Skip to content

falcon

mindnlp.transformers.models.falcon.modeling_falcon

Falcon model

mindnlp.transformers.models.falcon.modeling_falcon.FalconAttention

Bases: Module

FalconAttention is a module that implements the attention mechanism used in the Falcon model.

PARAMETER DESCRIPTION
config

The configuration object that contains various hyperparameters for the Falcon model.

TYPE: FalconConfig

RAISES DESCRIPTION
ValueError

If hidden_size is not divisible by num_heads.

ATTRIBUTE DESCRIPTION
config

The configuration object that contains various hyperparameters for the Falcon model.

TYPE: FalconConfig

hidden_size

The size of the hidden state.

TYPE: int

num_heads

The number of attention heads.

TYPE: int

head_dim

The dimension of each attention head.

TYPE: int

split_size

The size of the split dimension.

TYPE: int

hidden_dropout

The dropout rate for the hidden states.

TYPE: float

max_position_embeddings

The maximum number of position embeddings.

TYPE: int

rope_theta

The theta value for the RoPE (Rotary Position Embedding).

TYPE: float

is_casual

Whether the attention is causal or not.

TYPE: bool

inv_norm_factor

The inverse normalization factor for layer-wise attention scaling.

TYPE: float

beta

The beta value for layer-wise attention scaling.

TYPE: float

new_decoder_architecture

Whether to use the new decoder architecture or not.

TYPE: bool

multi_query

Whether to use multi-query attention or not.

TYPE: bool

num_kv_heads

The number of key-value attention heads.

TYPE: int

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
class FalconAttention(nn.Module):
    """
    FalconAttention is a module that implements the attention mechanism used in the Falcon model.

    Args:
        config (FalconConfig): The configuration object that contains various hyperparameters for the Falcon model.

    Raises:
        ValueError: If `hidden_size` is not divisible by `num_heads`.

    Attributes:
        config (FalconConfig): The configuration object that contains various hyperparameters for the Falcon model.
        hidden_size (int): The size of the hidden state.
        num_heads (int): The number of attention heads.
        head_dim (int): The dimension of each attention head.
        split_size (int): The size of the split dimension.
        hidden_dropout (float): The dropout rate for the hidden states.
        max_position_embeddings (int): The maximum number of position embeddings.
        rope_theta (float): The theta value for the RoPE (Rotary Position Embedding).
        is_casual (bool): Whether the attention is causal or not.
        inv_norm_factor (float): The inverse normalization factor for layer-wise attention scaling.
        beta (float): The beta value for layer-wise attention scaling.
        new_decoder_architecture (bool): Whether to use the new decoder architecture or not.
        multi_query (bool): Whether to use multi-query attention or not.
        num_kv_heads (int): The number of key-value attention heads.

    """
    def __init__(self, config: FalconConfig):
        """
        Initialize the FalconAttention class with the provided configuration.

        Args:
            self (FalconAttention): The instance of the FalconAttention class.
            config (FalconConfig):
                An instance of FalconConfig containing configuration parameters for the attention mechanism.

                - hidden_size (int): The size of the hidden layers.
                - num_attention_heads (int): The number of attention heads.
                - hidden_dropout (float): The dropout rate for hidden layers.
                - max_position_embeddings (int): The maximum number of position embeddings.
                - rope_theta (float): The theta value for rope operations.
                - rotary (bool): Flag indicating whether to use rotary operations.
                - new_decoder_architecture (bool): Flag indicating the use of a new decoder architecture.
                - multi_query (bool): Flag indicating the use of multiple queries.
                - num_kv_heads (int): The number of key-value heads.
                - bias (bool): Flag indicating the presence of bias in linear transformations.

        Returns:
            None.

        Raises:
            ValueError: Raised if the `hidden_size` is not divisible by `num_attention_heads`.
        """
        super().__init__()

        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.hidden_dropout = config.hidden_dropout
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_casual = True

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        if config.rotary:
            self._init_rope()

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.beta = self.inv_norm_factor
        if config.new_decoder_architecture:
            qkv_out_dim = (
                config.num_kv_heads * 2 + config.num_attention_heads
            ) * self.head_dim
        elif config.multi_query:
            qkv_out_dim = self.hidden_size + 2 * self.head_dim
        else:
            qkv_out_dim = 3 * self.hidden_size
        self.query_key_value = FalconLinear(
            self.hidden_size, qkv_out_dim, bias=config.bias
        )
        self.new_decoder_architecture = config.new_decoder_architecture
        self.multi_query = config.multi_query
        self.dense = FalconLinear(
            self.hidden_size, self.hidden_size, bias=config.bias
        )
        self.attention_dropout = nn.Dropout(p=config.attention_dropout)
        self.num_kv_heads = (
            config.num_kv_heads
            if (self.new_decoder_architecture or not self.multi_query)
            else 1
        )

    def _init_rope(self):
        """
        Initialize the Rotary Position Embedding (RoPE) based on the configuration.

        Raises:
            ValueError: If the RoPE scaling type is unknown.

        """
        if self.config.rope_scaling is None:
            self.rotary_emb = FalconRotaryEmbedding(
                self.head_dim,
                base=self.config.rope_theta,
                max_position_embeddings=self.config.max_position_embeddings,
            )
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = FalconLinearScalingRotaryEmbedding(
                    self.head_dim,
                    base=self.config.rope_theta,
                    max_position_embeddings=self.config.max_position_embeddings,
                    scaling_factor=scaling_factor,
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    base=self.config.rope_theta,
                    max_position_embeddings=self.config.max_position_embeddings,
                    scaling_factor=scaling_factor,
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def _split_heads(
        self, fused_qkv: mindspore.Tensor
    ) -> Tuple[mindspore.Tensor, mindspore.Tensor, mindspore.Tensor]:
        """
        Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`

        Args:
            fused_qkv (`mindspore.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]

        Returns:
            query: [batch_size, seq_length, num_heads, head_dim]
            key: [batch_size, seq_length, num_heads, head_dim]
            value: [batch_size, seq_length, num_heads, head_dim]

        """
        if self.new_decoder_architecture:
            batch, seq_len, _ = fused_qkv.shape
            qkv = fused_qkv.view(
                batch,
                seq_len,
                -1,
                self.num_heads // self.num_kv_heads + 2,
                self.head_dim,
            )
            query = qkv[:, :, :, :-2]
            key = qkv[:, :, :, [-2]]
            value = qkv[:, :, :, [-1]]
            key = ops.broadcast_to(key, query.shape)
            value = ops.broadcast_to(value, query.shape)

            query, key, value = [
                x.flatten(start_dim=2, end_dim=3) for x in (query, key, value)
            ]
            return query, key, value
        if not self.multi_query:
            batch_size, seq_length, _ = fused_qkv.shape
            fused_qkv = fused_qkv.view(
                batch_size, seq_length, self.num_heads, 3, self.head_dim
            )
            return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
        batch_size, seq_length, _ = fused_qkv.shape
        fused_qkv = fused_qkv.view(
            batch_size, seq_length, self.num_heads + 2, self.head_dim
        )
        return (
            fused_qkv[..., :-2, :],
            fused_qkv[..., [-2], :],
            fused_qkv[..., [-1], :],
        )

    def _merge_heads(self, x: mindspore.Tensor) -> mindspore.Tensor:
        """
        Merge heads together over the last dimension

        Args:
            x (`mindspore.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]

        Returns:
            mindspore.tensor: [batch_size, seq_length, num_heads * head_dim]

        """
        # What we want to achieve is:
        # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads

        # First view to decompose the batch size
        # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)

        # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
        x = x.permute(0, 2, 1, 3)

        # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        alibi: Optional[mindspore.Tensor],
        attention_mask: mindspore.Tensor,
        position_ids: Optional[mindspore.Tensor] = None,
        layer_past: Optional[Tuple[mindspore.Tensor, mindspore.Tensor]] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        **kwargs,
    ):
        """
        Apply the FalconAttention mechanism to the input hidden states.

        Args:
            hidden_states (mindspore.Tensor): The input hidden states of shape [batch_size, seq_length, hidden_size].
            alibi (mindspore.Tensor, optional): The alibi tensor of shape [batch_size, seq_length, hidden_size].
            attention_mask (mindspore.Tensor): The attention mask tensor of shape [batch_size, seq_length].
            position_ids (mindspore.Tensor, optional): The position ids tensor of shape [batch_size, seq_length].
            layer_past (Tuple[mindspore.Tensor, mindspore.Tensor], optional): The past key-value states of the layer.
            head_mask (mindspore.Tensor, optional): The head mask tensor of shape [num_heads].
            use_cache (bool, optional): Whether to use the cache or not.
            output_attentions (bool, optional): Whether to output the attention scores or not.

        Returns:
            Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]], Optional[mindspore.Tensor]]:

                - output_tensor (mindspore.Tensor): The output tensor of shape [batch_size, seq_length, hidden_size].
                - present (Tuple[mindspore.Tensor, mindspore.Tensor], optional):
                The present key-value states of the layer.
                - attention_scores (mindspore.Tensor, optional):
                The attention scores tensor of shape [batch_size, num_heads, seq_length, seq_length].

