer representing the number of ipa heads.

num_qk_points

An integer representing the number of query and key points.

num_v_points

An integer representing the number of value points.

linear_q

An instance of the EsmFoldLinear class with input dimension c_s and output dimension hc.

linear_kv

An instance of the EsmFoldLinear class with input dimension c_s and output dimension 2 * hc.

linear_q_points

An instance of the EsmFoldLinear class with input dimension c_s and output dimension hpq.

linear_kv_points

An instance of the EsmFoldLinear class with input dimension c_s and output dimension hpkv.

linear_b

An instance of the EsmFoldLinear class with input dimension c_z and output dimension num_heads_ipa.

head_weights

A Parameter object representing the weights of the ipa heads.

linear_out

An instance of the EsmFoldLinear class with input dimension concat_out_dim and output dimension c_s.

softmax

An instance of the Softmax class used for softmax activation.

softplus

An instance of the Softplus class used for softplus activation.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
def __init__(self, config):
    '''
    Initializes an instance of the EsmFoldInvariantPointAttention class.

    Args:
        self: The instance of the class.
        config: An object containing the configuration settings.

    Returns:
        None

    Raises:
        None

    Description:
        This method initializes the EsmFoldInvariantPointAttention instance by setting various parameters and
        creating necessary objects.

    Parameters:
        self: The instance of the class.
        config: An object containing the configuration settings.

    The config object must have the following attributes:

    - sequence_dim: An integer representing the dimension of the sequence.
    - pairwise_dim: An integer representing the dimension of the pairwise data.
    - ipa_dim: An integer representing the dimension of the ipa data.
    - num_heads_ipa: An integer representing the number of heads for the ipa.
    - num_qk_points: An integer representing the number of query and key points.
    - num_v_points: An integer representing the number of value points.

    Attributes:
        hidden_dim: An integer representing the ipa dimension.
        num_heads: An integer representing the number of ipa heads.
        num_qk_points: An integer representing the number of query and key points.
        num_v_points: An integer representing the number of value points.
        linear_q: An instance of the EsmFoldLinear class with input dimension c_s and output dimension hc.
        linear_kv: An instance of the EsmFoldLinear class with input dimension c_s and output dimension 2 * hc.
        linear_q_points: An instance of the EsmFoldLinear class with input dimension c_s and output dimension hpq.
        linear_kv_points: An instance of the EsmFoldLinear class with input dimension c_s and output dimension hpkv.
        linear_b: An instance of the EsmFoldLinear class with input dimension c_z and output dimension num_heads_ipa.
        head_weights: A Parameter object representing the weights of the ipa heads.
        linear_out: An instance of the EsmFoldLinear class with input dimension concat_out_dim and output dimension c_s.
        softmax: An instance of the Softmax class used for softmax activation.
        softplus: An instance of the Softplus class used for softplus activation.
    '''
    super().__init__()
    self.config = config

    c_s = config.sequence_dim
    c_z = config.pairwise_dim
    self.hidden_dim = config.ipa_dim
    self.num_heads = config.num_heads_ipa
    self.num_qk_points = config.num_qk_points
    self.num_v_points = config.num_v_points

    # These linear layers differ from their specifications in the
    # supplement. There, they lack bias and use Glorot initialization.
    # Here as in the official source, they have bias and use the default
    # Lecun initialization.
    hc = config.ipa_dim * config.num_heads_ipa
    self.linear_q = EsmFoldLinear(c_s, hc)
    self.linear_kv = EsmFoldLinear(c_s, 2 * hc)

    hpq = config.num_heads_ipa * config.num_qk_points * 3
    self.linear_q_points = EsmFoldLinear(c_s, hpq)

    hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
    self.linear_kv_points = EsmFoldLinear(c_s, hpkv)

    self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)

    self.head_weights = Parameter(ops.zeros((config.num_heads_ipa)))

    concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
    self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")

    self.softmax = nn.Softmax(axis=-1)
    self.softplus = ops.softplus

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldInvariantPointAttention.forward(s, z, r, mask)

PARAMETER DESCRIPTION
s

[*, N_res, C_s] single representation

TYPE: Tensor

z

[*, N_res, N_res, C_z] pair representation

TYPE: Optional[Tensor]

r

[*, N_res] transformation object

TYPE: Rigid

mask

[*, N_res] mask

TYPE: Tensor

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
def forward(
    self,
    s: mindspore.Tensor,
    z: Optional[mindspore.Tensor],
    r: Rigid,
    mask: mindspore.Tensor,
) -> mindspore.Tensor:
    """
    Args:
        s:
            [*, N_res, C_s] single representation
        z:
            [*, N_res, N_res, C_z] pair representation
        r:
            [*, N_res] transformation object
        mask:
            [*, N_res] mask
    Returns:
        [*, N_res, C_s] single representation update
    """
    z = [z]

    #######################################
    # Generate scalar and point activations
    #######################################
    # [*, N_res, H * C_hidden]
    q = self.linear_q(s)
    kv = self.linear_kv(s)

    # [*, N_res, H, C_hidden]
    q = q.view(q.shape[:-1] + (self.num_heads, -1))

    # [*, N_res, H, 2 * C_hidden]
    kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))

    # [*, N_res, H, C_hidden]
    k, v = ops.split(kv, self.hidden_dim, axis=-1)

    # [*, N_res, H * P_q * 3]
    q_pts = self.linear_q_points(s)

    # This is kind of clunky, but it's how the original does it
    # [*, N_res, H * P_q, 3]
    q_pts = ops.split(q_pts, q_pts.shape[-1] // 3, axis=-1)
    q_pts = ops.stack(q_pts, axis=-1)
    q_pts = r[..., None].apply(q_pts)

    # [*, N_res, H, P_q, 3]
    q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))

    # [*, N_res, H * (P_q + P_v) * 3]
    kv_pts = self.linear_kv_points(s)

    # [*, N_res, H * (P_q + P_v), 3]
    kv_pts = ops.split(kv_pts, kv_pts.shape[-1] // 3, axis=-1)
    kv_pts = ops.stack(kv_pts, axis=-1)
    kv_pts = r[..., None].apply(kv_pts)

    # [*, N_res, H, (P_q + P_v), 3]
    kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))

    # [*, N_res, H, P_q/P_v, 3]
    k_pts, v_pts = ops.split(kv_pts, [self.num_qk_points, self.num_v_points], axis=-2)

    ##########################
    # Compute attention scores
    ##########################
    # [*, N_res, N_res, H]
    b = self.linear_b(z[0])
    # [*, H, N_res, N_res]
    a = ops.matmul(
        permute_final_dims(q, (1, 0, 2)),  # [*, H, N_res, C_hidden]
        permute_final_dims(k, (1, 2, 0)),  # [*, H, C_hidden, N_res]
    )

    a *= math.sqrt(1.0 / (3 * self.hidden_dim))
    a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))

    # [*, N_res, N_res, H, P_q, 3]
    pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
    pt_att = pt_att**2

    # [*, N_res, N_res, H, P_q]
    pt_att = sum(ops.unbind(pt_att, dim=-1))
    head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
    head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
    pt_att = pt_att * head_weights

    # [*, N_res, N_res, H]
    pt_att = ops.sum(pt_att, dim=-1) * (-0.5)
    # [*, N_res, N_res]
    square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
    square_mask = self.config.inf * (square_mask - 1)

    # [*, H, N_res, N_res]
    pt_att = permute_final_dims(pt_att, (2, 0, 1))

    a = a + pt_att
    a = a + square_mask.unsqueeze(-3)
    a = self.softmax(a)

    ################
    # Compute output
    ################
    # [*, N_res, H, C_hidden]
    o = ops.matmul(a, v.swapaxes(-2, -3).to(dtype=a.dtype)).swapaxes(-2, -3)

    # [*, N_res, H * C_hidden]
    o = flatten_final_dims(o, 2)

    # [*, H, 3, N_res, P_v]
    o_pt = ops.sum(
        (a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
        dim=-2,
    )

    # [*, N_res, H, P_v, 3]
    o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
    o_pt = r[..., None, None].invert_apply(o_pt)

    # [*, N_res, H * P_v]
    o_pt_norm = flatten_final_dims(ops.sqrt(ops.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)

    # [*, N_res, H * P_v, 3]
    o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)

    # [*, N_res, H, C_z]
    o_pair = ops.matmul(a.swapaxes(-2, -3), z[0].to(dtype=a.dtype))

    # [*, N_res, H * C_z]
    o_pair = flatten_final_dims(o_pair, 2)

    # [*, N_res, C_s]
    s = self.linear_out(
        ops.cat((o, *ops.unbind(o_pt, dim=-1), o_pt_norm, o_pair), axis=-1).to(dtype=z[0].dtype)
    )

    return s

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldLayerNorm

Bases: Module

EsmFoldLayerNorm represents a custom layer normalization module with additional trainable parameters for weight and bias. This class inherits from nn.Module and implements the Layer Normalization operation with custom weight and bias parameters.

ATTRIBUTE DESCRIPTION
c_in

Number of input channels for the layer normalization operation.