        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        fused_qkv = self.query_key_value(
            hidden_states
        )  # [batch_size, seq_length, 3 x hidden_size]
        num_kv_heads = (
            self.num_heads if self.new_decoder_architecture else self.num_kv_heads
        )
        # 3 x [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)

        batch_size, query_length, _, _ = query_layer.shape

        query_layer = query_layer.swapaxes(1, 2).reshape(
            batch_size, self.num_heads, query_length, self.head_dim
        )
        key_layer = key_layer.swapaxes(1, 2).reshape(
            batch_size,
            num_kv_heads,
            query_length,
            self.head_dim,
        )
        value_layer = value_layer.swapaxes(1, 2).reshape(
            batch_size, num_kv_heads, query_length, self.head_dim
        )

        kv_seq_len = key_layer.shape[-2]
        if layer_past is not None:
            kv_seq_len += layer_past[0].shape[-2]
        if alibi is None:
            cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
            query_layer, key_layer = apply_rotary_pos_emb(
                query_layer, key_layer, cos, sin, position_ids
            )

        if layer_past is not None:
            past_key, past_value = layer_past
            # concatenate along seq_length dimension:
            #  - key: [batch_size, self.num_heads, kv_length, head_dim]
            #  - value: [batch_size, self.num_heads, kv_length, head_dim]
            key_layer = ops.cat((past_key, key_layer), axis=-2)
            value_layer = ops.cat((past_value, value_layer), axis=-2)

        kv_length = key_layer.shape[-2]
        present = (key_layer, value_layer) if use_cache else None

        if alibi is None:
            if hasattr(F, "_scaled_dot_product_attention") and not output_attentions:
                attn_output, attention_scores = F._scaled_dot_product_attention(
                    query_layer,
                    key_layer,
                    value_layer,
                    attention_mask,
                    0.0,
                    is_causal=False,
                    is_training=self.training,
                )
            else:
                attention_scores = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))
                attention_scores /= math.sqrt(self.head_dim)

                attention_scores = ops.softmax(
                    attention_scores + attention_mask,
                    axis=-1,
                    dtype=hidden_states.dtype,
                )
                attn_output = ops.matmul(attention_scores, value_layer)

            attn_output = attn_output.view(
                batch_size, self.num_heads, query_length, self.head_dim
            )
            attn_output = attn_output.permute(0, 2, 1, 3)
            attn_output = attn_output.reshape(
                batch_size, query_length, self.num_heads * self.head_dim
            )

            output_tensor = self.dense(attn_output)

            if output_attentions:
                return output_tensor, present, attention_scores
            return output_tensor, present

        matmul_result = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))

        # change view to [batch_size, num_heads, q_length, kv_length]
        attention_scores = matmul_result.view(
            batch_size, self.num_heads, query_length, kv_length
        )

        # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
        input_dtype = attention_scores.dtype
        # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
        if input_dtype in [
            mindspore.float16,
            mindspore.bfloat16,
        ]:  # from bfloat32 change to float32
            attention_scores = attention_scores.astype(mindspore.float32)
        # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
        # adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
        # equivalent and more performant, but there might be a numerical difference. If you're reading this
        # and you'd like to experiment and maybe file a PR, feel free!
        attention_logits = attention_scores + alibi.view(
            batch_size, self.num_heads, 1, -1
        )
        attention_logits *= self.inv_norm_factor
        attention_probs = ops.softmax(
            attention_logits + attention_mask, axis=-1, dtype=hidden_states.dtype
        )
        # [batch_size, num_heads, q_length, kv_length]
        attention_probs = self.attention_dropout(attention_probs)

        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # change view [batch_size, num_heads, q_length, kv_length]
        attention_probs_reshaped = attention_probs.view(
            batch_size, self.num_heads, query_length, kv_length
        )

        # matmul: [batch_size * num_heads, q_length, head_dim]
        context_layer = ops.matmul(attention_probs_reshaped, value_layer)
        context_layer = context_layer.flatten(start_dim=0, end_dim=1)
        # change view [batch_size, q_length, num_heads * head_dim]
        context_layer = self._merge_heads(context_layer)

        output_tensor = self.dense(context_layer)

        if output_attentions:
            return output_tensor, present, attention_probs
        return output_tensor, present

mindnlp.transformers.models.falcon.modeling_falcon.FalconAttention.__init__(config)

Initialize the FalconAttention class with the provided configuration.

PARAMETER DESCRIPTION
self

The instance of the FalconAttention class.

TYPE: FalconAttention

config

An instance of FalconConfig containing configuration parameters for the attention mechanism.

  • hidden_size (int): The size of the hidden layers.
  • num_attention_heads (int): The number of attention heads.
  • hidden_dropout (float): The dropout rate for hidden layers.
  • max_position_embeddings (int): The maximum number of position embeddings.
  • rope_theta (float): The theta value for rope operations.
  • rotary (bool): Flag indicating whether to use rotary operations.
  • new_decoder_architecture (bool): Flag indicating the use of a new decoder architecture.
  • multi_query (bool): Flag indicating the use of multiple queries.
  • num_kv_heads (int): The number of key-value heads.
  • bias (bool): Flag indicating the presence of bias in linear transformations.

TYPE: FalconConfig

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

Raised if the hidden_size is not divisible by num_attention_heads.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def __init__(self, config: FalconConfig):
    """
    Initialize the FalconAttention class with the provided configuration.

    Args:
        self (FalconAttention): The instance of the FalconAttention class.
        config (FalconConfig):
            An instance of FalconConfig containing configuration parameters for the attention mechanism.

            - hidden_size (int): The size of the hidden layers.
            - num_attention_heads (int): The number of attention heads.
            - hidden_dropout (float): The dropout rate for hidden layers.
            - max_position_embeddings (int): The maximum number of position embeddings.
            - rope_theta (float): The theta value for rope operations.
            - rotary (bool): Flag indicating whether to use rotary operations.
            - new_decoder_architecture (bool): Flag indicating the use of a new decoder architecture.
            - multi_query (bool): Flag indicating the use of multiple queries.
            - num_kv_heads (int): The number of key-value heads.
            - bias (bool): Flag indicating the presence of bias in linear transformations.

    Returns:
        None.

    Raises:
        ValueError: Raised if the `hidden_size` is not divisible by `num_attention_heads`.
    """
    super().__init__()

    self.config = config
    self.hidden_size = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.hidden_size // self.num_heads
    self.split_size = self.hidden_size
    self.hidden_dropout = config.hidden_dropout
    self.max_position_embeddings = config.max_position_embeddings
    self.rope_theta = config.rope_theta
    self.is_casual = True

    if self.head_dim * self.num_heads != self.hidden_size:
        raise ValueError(
            f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
            f" {self.num_heads})."
        )

    if config.rotary:
        self._init_rope()

    # Layer-wise attention scaling
    self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
    self.beta = self.inv_norm_factor
    if config.new_decoder_architecture:
        qkv_out_dim = (
            config.num_kv_heads * 2 + config.num_attention_heads
        ) * self.head_dim
    elif config.multi_query:
        qkv_out_dim = self.hidden_size + 2 * self.head_dim
    else:
        qkv_out_dim = 3 * self.hidden_size
    self.query_key_value = FalconLinear(
        self.hidden_size, qkv_out_dim, bias=config.bias
    )
    self.new_decoder_architecture = config.new_decoder_architecture
    self.multi_query = config.multi_query
    self.dense = FalconLinear(
        self.hidden_size, self.hidden_size, bias=config.bias
    )
    self.attention_dropout = nn.Dropout(p=config.attention_dropout)
    self.num_kv_heads = (
        config.num_kv_heads
        if (self.new_decoder_architecture or not self.multi_query)
        else 1
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconAttention.forward(hidden_states, alibi, attention_mask, position_ids=None, layer_past=None, head_mask=None, use_cache=False, output_attentions=False, **kwargs)

Apply the FalconAttention mechanism to the input hidden states.

PARAMETER DESCRIPTION
hidden_states

The input hidden states of shape [batch_size, seq_length, hidden_size].

TYPE: Tensor

alibi

The alibi tensor of shape [batch_size, seq_length, hidden_size].

TYPE: Tensor

attention_mask

The attention mask tensor of shape [batch_size, seq_length].

TYPE: Tensor

position_ids

The position ids tensor of shape [batch_size, seq_length].

TYPE: Tensor DEFAULT: None

layer_past

The past key-value states of the layer.

TYPE: Tuple[Tensor, Tensor] DEFAULT: None

head_mask

The head mask tensor of shape [num_heads].

TYPE: Tensor DEFAULT: None

use_cache

Whether to use the cache or not.

TYPE: bool DEFAULT: False

output_attentions

Whether to output the attention scores or not.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]], Optional[mindspore.Tensor]]:

  • output_tensor (mindspore.Tensor): The output tensor of shape [batch_size, seq_length, hidden_size].
  • present (Tuple[mindspore.Tensor, mindspore.Tensor], optional): The present key-value states of the layer.
  • attention_scores (mindspore.Tensor, optional): The attention scores tensor of shape [batch_size, num_heads, seq_length, seq_length].
Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
def forward(
    self,
    hidden_states: mindspore.Tensor,
    alibi: Optional[mindspore.Tensor],
    attention_mask: mindspore.Tensor,
    position_ids: Optional[mindspore.Tensor] = None,
    layer_past: Optional[Tuple[mindspore.Tensor, mindspore.Tensor]] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    use_cache: bool = False,
    output_attentions: bool = False,
    **kwargs,
):
    """
    Apply the FalconAttention mechanism to the input hidden states.

    Args:
        hidden_states (mindspore.Tensor): The input hidden states of shape [batch_size, seq_length, hidden_size].
        alibi (mindspore.Tensor, optional): The alibi tensor of shape [batch_size, seq_length, hidden_size].
        attention_mask (mindspore.Tensor): The attention mask tensor of shape [batch_size, seq_length].
        position_ids (mindspore.Tensor, optional): The position ids tensor of shape [batch_size, seq_length].
        layer_past (Tuple[mindspore.Tensor, mindspore.Tensor], optional): The past key-value states of the layer.
        head_mask (mindspore.Tensor, optional): The head mask tensor of shape [num_heads].
        use_cache (bool, optional): Whether to use the cache or not.
        output_attentions (bool, optional): Whether to output the attention scores or not.

    Returns:
        Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]], Optional[mindspore.Tensor]]:

            - output_tensor (mindspore.Tensor): The output tensor of shape [batch_size, seq_length, hidden_size].
            - present (Tuple[mindspore.Tensor, mindspore.Tensor], optional):
            The present key-value states of the layer.
            - attention_scores (mindspore.Tensor, optional):
            The attention scores tensor of shape [batch_size, num_heads, seq_length, seq_length].

    """
    if "padding_mask" in kwargs:
        warnings.warn(
            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
        )

    fused_qkv = self.query_key_value(
        hidden_states
    )  # [batch_size, seq_length, 3 x hidden_size]
    num_kv_heads = (
        self.num_heads if self.new_decoder_architecture else self.num_kv_heads
    )
    # 3 x [batch_size, seq_length, num_heads, head_dim]
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)

    batch_size, query_length, _, _ = query_layer.shape

    query_layer = query_layer.swapaxes(1, 2).reshape(
        batch_size, self.num_heads, query_length, self.head_dim
    )
    key_layer = key_layer.swapaxes(1, 2).reshape(
        batch_size,
        num_kv_heads,
        query_length,
        self.head_dim,
    )
    value_layer = value_layer.swapaxes(1, 2).reshape(
        batch_size, num_kv_heads, query_length, self.head_dim
    )

    kv_seq_len = key_layer.shape[-2]
    if layer_past is not None:
        kv_seq_len += layer_past[0].shape[-2]
    if alibi is None:
        cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
        query_layer, key_layer = apply_rotary_pos_emb(
            query_layer, key_layer, cos, sin, position_ids
        )

    if layer_past is not None:
        past_key, past_value = layer_past
        # concatenate along seq_length dimension:
        #  - key: [batch_size, self.num_heads, kv_length, head_dim]
        #  - value: [batch_size, self.num_heads, kv_length, head_dim]
        key_layer = ops.cat((past_key, key_layer), axis=-2)
        value_layer = ops.cat((past_value, value_layer), axis=-2)

    kv_length = key_layer.shape[-2]
    present = (key_layer, value_layer) if use_cache else None

    if alibi is None:
        if hasattr(F, "_scaled_dot_product_attention") and not output_attentions:
            attn_output, attention_scores = F._scaled_dot_product_attention(
                query_layer,
                key_layer,
                value_layer,
                attention_mask,
                0.0,
                is_causal=False,
                is_training=self.training,
            )
        else:
            attention_scores = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))
            attention_scores /= math.sqrt(self.head_dim)

            attention_scores = ops.softmax(
                attention_scores + attention_mask,
                axis=-1,
                dtype=hidden_states.dtype,
            )
            attn_output = ops.matmul(attention_scores, value_layer)

        attn_output = attn_output.view(
            batch_size, self.num_heads, query_length, self.head_dim
        )
        attn_output = attn_output.permute(0, 2, 1, 3)
        attn_output = attn_output.reshape(
            batch_size, query_length, self.num_heads * self.head_dim
        )

        output_tensor = self.dense(attn_output)

        if output_attentions:
            return output_tensor, present, attention_scores
        return output_tensor, present

    matmul_result = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))

    # change view to [batch_size, num_heads, q_length, kv_length]
    attention_scores = matmul_result.view(
        batch_size, self.num_heads, query_length, kv_length
    )

    # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
    input_dtype = attention_scores.dtype
    # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
    if input_dtype in [
        mindspore.float16,
        mindspore.bfloat16,
    ]:  # from bfloat32 change to float32
        attention_scores = attention_scores.astype(mindspore.float32)
    # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
    # adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
    # equivalent and more performant, but there might be a numerical difference. If you're reading this
    # and you'd like to experiment and maybe file a PR, feel free!
    attention_logits = attention_scores + alibi.view(
        batch_size, self.num_heads, 1, -1
    )
    attention_logits *= self.inv_norm_factor
    attention_probs = ops.softmax(
        attention_logits + attention_mask, axis=-1, dtype=hidden_states.dtype
    )
    # [batch_size, num_heads, q_length, kv_length]
    attention_probs = self.attention_dropout(attention_probs)

    if head_mask is not None:
        attention_probs = attention_probs * head_mask

    # change view [batch_size, num_heads, q_length, kv_length]
    attention_probs_reshaped = attention_probs.view(
        batch_size, self.num_heads, query_length, kv_length
    )

    # matmul: [batch_size * num_heads, q_length, head_dim]
    context_layer = ops.matmul(attention_probs_reshaped, value_layer)
    context_layer = context_layer.flatten(start_dim=0, end_dim=1)
    # change view [batch_size, q_length, num_heads * head_dim]
    context_layer = self._merge_heads(context_layer)

    output_tensor = self.dense(context_layer)

    if output_attentions:
        return output_tensor, present, attention_probs
    return output_tensor, present

mindnlp.transformers.models.falcon.modeling_falcon.FalconDecoderLayer

Bases: Module

FalconDecoderLayer is a class that represents a single layer of the Falcon decoder model.

PARAMETER DESCRIPTION
config

The configuration for the Falcon model.

TYPE: FalconConfig

ATTRIBUTE DESCRIPTION
num_heads

The number of attention heads in the self-attention mechanism.

TYPE: int

self_attention

The self-attention module.

TYPE: FalconAttention

mlp

The MLP module.

TYPE: FalconMLP

hidden_dropout

The dropout rate for the hidden states.

TYPE: float

config

The configuration for the Falcon model.

TYPE: FalconConfig

ln_attn

The layer normalization module before self-attention (only used in new decoder architecture).

TYPE: LayerNorm

ln_mlp

The layer normalization module before the MLP (only used in new decoder architecture).

TYPE: LayerNorm

input_layernorm

The layer normalization module before the self-attention (only used in old decoder architecture).

TYPE: LayerNorm

post_attention_layernorm

The layer normalization module after the self-attention (only used in old decoder architecture).

TYPE: LayerNorm

METHOD DESCRIPTION
forward

Forward pass of the FalconDecoderLayer.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
class FalconDecoderLayer(nn.Module):
    """
    FalconDecoderLayer is a class that represents a single layer of the Falcon decoder model.

    Args:
        config (FalconConfig): The configuration for the Falcon model.

    Attributes:
        num_heads (int): The number of attention heads in the self-attention mechanism.
        self_attention (FalconAttention): The self-attention module.
        mlp (FalconMLP): The MLP module.
        hidden_dropout (float): The dropout rate for the hidden states.
        config (FalconConfig): The configuration for the Falcon model.
        ln_attn (nn.LayerNorm): The layer normalization module before self-attention
            (only used in new decoder architecture).
        ln_mlp (nn.LayerNorm): The layer normalization module before the MLP (only used in new decoder architecture).
        input_layernorm (nn.LayerNorm): The layer normalization module before the self-attention
            (only used in old decoder architecture).
        post_attention_layernorm (nn.LayerNorm): The layer normalization module after the self-attention
            (only used in old decoder architecture).

    Methods:
        forward: Forward pass of the FalconDecoderLayer.
    """
    def __init__(self, config: FalconConfig):
        """
        Initializes a FalconDecoderLayer object.

        Args:
            self: The FalconDecoderLayer instance itself.
            config (FalconConfig):
                An instance of FalconConfig that specifies the configuration parameters for the Falcon decoder layer.
                It contains the following attributes:

                - hidden_size (int): The size of the hidden layers.
                - num_attention_heads (int): The number of attention heads.
                - hidden_dropout (float): The dropout rate for hidden layers.
                - new_decoder_architecture (bool): Flag indicating whether to use a new decoder architecture.
                - layer_norm_epsilon (float): A small epsilon value for layer normalization calculations.
                - parallel_attn (bool): Flag indicating whether to use parallel attention.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads

        self.self_attention = FalconAttention(config)
        self.mlp = FalconMLP(config)
        self.hidden_dropout = config.hidden_dropout
        self.config = config

        if config.new_decoder_architecture:
            # The layer norm before self-attention
            self.ln_attn = nn.LayerNorm(
                [hidden_size], eps=config.layer_norm_epsilon
            )
            # The layer norm before the MLP
            self.ln_mlp = nn.LayerNorm([hidden_size], eps=config.layer_norm_epsilon)
        else:
            self.input_layernorm = nn.LayerNorm(
                [hidden_size], eps=config.layer_norm_epsilon
            )
            if not config.parallel_attn:
                self.post_attention_layernorm = nn.LayerNorm(
                    [hidden_size], eps=config.layer_norm_epsilon
                )

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        alibi: Optional[mindspore.Tensor],
        attention_mask: mindspore.Tensor,
        position_ids: Optional[mindspore.Tensor] = None,
        layer_past: Optional[Tuple[mindspore.Tensor, mindspore.Tensor]] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        **kwargs,
    ):
        """
        Forward pass of the FalconDecoderLayer.

        Args:
            hidden_states (mindspore.Tensor): The input hidden states.
            alibi (Optional[mindspore.Tensor]): The alibi tensor.
            attention_mask (mindspore.Tensor): The attention mask tensor.
            position_ids (Optional[mindspore.Tensor]): The position ids tensor.
            layer_past (Optional[Tuple[mindspore.Tensor, mindspore.Tensor]]): The past layer tensor.
            head_mask (Optional[mindspore.Tensor]): The head mask tensor.
            use_cache (bool): Whether to use cache.
            output_attentions (bool): Whether to output attentions.
            **kwargs: Additional keyword arguments.

        Returns:
            Tuple[mindspore.Tensor]: The output tensor(s).
        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        residual = hidden_states

        if self.config.new_decoder_architecture:
            attention_layernorm_out = self.ln_attn(hidden_states)
            mlp_layernorm_out = self.ln_mlp(hidden_states)
        else:
            attention_layernorm_out = self.input_layernorm(hidden_states)

        # Self attention.
        attn_outputs = self.self_attention(
            attention_layernorm_out,
            layer_past=layer_past,
            attention_mask=attention_mask,
            position_ids=position_ids,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            **kwargs,
        )

        attention_output = attn_outputs[0]

        if not self.config.new_decoder_architecture:
            if self.config.parallel_attn:
                mlp_layernorm_out = attention_layernorm_out
            else:
                residual = dropout_add(
                    attention_output,
                    residual,
                    self.config.attention_dropout,
                    training=self.training,
                )
                mlp_layernorm_out = self.post_attention_layernorm(residual)

        outputs = attn_outputs[1:]

        # MLP.
        mlp_output = self.mlp(mlp_layernorm_out)

        if self.config.new_decoder_architecture or self.config.parallel_attn:
            mlp_output += attention_output

        output = dropout_add(
            mlp_output, residual, self.config.hidden_dropout, training=self.training
        )

        return (output,) + outputs if use_cache else (output,) + outputs[1:]

mindnlp.transformers.models.falcon.modeling_falcon.FalconDecoderLayer.__init__(config)

Initializes a FalconDecoderLayer object.