TYPE: int

eps

Epsilon value used in the normalization operation.

TYPE: float

weight

Trainable parameter representing the weights for the normalization operation.

TYPE: Parameter

bias

Trainable parameter representing the bias for the normalization operation.

TYPE: Parameter

layer_norm

Layer normalization operation with custom weight and bias parameters.

TYPE: LayerNorm

METHOD DESCRIPTION
__init__

Initializes the EsmFoldLayerNorm instance with the specified input channels and epsilon value.

forward

Applies the layer normalization operation with custom weight and bias parameters to the input tensor x.

RETURNS DESCRIPTION
Tensor

The normalized output tensor after applying the layer normalization operation with custom parameters.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
class EsmFoldLayerNorm(nn.Module):

    """
    EsmFoldLayerNorm represents a custom layer normalization module with additional trainable parameters for weight and bias.
    This class inherits from nn.Module and implements the Layer Normalization operation with custom weight and bias parameters.

    Attributes:
        c_in (int): Number of input channels for the layer normalization operation.
        eps (float): Epsilon value used in the normalization operation.
        weight (Parameter): Trainable parameter representing the weights for the normalization operation.
        bias (Parameter): Trainable parameter representing the bias for the normalization operation.
        layer_norm (ops.LayerNorm): Layer normalization operation with custom weight and bias parameters.

    Methods:
        __init__:
            Initializes the EsmFoldLayerNorm instance with the specified input channels and epsilon value.

        forward:
            Applies the layer normalization operation with custom weight and bias parameters to the input tensor x.

    Returns:
        Tensor: The normalized output tensor after applying the layer normalization operation with custom parameters.
    """
    def __init__(self, c_in, eps=1e-5):
        """
        Initialize the EsmFoldLayerNorm class.

        Args:
            self: The instance of the EsmFoldLayerNorm class.
            c_in (int): The number of input channels for the layer normalization. Must be a positive integer.
            eps (float, optional): The epsilon value for numerical stability in layer normalization. Default is 1e-05.

        Returns:
            None.

        Raises:
            ValueError: If c_in is not a positive integer.
            ValueError: If eps is not a valid epsilon value (not a float).
        """
        super().__init__()

        self.c_in = (c_in,)
        self.eps = eps

        self.weight = Parameter(ops.ones(c_in))
        self.bias = Parameter(ops.zeros(c_in))
        self.layer_norm = ops.LayerNorm(begin_norm_axis=-1,
                                        begin_params_axis=-1,
                                        epsilon=eps)
    def forward(self, x):
        """
        Constructs a normalized layer using the EsmFold algorithm.

        Args:
            self (EsmFoldLayerNorm): An instance of the EsmFoldLayerNorm class.
            x: The input tensor to be normalized. Should have shape (batch_size, features).

        Returns:
            None: This method does not return a value.
                The normalized layer is stored within the instance of the EsmFoldLayerNorm class.

        Raises:
            None.
        """
        y, _, _ = self.layer_norm(x, self.weight, self.bias)
        return y

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldLayerNorm.__init__(c_in, eps=1e-05)

Initialize the EsmFoldLayerNorm class.

PARAMETER DESCRIPTION
self

The instance of the EsmFoldLayerNorm class.

c_in

The number of input channels for the layer normalization. Must be a positive integer.

TYPE: int

eps

The epsilon value for numerical stability in layer normalization. Default is 1e-05.

TYPE: float DEFAULT: 1e-05

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If c_in is not a positive integer.

ValueError

If eps is not a valid epsilon value (not a float).

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def __init__(self, c_in, eps=1e-5):
    """
    Initialize the EsmFoldLayerNorm class.

    Args:
        self: The instance of the EsmFoldLayerNorm class.
        c_in (int): The number of input channels for the layer normalization. Must be a positive integer.
        eps (float, optional): The epsilon value for numerical stability in layer normalization. Default is 1e-05.

    Returns:
        None.

    Raises:
        ValueError: If c_in is not a positive integer.
        ValueError: If eps is not a valid epsilon value (not a float).
    """
    super().__init__()

    self.c_in = (c_in,)
    self.eps = eps

    self.weight = Parameter(ops.ones(c_in))
    self.bias = Parameter(ops.zeros(c_in))
    self.layer_norm = ops.LayerNorm(begin_norm_axis=-1,
                                    begin_params_axis=-1,
                                    epsilon=eps)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldLayerNorm.forward(x)

Constructs a normalized layer using the EsmFold algorithm.

PARAMETER DESCRIPTION
self

An instance of the EsmFoldLayerNorm class.