PARAMETER DESCRIPTION
self

The FalconDecoderLayer instance itself.

config

An instance of FalconConfig that specifies the configuration parameters for the Falcon decoder layer. It contains the following attributes:

  • hidden_size (int): The size of the hidden layers.
  • num_attention_heads (int): The number of attention heads.
  • hidden_dropout (float): The dropout rate for hidden layers.
  • new_decoder_architecture (bool): Flag indicating whether to use a new decoder architecture.
  • layer_norm_epsilon (float): A small epsilon value for layer normalization calculations.
  • parallel_attn (bool): Flag indicating whether to use parallel attention.

TYPE: FalconConfig

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
def __init__(self, config: FalconConfig):
    """
    Initializes a FalconDecoderLayer object.

    Args:
        self: The FalconDecoderLayer instance itself.
        config (FalconConfig):
            An instance of FalconConfig that specifies the configuration parameters for the Falcon decoder layer.
            It contains the following attributes:

            - hidden_size (int): The size of the hidden layers.
            - num_attention_heads (int): The number of attention heads.
            - hidden_dropout (float): The dropout rate for hidden layers.
            - new_decoder_architecture (bool): Flag indicating whether to use a new decoder architecture.
            - layer_norm_epsilon (float): A small epsilon value for layer normalization calculations.
            - parallel_attn (bool): Flag indicating whether to use parallel attention.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    hidden_size = config.hidden_size
    self.num_heads = config.num_attention_heads

    self.self_attention = FalconAttention(config)
    self.mlp = FalconMLP(config)
    self.hidden_dropout = config.hidden_dropout
    self.config = config

    if config.new_decoder_architecture:
        # The layer norm before self-attention
        self.ln_attn = nn.LayerNorm(
            [hidden_size], eps=config.layer_norm_epsilon
        )
        # The layer norm before the MLP
        self.ln_mlp = nn.LayerNorm([hidden_size], eps=config.layer_norm_epsilon)
    else:
        self.input_layernorm = nn.LayerNorm(
            [hidden_size], eps=config.layer_norm_epsilon
        )
        if not config.parallel_attn:
            self.post_attention_layernorm = nn.LayerNorm(
                [hidden_size], eps=config.layer_norm_epsilon
            )

mindnlp.transformers.models.falcon.modeling_falcon.FalconDecoderLayer.forward(hidden_states, alibi, attention_mask, position_ids=None, layer_past=None, head_mask=None, use_cache=False, output_attentions=False, **kwargs)

Forward pass of the FalconDecoderLayer.

PARAMETER DESCRIPTION
hidden_states

The input hidden states.

TYPE: Tensor

alibi

The alibi tensor.

TYPE: Optional[Tensor]

attention_mask

The attention mask tensor.

TYPE: Tensor

position_ids

The position ids tensor.

TYPE: Optional[Tensor] DEFAULT: None

layer_past

The past layer tensor.

TYPE: Optional[Tuple[Tensor, Tensor]] DEFAULT: None

head_mask

The head mask tensor.

TYPE: Optional[Tensor] DEFAULT: None

use_cache

Whether to use cache.

TYPE: bool DEFAULT: False

output_attentions

Whether to output attentions.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments.

DEFAULT: {}

RETURNS DESCRIPTION

Tuple[mindspore.Tensor]: The output tensor(s).

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
def forward(
    self,
    hidden_states: mindspore.Tensor,
    alibi: Optional[mindspore.Tensor],
    attention_mask: mindspore.Tensor,
    position_ids: Optional[mindspore.Tensor] = None,
    layer_past: Optional[Tuple[mindspore.Tensor, mindspore.Tensor]] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    use_cache: bool = False,
    output_attentions: bool = False,
    **kwargs,
):
    """
    Forward pass of the FalconDecoderLayer.

    Args:
        hidden_states (mindspore.Tensor): The input hidden states.
        alibi (Optional[mindspore.Tensor]): The alibi tensor.
        attention_mask (mindspore.Tensor): The attention mask tensor.
        position_ids (Optional[mindspore.Tensor]): The position ids tensor.
        layer_past (Optional[Tuple[mindspore.Tensor, mindspore.Tensor]]): The past layer tensor.
        head_mask (Optional[mindspore.Tensor]): The head mask tensor.
        use_cache (bool): Whether to use cache.
        output_attentions (bool): Whether to output attentions.
        **kwargs: Additional keyword arguments.

    Returns:
        Tuple[mindspore.Tensor]: The output tensor(s).
    """
    if "padding_mask" in kwargs:
        warnings.warn(
            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
        )

    residual = hidden_states

    if self.config.new_decoder_architecture:
        attention_layernorm_out = self.ln_attn(hidden_states)
        mlp_layernorm_out = self.ln_mlp(hidden_states)
    else:
        attention_layernorm_out = self.input_layernorm(hidden_states)

    # Self attention.
    attn_outputs = self.self_attention(
        attention_layernorm_out,
        layer_past=layer_past,
        attention_mask=attention_mask,
        position_ids=position_ids,
        alibi=alibi,
        head_mask=head_mask,
        use_cache=use_cache,
        output_attentions=output_attentions,
        **kwargs,
    )

    attention_output = attn_outputs[0]

    if not self.config.new_decoder_architecture:
        if self.config.parallel_attn:
            mlp_layernorm_out = attention_layernorm_out
        else:
            residual = dropout_add(
                attention_output,
                residual,
                self.config.attention_dropout,
                training=self.training,
            )
            mlp_layernorm_out = self.post_attention_layernorm(residual)

    outputs = attn_outputs[1:]

    # MLP.
    mlp_output = self.mlp(mlp_layernorm_out)

    if self.config.new_decoder_architecture or self.config.parallel_attn:
        mlp_output += attention_output

    output = dropout_add(
        mlp_output, residual, self.config.hidden_dropout, training=self.training
    )

    return (output,) + outputs if use_cache else (output,) + outputs[1:]

mindnlp.transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding

Bases: FalconRotaryEmbedding

FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding):
    """
    FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
    """
    def __init__(
        self, dim: int, max_position_embeddings=2048, base=10000, scaling_factor=1.0
    ):
        """
        Initializes an instance of the FalconDynamicNTKScalingRotaryEmbedding class.

        Args:
            self (FalconDynamicNTKScalingRotaryEmbedding): The instance of the class.
            dim (int): The dimension of the embedding.
            max_position_embeddings (int, optional): The maximum number of position embeddings. Defaults to 2048.
            base (int, optional): The base value used for positional encoding. Defaults to 10000.
            scaling_factor (float, optional): The scaling factor applied to the embeddings. Defaults to 1.0.

        Returns:
            None

        Raises:
            None
        """
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base)

    def _set_cos_sin_cache(self, seq_len, dtype):
        """
        This method '_set_cos_sin_cache' is a part of the 'FalconDynamicNTKScalingRotaryEmbedding' class and is
        responsible for caching cosine and sine values based on the input sequence length and data type.

        Args:
            self (object): The instance of the FalconDynamicNTKScalingRotaryEmbedding class.
            seq_len (int): The length of the input sequence for which the cosine and sine values are to be cached.
            dtype (dtype): The data type for the cached cosine and sine values.

        Returns:
            None: This method does not return any value.
                It caches the cosine and sine values internally.

        Raises:
            ValueError: If the input sequence length 'seq_len' is not a positive integer.
            TypeError: If the data type 'dtype' is not a valid numeric data type supported
                by the operations performed in the method.
        """
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings)
                - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            self.inv_freq = 1.0 / (
                base ** (ops.arange(0, self.dim, 2).float() / self.dim)
            )

        t = ops.arange(seq_len)
        freqs = ops.outer(t, self.inv_freq)
        emb = ops.cat((freqs, freqs), axis=-1)
        self.cos_cached = emb.cos().astype(dtype)
        self.sin_cached = emb.sin().astype(dtype)

mindnlp.transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)

Initializes an instance of the FalconDynamicNTKScalingRotaryEmbedding class.

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: FalconDynamicNTKScalingRotaryEmbedding

dim

The dimension of the embedding.

TYPE: int

max_position_embeddings

The maximum number of position embeddings. Defaults to 2048.

TYPE: int DEFAULT: 2048

base

The base value used for positional encoding. Defaults to 10000.

TYPE: int DEFAULT: 10000

scaling_factor

The scaling factor applied to the embeddings. Defaults to 1.0.

TYPE: float DEFAULT: 1.0

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def __init__(
    self, dim: int, max_position_embeddings=2048, base=10000, scaling_factor=1.0
):
    """
    Initializes an instance of the FalconDynamicNTKScalingRotaryEmbedding class.

    Args:
        self (FalconDynamicNTKScalingRotaryEmbedding): The instance of the class.
        dim (int): The dimension of the embedding.
        max_position_embeddings (int, optional): The maximum number of position embeddings. Defaults to 2048.
        base (int, optional): The base value used for positional encoding. Defaults to 10000.
        scaling_factor (float, optional): The scaling factor applied to the embeddings. Defaults to 1.0.

    Returns:
        None

    Raises:
        None
    """
    self.scaling_factor = scaling_factor
    super().__init__(dim, max_position_embeddings, base)

mindnlp.transformers.models.falcon.modeling_falcon.FalconForCausalLM

Bases: FalconPreTrainedModel

Falcon model for causal language modeling.

PARAMETER DESCRIPTION
config

The configuration object that defines the model architecture and hyperparameters.

TYPE: FalconConfig

ATTRIBUTE DESCRIPTION
transformer

The Falcon model.

TYPE: FalconModel

lm_head

The linear layer for language modeling.

TYPE: Linear

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
class FalconForCausalLM(FalconPreTrainedModel):
    """
    Falcon model for causal language modeling.

    Args:
        config (FalconConfig): The configuration object that defines the model architecture and hyperparameters.

    Attributes:
        transformer (FalconModel): The Falcon model.
        lm_head (nn.Linear): The linear layer for language modeling.

    """
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: FalconConfig):
        """
        Initializes a new instance of the FalconForCausalLM class.

        Args:
            self: An instance of the FalconForCausalLM class.
            config (FalconConfig): The configuration object containing various hyperparameters and settings for the model.

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.transformer = FalconModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        """
        Returns the output embeddings of the FalconForCausalLM model.

        Args:
            self: The instance of the FalconForCausalLM class.

        Returns:
            None.

        Raises:
            None.

        This method returns the output embeddings of the FalconForCausalLM model.
        The output embeddings represent the final hidden states of the model's language model head.
        These embeddings can be used for downstream tasks such as fine-tuning or feature extraction.

        Note that the method takes only one parameter, `self`, which refers to the instance of the FalconForCausalLM
        class itself. No additional arguments are required.

        The method does not raise any exceptions.
        """
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: mindspore.Tensor):
        """
        Sets the output embeddings of the FalconForCausalLM model.

        Args:
            self (FalconForCausalLM): The instance of FalconForCausalLM.
            new_embeddings (mindspore.Tensor): The new embeddings to set as output embeddings for the model.
                It should be a tensor representing the output embeddings with shape (vocab_size, hidden_size).
                The vocab_size should match the size of the vocabulary used by the model.
                The hidden_size should match the size of the hidden state in the model.

        Returns:
            None.

        Raises:
            None.
        """
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(
        self,
        input_ids: mindspore.Tensor,
        past_key_values: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        **kwargs,
    ) -> dict:
        """
        Prepare inputs for generation.

        Args:
            self: An instance of the FalconForCausalLM class.
            input_ids (mindspore.Tensor): The input tensor containing the tokenized input sequence.
            past_key_values (Optional[mindspore.Tensor]): The past key values used for decoding the input sequence.
            attention_mask (Optional[mindspore.Tensor]): The attention mask indicating which tokens to attend to.
            position_ids (Optional[mindspore.Tensor]):
                The position ids indicating the position of each token in the input sequence.
            **kwargs: Additional keyword arguments.

        Returns:
            dict:
                A dictionary containing the prepared inputs for generation, including the following keys:

                - 'input_ids' (mindspore.Tensor): The updated input tensor.
                - 'position_ids' (mindspore.Tensor): The updated position ids.
                - 'past_key_values' (Optional[mindspore.Tensor]): The past key values.
                - 'use_cache' (bool): The value of the 'use_cache' keyword argument.
                - 'attention_mask' (Optional[mindspore.Tensor]): The attention mask.

        Raises:
            None.
        """
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        # Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE.
        if (
            not self.transformer.use_alibi
            and attention_mask is not None
            and position_ids is None
        ):
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        return {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[
            Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
        ] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
                `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
                are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :]
            shift_labels = labels[..., 1:]
            batch_size, seq_length, vocab_size = shift_logits.shape
            # Flatten the tokens
            loss = ops.cross_entropy(
                shift_logits.view(batch_size * seq_length, vocab_size),
                shift_labels.view(batch_size * seq_length),
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    def _reorder_cache(
        self,
        past: Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...],
        beam_idx: mindspore.Tensor,
    ) -> Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """
        return tuple(
            (
                layer_past[0].index_select(0, beam_idx),
                layer_past[1].index_select(0, beam_idx),
            )
            for layer_past in past
        )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForCausalLM.__init__(config)

Initializes a new instance of the FalconForCausalLM class.

PARAMETER DESCRIPTION
self

An instance of the FalconForCausalLM class.

config

The configuration object containing various hyperparameters and settings for the model.

TYPE: FalconConfig

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
def __init__(self, config: FalconConfig):
    """
    Initializes a new instance of the FalconForCausalLM class.

    Args:
        self: An instance of the FalconForCausalLM class.
        config (FalconConfig): The configuration object containing various hyperparameters and settings for the model.

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.transformer = FalconModel(config)
    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.falcon.modeling_falcon.FalconForCausalLM.forward(input_ids=None, past_key_values=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[
        Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
    ] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
    """
    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    transformer_outputs = self.transformer(
        input_ids,
        past_key_values=past_key_values,
        attention_mask=attention_mask,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = transformer_outputs[0]

    lm_logits = self.lm_head(hidden_states)

    loss = None
    if labels is not None:
        # Shift so that tokens < n predict n
        shift_logits = lm_logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        batch_size, seq_length, vocab_size = shift_logits.shape
        # Flatten the tokens
        loss = ops.cross_entropy(
            shift_logits.view(batch_size * seq_length, vocab_size),
            shift_labels.view(batch_size * seq_length),
        )

    if not return_dict:
        output = (lm_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return CausalLMOutputWithCrossAttentions(
        loss=loss,
        logits=lm_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForCausalLM.get_output_embeddings()

Returns the output embeddings of the FalconForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of the FalconForCausalLM class.

RETURNS DESCRIPTION

None.

This method returns the output embeddings of the FalconForCausalLM model. The output embeddings represent the final hidden states of the model's language model head. These embeddings can be used for downstream tasks such as fine-tuning or feature extraction.

Note that the method takes only one parameter, self, which refers to the instance of the FalconForCausalLM class itself. No additional arguments are required.

The method does not raise any exceptions.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
def get_output_embeddings(self):
    """
    Returns the output embeddings of the FalconForCausalLM model.

    Args:
        self: The instance of the FalconForCausalLM class.

    Returns:
        None.

    Raises:
        None.

    This method returns the output embeddings of the FalconForCausalLM model.
    The output embeddings represent the final hidden states of the model's language model head.
    These embeddings can be used for downstream tasks such as fine-tuning or feature extraction.

    Note that the method takes only one parameter, `self`, which refers to the instance of the FalconForCausalLM
    class itself. No additional arguments are required.

    The method does not raise any exceptions.
    """
    return self.lm_head

mindnlp.transformers.models.falcon.modeling_falcon.FalconForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, position_ids=None, **kwargs)

Prepare inputs for generation.

PARAMETER DESCRIPTION
self

An instance of the FalconForCausalLM class.

input_ids

The input tensor containing the tokenized input sequence.

TYPE: Tensor

past_key_values

The past key values used for decoding the input sequence.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask indicating which tokens to attend to.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The position ids indicating the position of each token in the input sequence.

TYPE: Optional[Tensor] DEFAULT: None

**kwargs

Additional keyword arguments.

DEFAULT: {}

RETURNS DESCRIPTION
dict

A dictionary containing the prepared inputs for generation, including the following keys:

  • 'input_ids' (mindspore.Tensor): The updated input tensor.
  • 'position_ids' (mindspore.Tensor): The updated position ids.
  • 'past_key_values' (Optional[mindspore.Tensor]): The past key values.
  • 'use_cache' (bool): The value of the 'use_cache' keyword argument.
  • 'attention_mask' (Optional[mindspore.Tensor]): The attention mask.

TYPE: dict

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
def prepare_inputs_for_generation(
    self,
    input_ids: mindspore.Tensor,
    past_key_values: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    **kwargs,
) -> dict:
    """
    Prepare inputs for generation.

    Args:
        self: An instance of the FalconForCausalLM class.
        input_ids (mindspore.Tensor): The input tensor containing the tokenized input sequence.
        past_key_values (Optional[mindspore.Tensor]): The past key values used for decoding the input sequence.
        attention_mask (Optional[mindspore.Tensor]): The attention mask indicating which tokens to attend to.
        position_ids (Optional[mindspore.Tensor]):
            The position ids indicating the position of each token in the input sequence.
        **kwargs: Additional keyword arguments.

    Returns:
        dict:
            A dictionary containing the prepared inputs for generation, including the following keys:

            - 'input_ids' (mindspore.Tensor): The updated input tensor.
            - 'position_ids' (mindspore.Tensor): The updated position ids.
            - 'past_key_values' (Optional[mindspore.Tensor]): The past key values.
            - 'use_cache' (bool): The value of the 'use_cache' keyword argument.
            - 'attention_mask' (Optional[mindspore.Tensor]): The attention mask.

    Raises:
        None.
    """
    if past_key_values is not None:
        past_length = past_key_values[0][0].shape[2]

        # Some generation methods already pass only the last input ID
        if input_ids.shape[1] > past_length:
            remove_prefix_length = past_length
        else:
            # Default to old behavior: keep only final ID
            remove_prefix_length = input_ids.shape[1] - 1

        input_ids = input_ids[:, remove_prefix_length:]

    # Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE.
    if (
        not self.transformer.use_alibi
        and attention_mask is not None
        and position_ids is None
    ):
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

    return {
        "input_ids": input_ids,
        "position_ids": position_ids,
        "past_key_values": past_key_values,
        "use_cache": kwargs.get("use_cache"),
        "attention_mask": attention_mask,
    }

mindnlp.transformers.models.falcon.modeling_falcon.FalconForCausalLM.set_output_embeddings(new_embeddings)

Sets the output embeddings of the FalconForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of FalconForCausalLM.

TYPE: FalconForCausalLM

new_embeddings

The new embeddings to set as output embeddings for the model. It should be a tensor representing the output embeddings with shape (vocab_size, hidden_size). The vocab_size should match the size of the vocabulary used by the model. The hidden_size should match the size of the hidden state in the model.

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
def set_output_embeddings(self, new_embeddings: mindspore.Tensor):
    """
    Sets the output embeddings of the FalconForCausalLM model.

    Args:
        self (FalconForCausalLM): The instance of FalconForCausalLM.
        new_embeddings (mindspore.Tensor): The new embeddings to set as output embeddings for the model.
            It should be a tensor representing the output embeddings with shape (vocab_size, hidden_size).
            The vocab_size should match the size of the vocabulary used by the model.
            The hidden_size should match the size of the hidden state in the model.

    Returns:
        None.

    Raises:
        None.
    """
    self.lm_head = new_embeddings

mindnlp.transformers.models.falcon.modeling_falcon.FalconForQuestionAnswering

Bases: FalconPreTrainedModel

Falcon model for question answering tasks.

PARAMETER DESCRIPTION
config

The configuration object that defines the model architecture and hyperparameters.

TYPE: FalconConfig

ATTRIBUTE DESCRIPTION
transformer

The underlying Falcon model.

TYPE: FalconModel

qa_outputs

The dense layer for question answering outputs.