TYPE: EsmFoldLayerNorm

x

The input tensor to be normalized. Should have shape (batch_size, features).

RETURNS DESCRIPTION
None

This method does not return a value. The normalized layer is stored within the instance of the EsmFoldLayerNorm class.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def forward(self, x):
    """
    Constructs a normalized layer using the EsmFold algorithm.

    Args:
        self (EsmFoldLayerNorm): An instance of the EsmFoldLayerNorm class.
        x: The input tensor to be normalized. Should have shape (batch_size, features).

    Returns:
        None: This method does not return a value.
            The normalized layer is stored within the instance of the EsmFoldLayerNorm class.

    Raises:
        None.
    """
    y, _, _ = self.layer_norm(x, self.weight, self.bias)
    return y

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldLinear

Bases: Linear

A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.

Implements the initializers in 1.11.4, plus some additional ones found in the code.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
class EsmFoldLinear(nn.Linear):
    """
    A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.

    Implements the initializers in 1.11.4, plus some additional ones found in the code.
    """
    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        bias: bool = True,
        init: str = "default",
        init_fn: Optional[Callable[[mindspore.Tensor, mindspore.Tensor], None]] = None,
    ):
        """
        Args:
            in_dim:
                The final dimension of inputs to the layer
            out_dim:
                The final dimension of layer outputs
            bias:
                Whether to learn an additive bias. True by default
            init:
                The initializer to use. Choose from:

                "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
                distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
                Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0

                Overridden by init_fn if the latter is not None.
            init_fn:
                A custom initializer taking weight and bias as inputs. Overrides init if not None.
        """
        super().__init__(in_dim, out_dim, bias=bias)

        self.init = init
        self.init_fn = init_fn
        if bias:
            self.bias.set_data(ops.zeros_like(self.bias))

        if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
            raise ValueError("Invalid init string.")

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldLinear.__init__(in_dim, out_dim, bias=True, init='default', init_fn=None)

PARAMETER DESCRIPTION
in_dim

The final dimension of inputs to the layer

TYPE: int

out_dim

The final dimension of layer outputs

TYPE: int

bias

Whether to learn an additive bias. True by default

TYPE: bool DEFAULT: True

init

The initializer to use. Choose from:

"default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal": Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0

Overridden by init_fn if the latter is not None.

TYPE: str DEFAULT: 'default'

init_fn

A custom initializer taking weight and bias as inputs. Overrides init if not None.

TYPE: Optional[Callable[[Tensor, Tensor], None]] DEFAULT: None

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def __init__(
    self,
    in_dim: int,
    out_dim: int,
    bias: bool = True,
    init: str = "default",
    init_fn: Optional[Callable[[mindspore.Tensor, mindspore.Tensor], None]] = None,
):
    """
    Args:
        in_dim:
            The final dimension of inputs to the layer
        out_dim:
            The final dimension of layer outputs
        bias:
            Whether to learn an additive bias. True by default
        init:
            The initializer to use. Choose from:

            "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
            distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
            Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0

            Overridden by init_fn if the latter is not None.
        init_fn:
            A custom initializer taking weight and bias as inputs. Overrides init if not None.
    """
    super().__init__(in_dim, out_dim, bias=bias)

    self.init = init
    self.init_fn = init_fn
    if bias:
        self.bias.set_data(ops.zeros_like(self.bias))

    if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
        raise ValueError("Invalid init string.")

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldPairToSequence

Bases: Module

EsmFoldPairToSequence class represents a neural network module for converting pairwise features to sequence features using self-attention mechanism.

This class inherits from nn.Module and includes methods for initializing the module and forwarding the forward pass.

ATTRIBUTE DESCRIPTION
pairwise_state_dim

Dimension of the pairwise state features.

TYPE: int

num_heads

Number of attention heads.

TYPE: int

METHOD DESCRIPTION
__init__

Initializes the EsmFoldPairToSequence module with the given pairwise_state_dim and num_heads.

forward

Applies self-attention mechanism to the input pairwise_state tensor to generate pairwise_bias tensor.

PARAMETER DESCRIPTION
pairwise_state_dim

Dimension of the pairwise state features.

TYPE: int

num_heads

Number of attention heads.

TYPE: int

Inputs

pairwise_state (tensor): Input tensor of shape B x L x L x pairwise_state_dim.

Outputs

pairwise_bias (tensor): Output tensor of shape B x L x L x num_heads.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
class EsmFoldPairToSequence(nn.Module):

    """
    EsmFoldPairToSequence class represents a neural network module for converting pairwise features to sequence features
    using self-attention mechanism.