TYPE: Linear

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
class FalconForQuestionAnswering(FalconPreTrainedModel):
    """
    Falcon model for question answering tasks.

    Args:
        config (FalconConfig): The configuration object that defines the model architecture and hyperparameters.

    Attributes:
        transformer (FalconModel): The underlying Falcon model.
        qa_outputs (nn.Linear): The dense layer for question answering outputs.

    """
    def __init__(self, config):
        """
        Initializes a new instance of the FalconForQuestionAnswering class.

        Args:
            self: The object itself.
            config:
                The configuration object that contains various settings for the model.

                - Type: Any
                - Purpose: Specifies the configuration settings for the model.
                - Restrictions: None

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.transformer = FalconModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        """
        Forward pass of the FalconForQuestionAnswering model.

        Args:
            input_ids (mindspore.Tensor, optional): The input token IDs. Shape: (batch_size, sequence_length).
            attention_mask (mindspore.Tensor, optional): The attention mask. Shape: (batch_size, sequence_length).
            head_mask (mindspore.Tensor, optional): The head mask. Shape: (num_heads, sequence_length, sequence_length).
            inputs_embeds (mindspore.Tensor, optional): The embedded inputs. Shape: (batch_size, sequence_length, hidden_size).
            start_positions (mindspore.Tensor, optional): The start positions of the labeled span. Shape: (batch_size,).
            end_positions (mindspore.Tensor, optional): The end positions of the labeled span. Shape: (batch_size,).
            output_attentions (bool, optional): Whether to output attentions. Default: None.
            output_hidden_states (bool, optional): Whether to output hidden states. Default: None.
            return_dict (bool, optional): Whether to return a dictionary as the output. Default: None.

        Returns:
            Union[Tuple, QuestionAnsweringModelOutput]: The model output, which includes the start logits, end logits,
            hidden states, and attentions.

        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = ops.cross_entropy(
                start_logits, start_positions, ignore_index=ignored_index
            )
            end_loss = ops.cross_entropy(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForQuestionAnswering.__init__(config)

Initializes a new instance of the FalconForQuestionAnswering class.

PARAMETER DESCRIPTION
self

The object itself.

config

The configuration object that contains various settings for the model.

  • Type: Any
  • Purpose: Specifies the configuration settings for the model.
  • Restrictions: None

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
def __init__(self, config):
    """
    Initializes a new instance of the FalconForQuestionAnswering class.

    Args:
        self: The object itself.
        config:
            The configuration object that contains various settings for the model.

            - Type: Any
            - Purpose: Specifies the configuration settings for the model.
            - Restrictions: None

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.transformer = FalconModel(config)
    self.qa_outputs = nn.Linear(config.hidden_size, 2)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.falcon.modeling_falcon.FalconForQuestionAnswering.forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Forward pass of the FalconForQuestionAnswering model.

PARAMETER DESCRIPTION
input_ids

The input token IDs. Shape: (batch_size, sequence_length).

TYPE: Tensor DEFAULT: None

attention_mask

The attention mask. Shape: (batch_size, sequence_length).

TYPE: Tensor DEFAULT: None

head_mask

The head mask. Shape: (num_heads, sequence_length, sequence_length).

TYPE: Tensor DEFAULT: None

inputs_embeds

The embedded inputs. Shape: (batch_size, sequence_length, hidden_size).

TYPE: Tensor DEFAULT: None

start_positions

The start positions of the labeled span. Shape: (batch_size,).

TYPE: Tensor DEFAULT: None

end_positions

The end positions of the labeled span. Shape: (batch_size,).

TYPE: Tensor DEFAULT: None

output_attentions

Whether to output attentions. Default: None.

TYPE: bool DEFAULT: None

output_hidden_states

Whether to output hidden states. Default: None.

TYPE: bool DEFAULT: None

return_dict

Whether to return a dictionary as the output. Default: None.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, QuestionAnsweringModelOutput]

Union[Tuple, QuestionAnsweringModelOutput]: The model output, which includes the start logits, end logits,

Union[Tuple, QuestionAnsweringModelOutput]

hidden states, and attentions.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
    """
    Forward pass of the FalconForQuestionAnswering model.

    Args:
        input_ids (mindspore.Tensor, optional): The input token IDs. Shape: (batch_size, sequence_length).
        attention_mask (mindspore.Tensor, optional): The attention mask. Shape: (batch_size, sequence_length).
        head_mask (mindspore.Tensor, optional): The head mask. Shape: (num_heads, sequence_length, sequence_length).
        inputs_embeds (mindspore.Tensor, optional): The embedded inputs. Shape: (batch_size, sequence_length, hidden_size).
        start_positions (mindspore.Tensor, optional): The start positions of the labeled span. Shape: (batch_size,).
        end_positions (mindspore.Tensor, optional): The end positions of the labeled span. Shape: (batch_size,).
        output_attentions (bool, optional): Whether to output attentions. Default: None.
        output_hidden_states (bool, optional): Whether to output hidden states. Default: None.
        return_dict (bool, optional): Whether to return a dictionary as the output. Default: None.

    Returns:
        Union[Tuple, QuestionAnsweringModelOutput]: The model output, which includes the start logits, end logits,
        hidden states, and attentions.

    """
    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    outputs = self.transformer(
        input_ids,
        attention_mask=attention_mask,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = ops.cross_entropy(
            start_logits, start_positions, ignore_index=ignored_index
        )
        end_loss = ops.cross_entropy(end_logits, end_positions)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + outputs[2:]
        return ((total_loss,) + output) if total_loss is not None else output

    return QuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForSequenceClassification

Bases: FalconPreTrainedModel

Falcon model for sequence classification tasks.

PARAMETER DESCRIPTION
config

The configuration object that defines the model architecture and hyperparameters.

TYPE: FalconConfig

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
class FalconForSequenceClassification(FalconPreTrainedModel):
    """
    Falcon model for sequence classification tasks.

    Args:
        config (FalconConfig): The configuration object that defines the model architecture and hyperparameters.

    """
    def __init__(self, config: FalconConfig):
        """
        Initializes a new instance of the FalconForSequenceClassification class.

        Args:
            self: The object itself.
            config (FalconConfig): The configuration object that contains all the required settings for the model.
                It must be an instance of the FalconConfig class.

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = FalconModel(config)
        self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[
            Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
        ] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], SequenceClassifierOutputWithPast]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError(
                "Cannot handle batch sizes > 1 if no padding token is defined."
            )
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        elif input_ids is None:
            sequence_lengths = -1
            logger.warning(
                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
            )

        else:
            sequence_lengths = (
                ops.ne(input_ids, self.config.pad_token_id).sum(axis=-1) - 1
            )
        pooled_logits = logits[ops.arange(batch_size), sequence_lengths]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in [
                    mindspore.int64,
                    mindspore.int32,
                ]:
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse_loss(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(pooled_logits, labels)
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy_with_logits(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForSequenceClassification.__init__(config)

Initializes a new instance of the FalconForSequenceClassification class.

PARAMETER DESCRIPTION
self

The object itself.

config

The configuration object that contains all the required settings for the model. It must be an instance of the FalconConfig class.

TYPE: FalconConfig

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
def __init__(self, config: FalconConfig):
    """
    Initializes a new instance of the FalconForSequenceClassification class.

    Args:
        self: The object itself.
        config (FalconConfig): The configuration object that contains all the required settings for the model.
            It must be an instance of the FalconConfig class.

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.num_labels = config.num_labels
    self.transformer = FalconModel(config)
    self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.falcon.modeling_falcon.FalconForSequenceClassification.forward(input_ids=None, past_key_values=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[
        Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
    ] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], SequenceClassifierOutputWithPast]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    transformer_outputs = self.transformer(
        input_ids,
        past_key_values=past_key_values,
        attention_mask=attention_mask,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    hidden_states = transformer_outputs[0]
    logits = self.score(hidden_states)

    if input_ids is not None:
        batch_size = input_ids.shape[0]
    else:
        batch_size = inputs_embeds.shape[0]

    if self.config.pad_token_id is None and batch_size != 1:
        raise ValueError(
            "Cannot handle batch sizes > 1 if no padding token is defined."
        )
    if self.config.pad_token_id is None:
        sequence_lengths = -1
    elif input_ids is None:
        sequence_lengths = -1
        logger.warning(
            f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
            "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
        )

    else:
        sequence_lengths = (
            ops.ne(input_ids, self.config.pad_token_id).sum(axis=-1) - 1
        )
    pooled_logits = logits[ops.arange(batch_size), sequence_lengths]

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in [
                mindspore.int64,
                mindspore.int32,
            ]:
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse_loss(pooled_logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(pooled_logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(pooled_logits, labels)
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy_with_logits(pooled_logits, labels)
    if not return_dict:
        output = (pooled_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutputWithPast(
        loss=loss,
        logits=pooled_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForTokenClassification

Bases: FalconPreTrainedModel

Falcon model for token classification.

PARAMETER DESCRIPTION
config

The configuration object of the Falcon model.

TYPE: FalconConfig

ATTRIBUTE DESCRIPTION
num_labels

The number of labels for token classification.

TYPE: int

transformer

The Falcon model transformer.

TYPE: FalconModel

dropout

The dropout layer.

TYPE: Dropout

classifier

The dense layer for classification.

TYPE: Linear

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
class FalconForTokenClassification(FalconPreTrainedModel):
    """
    Falcon model for token classification.

    Args:
        config (FalconConfig): The configuration object of the Falcon model.

    Attributes:
        num_labels (int): The number of labels for token classification.
        transformer (FalconModel): The Falcon model transformer.
        dropout (nn.Dropout): The dropout layer.
        classifier (nn.Linear): The dense layer for classification.

    """
    def __init__(self, config: FalconConfig):
        """
        Initializes an instance of FalconForTokenClassification.