    This class inherits from nn.Module and includes methods for initializing the module and forwarding the forward pass.

    Attributes:
        pairwise_state_dim (int): Dimension of the pairwise state features.
        num_heads (int): Number of attention heads.

    Methods:
        __init__:
            Initializes the EsmFoldPairToSequence module with the given pairwise_state_dim and num_heads.

        forward:
            Applies self-attention mechanism to the input pairwise_state tensor to generate pairwise_bias tensor.

    Args:
        pairwise_state_dim (int): Dimension of the pairwise state features.
        num_heads (int): Number of attention heads.

    Inputs:
        pairwise_state (tensor): Input tensor of shape B x L x L x pairwise_state_dim.

    Outputs:
        pairwise_bias (tensor): Output tensor of shape B x L x L x num_heads.
    """
    def __init__(self, pairwise_state_dim, num_heads):
        """
        Initializes an instance of the EsmFoldPairToSequence class.

        Args:
            self: The instance of the class.
            pairwise_state_dim (int): The dimension of the pairwise state.
            num_heads (int): The number of attention heads to use.

        Returns:
            None.

        Raises:
            ValueError: If pairwise_state_dim or num_heads is not a positive integer.
            AttributeError: If the attributes layernorm or linear cannot be initialized.
        """
        super().__init__()

        self.layernorm = nn.LayerNorm(pairwise_state_dim)
        self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)

    def forward(self, pairwise_state):
        """
        Inputs:
            pairwise_state: B x L x L x pairwise_state_dim

        Output:
            pairwise_bias: B x L x L x num_heads
        """
        assert len(pairwise_state.shape) == 4
        z = self.layernorm(pairwise_state)
        pairwise_bias = self.linear(z)
        return pairwise_bias

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldPairToSequence.__init__(pairwise_state_dim, num_heads)

Initializes an instance of the EsmFoldPairToSequence class.

PARAMETER DESCRIPTION
self

The instance of the class.

pairwise_state_dim

The dimension of the pairwise state.

TYPE: int

num_heads

The number of attention heads to use.

TYPE: int

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If pairwise_state_dim or num_heads is not a positive integer.

AttributeError

If the attributes layernorm or linear cannot be initialized.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
def __init__(self, pairwise_state_dim, num_heads):
    """
    Initializes an instance of the EsmFoldPairToSequence class.

    Args:
        self: The instance of the class.
        pairwise_state_dim (int): The dimension of the pairwise state.
        num_heads (int): The number of attention heads to use.

    Returns:
        None.

    Raises:
        ValueError: If pairwise_state_dim or num_heads is not a positive integer.
        AttributeError: If the attributes layernorm or linear cannot be initialized.
    """
    super().__init__()

    self.layernorm = nn.LayerNorm(pairwise_state_dim)
    self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldPairToSequence.forward(pairwise_state)

Inputs
Output
Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
def forward(self, pairwise_state):
    """
    Inputs:
        pairwise_state: B x L x L x pairwise_state_dim

    Output:
        pairwise_bias: B x L x L x num_heads
    """
    assert len(pairwise_state.shape) == 4
    z = self.layernorm(pairwise_state)
    pairwise_bias = self.linear(z)
    return pairwise_bias

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldPreTrainedModel

Bases: EsmPreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
class EsmFoldPreTrainedModel(EsmPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    # Subclass `EsMPreTrainedModel` to deal with special init
    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, EsmFoldLinear):
            if cell.init_fn is not None:
                cell.init_fn(cell.weight, cell.bias)
            elif cell.init == "default":
                trunc_normal_init_(cell.weight, scale=1.0)
            elif cell.init == "relu":
                trunc_normal_init_(cell.weight, scale=2.0)
            elif cell.init == "glorot":
                cell.weight.set_data(initializer(XavierUniform(), cell.weight.shape, cell.weight.dtype))
            elif cell.init == "gating":
                cell.weight[:] = 0
                if cell.bias:
                    cell.bias[:] = 1
            elif cell.init == "normal":
                cell.weight.set_data(initializer(HeNormal(nonlinearity="linear"), cell.weight.shape, cell.weight.dtype))
            elif cell.init == "final":
                cell.weight[:] = 0
        elif isinstance(cell, EsmFoldInvariantPointAttention):
            ipa_point_weights_init_(cell.head_weights)
        elif isinstance(cell, EsmFoldTriangularSelfAttentionBlock):
            cell.tri_mul_in.linear_z.weight[:] = 0
            cell.tri_mul_in.linear_z.bias[:] = 0
            cell.tri_mul_out.linear_z.weight[:] = 0
            cell.tri_mul_out.linear_z.bias[:] = 0
            cell.tri_att_start.mha.linear_o.weight[:] = 0
            cell.tri_att_start.mha.linear_o.bias[:] = 0
            cell.tri_att_end.mha.linear_o.weight[:] = 0
            cell.tri_att_end.mha.linear_o.bias[:] = 0