        Args:
            self: The instance of the FalconForTokenClassification class.
            config (FalconConfig): An object of type FalconConfig containing configuration parameters.
                This parameter is required to configure the FalconForTokenClassification instance.
                It specifies the number of labels for token classification and other configuration settings.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = FalconModel(config)
        if getattr(config, "classifier_dropout", None) is not None:
            classifier_dropout = config.classifier_dropout
        elif getattr(config, "hidden_dropout", None) is not None:
            classifier_dropout = config.hidden_dropout
        else:
            classifier_dropout = 0.1
        self.dropout = nn.Dropout(p=classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[
            Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
        ] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], TokenClassifierOutput]:
        """
        Forward pass of the FalconForTokenClassification model.

        Args:
            input_ids (mindspore.Tensor, optional): The input token IDs. Shape: (batch_size, sequence_length).
            past_key_values (Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...], optional): The past key-value pairs for
                the self-attention mechanism. Shape: (batch_size, num_layers, 2, sequence_length, hidden_size).
            attention_mask (mindspore.Tensor, optional): The attention mask to avoid performing attention on padding tokens.
                Shape: (batch_size, sequence_length).
            head_mask (mindspore.Tensor, optional):
                The head mask to mask specific attention heads. Shape: (batch_size, num_heads).
            inputs_embeds (mindspore.Tensor, optional):
                The embedded input tokens. Shape: (batch_size, sequence_length, hidden_size).
            labels (mindspore.Tensor, optional):
                The labels for computing the sequence classification/regression loss. Indices should be in
                [0, ..., config.num_labels - 1].

                - If config.num_labels == 1, a regression loss is computed (Mean-Square loss).
                - If config.num_labels > 1, a classification loss is computed (Cross-Entropy).

                Shape: (batch_size, sequence_length).
            use_cache (bool, optional): Whether to use the cache for the self-attention mechanism.
            output_attentions (bool, optional): Whether to output the attentions weights.
            output_hidden_states (bool, optional): Whether to output the hidden states.
            return_dict (bool, optional): Whether to return a dictionary as the output.

        Returns:
            Union[Tuple[mindspore.Tensor], TokenClassifierOutput]:
                The model output.

                - If return_dict is False, returns a tuple of (logits, hidden_states, attentions).
                - If labels is not None, also returns the loss.

        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        hidden_states = self.dropout(hidden_states)
        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            batch_size, seq_length = labels.shape
            loss = ops.cross_entropy(
                logits.view(batch_size * seq_length, self.num_labels),
                labels.view(batch_size * seq_length),
            )

        if not return_dict:
            output = (logits,) + transformer_outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

mindnlp.transformers.models.falcon.modeling_falcon.FalconForTokenClassification.__init__(config)

Initializes an instance of FalconForTokenClassification.

PARAMETER DESCRIPTION
self

The instance of the FalconForTokenClassification class.

config

An object of type FalconConfig containing configuration parameters. This parameter is required to configure the FalconForTokenClassification instance. It specifies the number of labels for token classification and other configuration settings.

TYPE: FalconConfig

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
def __init__(self, config: FalconConfig):
    """
    Initializes an instance of FalconForTokenClassification.

    Args:
        self: The instance of the FalconForTokenClassification class.
        config (FalconConfig): An object of type FalconConfig containing configuration parameters.
            This parameter is required to configure the FalconForTokenClassification instance.
            It specifies the number of labels for token classification and other configuration settings.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.transformer = FalconModel(config)
    if getattr(config, "classifier_dropout", None) is not None:
        classifier_dropout = config.classifier_dropout
    elif getattr(config, "hidden_dropout", None) is not None:
        classifier_dropout = config.hidden_dropout
    else:
        classifier_dropout = 0.1
    self.dropout = nn.Dropout(p=classifier_dropout)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.falcon.modeling_falcon.FalconForTokenClassification.forward(input_ids=None, past_key_values=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Forward pass of the FalconForTokenClassification model.

PARAMETER DESCRIPTION
input_ids

The input token IDs. Shape: (batch_size, sequence_length).

TYPE: Tensor DEFAULT: None

past_key_values

The past key-value pairs for the self-attention mechanism. Shape: (batch_size, num_layers, 2, sequence_length, hidden_size).

TYPE: Tuple[Tuple[Tensor, Tensor], ...] DEFAULT: None

attention_mask

The attention mask to avoid performing attention on padding tokens. Shape: (batch_size, sequence_length).

TYPE: Tensor DEFAULT: None

head_mask

The head mask to mask specific attention heads. Shape: (batch_size, num_heads).

TYPE: Tensor DEFAULT: None

inputs_embeds

The embedded input tokens. Shape: (batch_size, sequence_length, hidden_size).

TYPE: Tensor DEFAULT: None

labels

The labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1].

  • If config.num_labels == 1, a regression loss is computed (Mean-Square loss).
  • If config.num_labels > 1, a classification loss is computed (Cross-Entropy).

Shape: (batch_size, sequence_length).

TYPE: Tensor DEFAULT: None

use_cache

Whether to use the cache for the self-attention mechanism.

TYPE: bool DEFAULT: None

output_attentions

Whether to output the attentions weights.

TYPE: bool DEFAULT: None

output_hidden_states

Whether to output the hidden states.

TYPE: bool DEFAULT: None

return_dict

Whether to return a dictionary as the output.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple[Tensor], TokenClassifierOutput]

Union[Tuple[mindspore.Tensor], TokenClassifierOutput]: The model output.

  • If return_dict is False, returns a tuple of (logits, hidden_states, attentions).
  • If labels is not None, also returns the loss.
Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[
        Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
    ] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], TokenClassifierOutput]:
    """
    Forward pass of the FalconForTokenClassification model.

    Args:
        input_ids (mindspore.Tensor, optional): The input token IDs. Shape: (batch_size, sequence_length).
        past_key_values (Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...], optional): The past key-value pairs for
            the self-attention mechanism. Shape: (batch_size, num_layers, 2, sequence_length, hidden_size).
        attention_mask (mindspore.Tensor, optional): The attention mask to avoid performing attention on padding tokens.
            Shape: (batch_size, sequence_length).
        head_mask (mindspore.Tensor, optional):
            The head mask to mask specific attention heads. Shape: (batch_size, num_heads).
        inputs_embeds (mindspore.Tensor, optional):
            The embedded input tokens. Shape: (batch_size, sequence_length, hidden_size).
        labels (mindspore.Tensor, optional):
            The labels for computing the sequence classification/regression loss. Indices should be in
            [0, ..., config.num_labels - 1].

            - If config.num_labels == 1, a regression loss is computed (Mean-Square loss).
            - If config.num_labels > 1, a classification loss is computed (Cross-Entropy).

            Shape: (batch_size, sequence_length).
        use_cache (bool, optional): Whether to use the cache for the self-attention mechanism.
        output_attentions (bool, optional): Whether to output the attentions weights.
        output_hidden_states (bool, optional): Whether to output the hidden states.
        return_dict (bool, optional): Whether to return a dictionary as the output.

    Returns:
        Union[Tuple[mindspore.Tensor], TokenClassifierOutput]:
            The model output.

            - If return_dict is False, returns a tuple of (logits, hidden_states, attentions).
            - If labels is not None, also returns the loss.

    """
    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    transformer_outputs = self.transformer(
        input_ids,
        past_key_values=past_key_values,
        attention_mask=attention_mask,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    hidden_states = transformer_outputs[0]
    hidden_states = self.dropout(hidden_states)
    logits = self.classifier(hidden_states)

    loss = None
    if labels is not None:
        batch_size, seq_length = labels.shape
        loss = ops.cross_entropy(
            logits.view(batch_size * seq_length, self.num_labels),
            labels.view(batch_size * seq_length),
        )

    if not return_dict:
        output = (logits,) + transformer_outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return TokenClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding

Bases: FalconRotaryEmbedding

FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
    """FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
    def __init__(
        self, dim: int, max_position_embeddings=2048, base=10000, scaling_factor=1.0
    ):
        """
        __init__

        Initializes a new instance of the FalconLinearScalingRotaryEmbedding class.

        Args:
            self: The instance of the class.
            dim (int): The dimension of the embedding space.
            max_position_embeddings (int): The maximum number of position embeddings. Defaults to 2048.
            base (int): The base value for positional encoding. Defaults to 10000.
            scaling_factor (float): The scaling factor for the positional encoding. Defaults to 1.0.

        Returns:
            None.

        Raises:
            None.
        """
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base)

    def _set_cos_sin_cache(self, seq_len, dtype):
        """
        Set the cached values for cosine and sine embeddings based on the given sequence length and data type.

        Args:
            self (FalconLinearScalingRotaryEmbedding): The instance of FalconLinearScalingRotaryEmbedding class.
            seq_len (int): The length of the sequence for which the cosine and sine embeddings are to be cached.
            dtype: The data type for the cached cosine and sine embeddings.

        Returns:
            None.

        Raises:
            None
        """
        self.max_seq_len_cached = seq_len
        t = ops.arange(seq_len, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor
        freqs = ops.outer(t, self.inv_freq)
        emb = ops.cat((freqs, freqs), axis=-1)
        self.cos_cached = emb.cos().astype(dtype)
        self.sin_cached = emb.sin().astype(dtype)

mindnlp.transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)

init

Initializes a new instance of the FalconLinearScalingRotaryEmbedding class.

PARAMETER DESCRIPTION
self

The instance of the class.

dim

The dimension of the embedding space.

TYPE: int

max_position_embeddings

The maximum number of position embeddings. Defaults to 2048.

TYPE: int DEFAULT: 2048

base

The base value for positional encoding. Defaults to 10000.

TYPE: int DEFAULT: 10000

scaling_factor

The scaling factor for the positional encoding. Defaults to 1.0.

TYPE: float DEFAULT: 1.0

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def __init__(
    self, dim: int, max_position_embeddings=2048, base=10000, scaling_factor=1.0
):
    """
    __init__

    Initializes a new instance of the FalconLinearScalingRotaryEmbedding class.

    Args:
        self: The instance of the class.
        dim (int): The dimension of the embedding space.
        max_position_embeddings (int): The maximum number of position embeddings. Defaults to 2048.
        base (int): The base value for positional encoding. Defaults to 10000.
        scaling_factor (float): The scaling factor for the positional encoding. Defaults to 1.0.

    Returns:
        None.