            cell.sequence_to_pair.o_proj.weight[:] = 0
            cell.sequence_to_pair.o_proj.bias[:] = 0
            cell.pair_to_sequence.linear.weight[:] = 0
            cell.seq_attention.o_proj.weight[:] = 0
            cell.seq_attention.o_proj.bias[:] = 0
            cell.mlp_seq.mlp[-2].weight[:] = 0
            cell.mlp_seq.mlp[-2].bias[:] = 0
            cell.mlp_pair.mlp[-2].weight[:] = 0
            cell.mlp_pair.mlp[-2].bias[:] = 0
        else:
            super()._init_weights(cell)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldRelativePosition

Bases: Module

Represents a class for forwarding relative position embeddings for protein folding using the ESM (Evolutionary Scale Modeling) framework.

This class inherits from the nn.Module class and provides methods for initializing the class and forwarding pairwise state embeddings based on residue indices and optional masking.

ATTRIBUTE DESCRIPTION
bins

An integer representing the number of position bins used for forwarding the embeddings.

embedding

An instance of nn.Embedding used for creating the embeddings based on the position differences.

METHOD DESCRIPTION
__init__

Initializes the EsmFoldRelativePosition class with the provided configuration.

forward

Constructs pairwise state embeddings based on the given residue indices and optional mask.

PARAMETER DESCRIPTION
config

An object containing configuration parameters for initializing the class.

residue_index

A B x L tensor of indices (dtype=torch.long) representing the residue indices.

mask

A B x L tensor of booleans representing an optional mask.

RETURNS DESCRIPTION
pairwise_state

A B x L x L x pairwise_state_dim tensor of embeddings based on the input residue indices and mask.

RAISES DESCRIPTION
ValueError

If the dtype of residue_index is not torch.long or if the shapes of residue_index and mask are inconsistent.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
class EsmFoldRelativePosition(nn.Module):

    """
    Represents a class for forwarding relative position embeddings for protein folding using the ESM
    (Evolutionary Scale Modeling) framework.

    This class inherits from the nn.Module class and provides methods for initializing the class and forwarding pairwise
    state embeddings based on residue indices and optional masking.

    Attributes:
        bins: An integer representing the number of position bins used for forwarding the embeddings.
        embedding: An instance of nn.Embedding used for creating the embeddings based on the position differences.

    Methods:
        __init__: Initializes the EsmFoldRelativePosition class with the provided configuration.
        forward: Constructs pairwise state embeddings based on the given residue indices and optional mask.

    Args:
        config: An object containing configuration parameters for initializing the class.
        residue_index: A B x L tensor of indices (dtype=torch.long) representing the residue indices.
        mask: A B x L tensor of booleans representing an optional mask.

    Returns:
        pairwise_state: A B x L x L x pairwise_state_dim tensor of embeddings based on the input residue indices and mask.

    Raises:
        ValueError:
            If the dtype of residue_index is not torch.long or if the shapes of residue_index and mask are inconsistent.
    """
    def __init__(self, config):
        """
        Initializes an instance of the EsmFoldRelativePosition class.

        Args:
            self (EsmFoldRelativePosition): The current instance of the class.
            config: The configuration object containing the necessary parameters.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.bins = config.position_bins

        # Note an additional offset is used so that the 0th position
        # is reserved for masked pairs.
        self.embedding = nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)

    def forward(self, residue_index, mask=None):
        """
        Input:
            residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans

        Output:
            pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
        """
        if residue_index.dtype != mindspore.int64:
            raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
        if mask is not None and residue_index.shape != mask.shape:
            raise ValueError(
                f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
            )

        diff = residue_index[:, None, :] - residue_index[:, :, None]
        diff = diff.clamp(-self.bins, self.bins)
        diff = diff + self.bins + 1  # Add 1 to adjust for padding index.

        if mask is not None:
            mask = mask[:, None, :] * mask[:, :, None]
            diff[mask == False] = 0  # noqa: E712

        output = self.embedding(diff)
        return output

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldRelativePosition.__init__(config)

Initializes an instance of the EsmFoldRelativePosition class.

PARAMETER DESCRIPTION
self

The current instance of the class.

TYPE: EsmFoldRelativePosition

config

The configuration object containing the necessary parameters.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
def __init__(self, config):
    """
    Initializes an instance of the EsmFoldRelativePosition class.

    Args:
        self (EsmFoldRelativePosition): The current instance of the class.
        config: The configuration object containing the necessary parameters.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.bins = config.position_bins

    # Note an additional offset is used so that the 0th position
    # is reserved for masked pairs.
    self.embedding = nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldRelativePosition.forward(residue_index, mask=None)

Input
Output
Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
def forward(self, residue_index, mask=None):
    """
    Input:
        residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans

    Output:
        pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
    """
    if residue_index.dtype != mindspore.int64:
        raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
    if mask is not None and residue_index.shape != mask.shape:
        raise ValueError(
            f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
        )

    diff = residue_index[:, None, :] - residue_index[:, :, None]
    diff = diff.clamp(-self.bins, self.bins)
    diff = diff + self.bins + 1  # Add 1 to adjust for padding index.

    if mask is not None:
        mask = mask[:, None, :] * mask[:, :, None]
        diff[mask == False] = 0  # noqa: E712

    output = self.embedding(diff)
    return output

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldResidueMLP

Bases: Module

This class represents a multi-layer perceptron (MLP) used for folding residues in the ESM (Evolutionary Scale Modeling) framework. It inherits from the nn.Module class.

The EsmFoldResidueMLP class implements a MLP architecture with layer normalization, dense layers, ReLU activation, and dropout. The MLP takes an input tensor and applies a series of linear transformations to produce an output tensor. The output tensor is then added element-wise to the input tensor, resulting in the folded residue representation.

ATTRIBUTE DESCRIPTION
embed_dim

The dimensionality of the input and output tensors.

TYPE: int

inner_dim

The dimensionality of the intermediate hidden layer in the MLP.

TYPE: int

dropout

The dropout probability applied after the ReLU activation. Defaults to 0.

TYPE: float

METHOD DESCRIPTION
__init__

Initializes an instance of the EsmFoldResidueMLP class.

  • embed_dim (int): The dimensionality of the input and output tensors.
  • inner_dim (int): The dimensionality of the intermediate hidden layer in the MLP.
  • dropout (float, optional): The dropout probability applied after the ReLU activation. Defaults to 0.
forward

Applies the MLP to the input tensor x and returns the folded residue representation.

  • x (Tensor): The input tensor of shape (batch_size, embed_dim).
Example
>>> embed_dim = 128
>>> inner_dim = 256
>>> dropout = 0.2
...
>>> mlp = EsmFoldResidueMLP(embed_dim, inner_dim, dropout)
>>> input_tensor = torch.randn(batch_size, embed_dim)
...
>>> output = mlp.forward(input_tensor)
Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
class EsmFoldResidueMLP(nn.Module):

    """
    This class represents a multi-layer perceptron (MLP) used for folding residues in the ESM
    (Evolutionary Scale Modeling) framework. It inherits from the nn.Module class.

    The EsmFoldResidueMLP class implements a MLP architecture with layer normalization, dense layers, ReLU activation,
    and dropout. The MLP takes an input tensor and applies a series of linear transformations to produce an output
    tensor. The output tensor is then added element-wise to the input tensor, resulting in the folded residue
    representation.

    Attributes:
        embed_dim (int): The dimensionality of the input and output tensors.
        inner_dim (int): The dimensionality of the intermediate hidden layer in the MLP.
        dropout (float, optional): The dropout probability applied after the ReLU activation. Defaults to 0.

    Methods:
        __init__:
            Initializes an instance of the EsmFoldResidueMLP class.

            - embed_dim (int): The dimensionality of the input and output tensors.
            - inner_dim (int): The dimensionality of the intermediate hidden layer in the MLP.
            - dropout (float, optional): The dropout probability applied after the ReLU activation. Defaults to 0.

        forward(self, x):
            Applies the MLP to the input tensor x and returns the folded residue representation.

            - x (Tensor): The input tensor of shape (batch_size, embed_dim).

    Example:
        ```python
        >>> embed_dim = 128
        >>> inner_dim = 256
        >>> dropout = 0.2
        ...
        >>> mlp = EsmFoldResidueMLP(embed_dim, inner_dim, dropout)
        >>> input_tensor = torch.randn(batch_size, embed_dim)
        ...
        >>> output = mlp.forward(input_tensor)
        ```
    """
    def __init__(self, embed_dim, inner_dim, dropout=0):
        """
        Initializes the EsmFoldResidueMLP class.

        Args:
            self (object): The instance of the class.
            embed_dim (int): The dimension of the input embeddings.
            inner_dim (int): The dimension of the inner layer.
            dropout (float, optional): The dropout probability. Defaults to 0.

        Returns:
            None.

        Raises:
            TypeError: If embed_dim or inner_dim is not an integer, or if dropout is not a float.
            ValueError: If embed_dim or inner_dim is less than or equal to 0, or if dropout is not within the range [0, 1].
        """
        super().__init__()

        self.mlp = nn.SequentialCell(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, inner_dim),
            nn.ReLU(),
            nn.Linear(inner_dim, embed_dim),
            nn.Dropout(p=dropout),
        )

    def forward(self, x):
        """
        Constructs an output value by adding the input value with the result of the multi-layer perceptron (MLP) operation.

        Args:
            self (EsmFoldResidueMLP): Instance of the EsmFoldResidueMLP class.
            x (any): Input value to be used in the forwardion process.

        Returns:
            None: The forwarded value is returned as the result of adding the input value with the MLP operation.

        Raises:
            TypeError: If the input value 'x' is not compatible for addition with the MLP operation.
            ValueError: If the MLP operation encounters any unexpected issues during computation.
        """
        return x + self.mlp(x)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldResidueMLP.__init__(embed_dim, inner_dim, dropout=0)

Initializes the EsmFoldResidueMLP class.

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

embed_dim

The dimension of the input embeddings.

TYPE: int

inner_dim

The dimension of the inner layer.

TYPE: int

dropout

The dropout probability. Defaults to 0.

TYPE: float DEFAULT: 0

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If embed_dim or inner_dim is not an integer, or if dropout is not a float.

ValueError

If embed_dim or inner_dim is less than or equal to 0, or if dropout is not within the range [0, 1].

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
def __init__(self, embed_dim, inner_dim, dropout=0):
    """
    Initializes the EsmFoldResidueMLP class.

    Args:
        self (object): The instance of the class.
        embed_dim (int): The dimension of the input embeddings.
        inner_dim (int): The dimension of the inner layer.
        dropout (float, optional): The dropout probability. Defaults to 0.

    Returns:
        None.

    Raises:
        TypeError: If embed_dim or inner_dim is not an integer, or if dropout is not a float.
        ValueError: If embed_dim or inner_dim is less than or equal to 0, or if dropout is not within the range [0, 1].
    """
    super().__init__()

    self.mlp = nn.SequentialCell(
        nn.LayerNorm(embed_dim),
        nn.Linear(embed_dim, inner_dim),
        nn.ReLU(),
        nn.Linear(inner_dim, embed_dim),
        nn.Dropout(p=dropout),
    )

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldResidueMLP.forward(x)

Constructs an output value by adding the input value with the result of the multi-layer perceptron (MLP) operation.

PARAMETER DESCRIPTION
self

Instance of the EsmFoldResidueMLP class.

TYPE: EsmFoldResidueMLP

x

Input value to be used in the forwardion process.

TYPE: any

RETURNS DESCRIPTION
None

The forwarded value is returned as the result of adding the input value with the MLP operation.

RAISES DESCRIPTION
TypeError

If the input value 'x' is not compatible for addition with the MLP operation.

ValueError

If the MLP operation encounters any unexpected issues during computation.

Source code in mindnlp/transformers/models/esm/modeling_esmfold.py
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
def forward(self, x):
    """
    Constructs an output value by adding the input value with the result of the multi-layer perceptron (MLP) operation.

    Args:
        self (EsmFoldResidueMLP): Instance of the EsmFoldResidueMLP class.
        x (any): Input value to be used in the forwardion process.

    Returns:
        None: The forwarded value is returned as the result of adding the input value with the MLP operation.

    Raises:
        TypeError: If the input value 'x' is not compatible for addition with the MLP operation.
        ValueError: If the MLP operation encounters any unexpected issues during computation.
    """
    return x + self.mlp(x)

mindnlp.transformers.models.esm.modeling_esmfold.EsmFoldSelfAttention

Bases: Module

This class represents a self-attention mechanism for processing sequences, specifically designed for handling sequences of varying lengths. It implements a multi-head self-attention mechanism with optional gating, bias, and masking capabilities.

ATTRIBUTE DESCRIPTION
embed_dim

The dimension of the input embedding.

TYPE: int

num_heads

The number of attention heads.

TYPE: int

head_width

The width of each attention head.

TYPE: int

gated

Indicates whether the attention mechanism uses gating.

TYPE: bool

proj

Linear projection layer for processing input sequences.

TYPE: Linear

o_proj

Output pro