    Raises:
        None.
    """
    self.scaling_factor = scaling_factor
    super().__init__(dim, max_position_embeddings, base)

mindnlp.transformers.models.falcon.modeling_falcon.FalconMLP

Bases: Module

FalconMLP is a multi-layer perceptron (MLP) module for the Falcon model.

PARAMETER DESCRIPTION
config

The configuration for the Falcon model.

TYPE: FalconConfig

RETURNS DESCRIPTION
Tensor

The output tensor after applying the MLP transformation.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
class FalconMLP(nn.Module):
    """
    FalconMLP is a multi-layer perceptron (MLP) module for the Falcon model.

    Args:
        config (FalconConfig): The configuration for the Falcon model.

    Returns:
        Tensor: The output tensor after applying the MLP transformation."""
    def __init__(self, config: FalconConfig):
        """
        Initializes a FalconMLP instance.

        Args:
            self: The instance of the FalconMLP class.
            config (FalconConfig): A FalconConfig object containing the configuration parameters for the MLP model.
                This parameter is used to set the hidden size and bias for the dense layers and the hidden dropout rate.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of type FalconConfig.
            ValueError: If the hidden size specified in the config is not valid.
            RuntimeError: If there is an issue with initializing the dense layers or activation function.
        """
        super().__init__()
        hidden_size = config.hidden_size

        self.dense_h_to_4h = FalconLinear(
            hidden_size, 4 * hidden_size, bias=config.bias
        )
        self.act = nn.GELU(approximate=False)
        self.dense_4h_to_h = FalconLinear(
            4 * hidden_size, hidden_size, bias=config.bias
        )
        self.hidden_dropout = config.hidden_dropout

    def forward(self, x: mindspore.Tensor) -> mindspore.Tensor:
        """
        Constructs the FalconMLP by performing forward propagation on the input tensor 'x'.

        Args:
            self (FalconMLP): An instance of the FalconMLP class.
            x (mindspore.Tensor): The input tensor for performing forward propagation.

        Returns:
            mindspore.Tensor: The output tensor after performing forward propagation.

        Raises:
            None.
        """
        x = self.act(self.dense_h_to_4h(x))
        x = self.dense_4h_to_h(x)
        return x

mindnlp.transformers.models.falcon.modeling_falcon.FalconMLP.__init__(config)

Initializes a FalconMLP instance.

PARAMETER DESCRIPTION
self

The instance of the FalconMLP class.

config

A FalconConfig object containing the configuration parameters for the MLP model. This parameter is used to set the hidden size and bias for the dense layers and the hidden dropout rate.

TYPE: FalconConfig

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of type FalconConfig.

ValueError

If the hidden size specified in the config is not valid.

RuntimeError

If there is an issue with initializing the dense layers or activation function.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
def __init__(self, config: FalconConfig):
    """
    Initializes a FalconMLP instance.

    Args:
        self: The instance of the FalconMLP class.
        config (FalconConfig): A FalconConfig object containing the configuration parameters for the MLP model.
            This parameter is used to set the hidden size and bias for the dense layers and the hidden dropout rate.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of type FalconConfig.
        ValueError: If the hidden size specified in the config is not valid.
        RuntimeError: If there is an issue with initializing the dense layers or activation function.
    """
    super().__init__()
    hidden_size = config.hidden_size

    self.dense_h_to_4h = FalconLinear(
        hidden_size, 4 * hidden_size, bias=config.bias
    )
    self.act = nn.GELU(approximate=False)
    self.dense_4h_to_h = FalconLinear(
        4 * hidden_size, hidden_size, bias=config.bias
    )
    self.hidden_dropout = config.hidden_dropout

mindnlp.transformers.models.falcon.modeling_falcon.FalconMLP.forward(x)

Constructs the FalconMLP by performing forward propagation on the input tensor 'x'.

PARAMETER DESCRIPTION
self

An instance of the FalconMLP class.

TYPE: FalconMLP

x

The input tensor for performing forward propagation.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The output tensor after performing forward propagation.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
def forward(self, x: mindspore.Tensor) -> mindspore.Tensor:
    """
    Constructs the FalconMLP by performing forward propagation on the input tensor 'x'.

    Args:
        self (FalconMLP): An instance of the FalconMLP class.
        x (mindspore.Tensor): The input tensor for performing forward propagation.

    Returns:
        mindspore.Tensor: The output tensor after performing forward propagation.

    Raises:
        None.
    """
    x = self.act(self.dense_h_to_4h(x))
    x = self.dense_4h_to_h(x)
    return x

mindnlp.transformers.models.falcon.modeling_falcon.FalconModel

Bases: FalconPreTrainedModel

FalconModel is a class representing the Falcon model architecture.

PARAMETER DESCRIPTION
config

The configuration object specifying the model architecture.

TYPE: FalconConfig

ATTRIBUTE DESCRIPTION
embed_dim

The dimensionality of the word embeddings.

TYPE: int

num_heads

The number of attention heads.

TYPE: int

use_alibi

Whether to use alibi tensor.

TYPE: bool

word_embeddings

The word embedding layer.

TYPE: Embedding

h

The list of FalconDecoderLayer instances representing the transformer blocks.

TYPE: ModuleList

ln_f

The final layer normalization.

TYPE: LayerNorm

gradient_checkpointing

Whether to use gradient checkpointing.

TYPE: bool

METHOD DESCRIPTION
get_input_embeddings

Returns the word embedding layer.

set_input_embeddings

mindspore.Tensor): Sets the word embedding layer with new embeddings.

forward

The forward pass of the FalconModel.

RETURNS DESCRIPTION

Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:

The output of the forward pass, which includes the last hidden state, past key values,

hidden states, and self-attention matrices.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
class FalconModel(FalconPreTrainedModel):
    """
    FalconModel is a class representing the Falcon model architecture.

    Args:
        config (FalconConfig): The configuration object specifying the model architecture.

    Attributes:
        embed_dim (int): The dimensionality of the word embeddings.
        num_heads (int): The number of attention heads.
        use_alibi (bool): Whether to use alibi tensor.
        word_embeddings (nn.Embedding): The word embedding layer.
        h (nn.ModuleList): The list of FalconDecoderLayer instances representing the transformer blocks.
        ln_f (nn.LayerNorm): The final layer normalization.
        gradient_checkpointing (bool): Whether to use gradient checkpointing.

    Methods:
        get_input_embeddings(): Returns the word embedding layer.
        set_input_embeddings(new_embeddings: mindspore.Tensor): Sets the word embedding layer with new embeddings.
        forward(...): The forward pass of the FalconModel.

    Returns:
        Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        The output of the forward pass, which includes the last hidden state, past key values,
        hidden states, and self-attention matrices.
    """
    def __init__(self, config: FalconConfig):
        """
        Initializes a FalconModel instance.

        Args:
            self (FalconModel): The FalconModel instance to be initialized.
            config (FalconConfig):
                Configuration object containing various parameters for the model.

                - config.hidden_size (int): Size of the hidden layer dimension.
                - config.num_attention_heads (int): Number of attention heads.
                - config.alibi (bool): Flag indicating whether to use alibi.
                - config.vocab_size (int): Size of the vocabulary.
                - config.num_hidden_layers (int): Number of hidden layers.
                - config.layer_norm_epsilon (float): Epsilon value for layer normalization.

        Returns:
            None.

        Raises:
            None
        """
        super().__init__(config)

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.use_alibi = config.alibi

        # Embedding + LN Embedding
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)

        # Transformer blocks
        self.h = nn.ModuleList(
            [FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)]
        )

        # Final Layer Norm
        self.ln_f = nn.LayerNorm([self.embed_dim], eps=config.layer_norm_epsilon)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Returns the input embeddings used by the FalconModel.

        Args:
            self (FalconModel): The instance of the FalconModel class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.word_embeddings

    def set_input_embeddings(self, new_embeddings: mindspore.Tensor):
        """
        Sets the input embeddings for the FalconModel.

        Args:
            self (FalconModel): The instance of the FalconModel class.
            new_embeddings (mindspore.Tensor): The new embeddings to be set as input embeddings.
                It should be a tensor object.

        Returns:
            None.

        Raises:
            None.
        """
        self.word_embeddings = new_embeddings

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[
            Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
        ] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        """
        Constructs the Falcon model.

        Args:
            self (FalconModel): The FalconModel instance.
            input_ids (Optional[mindspore.Tensor]):
                The input tensor containing the tokenized input sequence. Default is None.
            past_key_values (Optional[Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]]):
                Tuple of past key and value tensors for fast decoding. Default is None.
            attention_mask (Optional[mindspore.Tensor]): The attention mask tensor. Default is None.
            position_ids (Optional[mindspore.Tensor]): The position ids tensor. Default is None.
            head_mask (Optional[mindspore.Tensor]): The head mask tensor. Default is None.
            inputs_embeds (Optional[mindspore.Tensor]): The embedded input tensor. Default is None.
            use_cache (Optional[bool]): Whether to use caching for fast decoding. Default is None.
            output_attentions (Optional[bool]): Whether to output attentions. Default is None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
            return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

        Returns:
            Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
            The output tensor or a BaseModelOutputWithPastAndCrossAttentions object depending on the return_dict parameter.

        Raises:
            ValueError: If both input_ids and inputs_embeds are specified
                or if neither input_ids nor inputs_embeds are specified.
            ValueError: If the input_ids or inputs_embeds shape is not valid.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        if input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape batch_size x num_heads x N x N
        # head_mask has shape n_layer x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        hidden_states = inputs_embeds

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        # Compute alibi tensor: check build_alibi_tensor documentation
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[-2]

        if self.use_alibi:
            mask = (
                ops.ones(
                    (batch_size, seq_length + past_key_values_length),
                    dtype=mindspore.int64,
                )
                if attention_mask is None
                else attention_mask
            )
            alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
        else:
            alibi = None
            if position_ids is None:
                position_ids = ops.arange(
                    past_key_values_length,
                    seq_length + past_key_values_length,
                    dtype=mindspore.int64,
                )
                position_ids = position_ids.unsqueeze(0)

        if getattr(self.config, "_flash_attn_2_enabled", False):
            # 2d mask is passed through the layers
            attention_mask = (
                attention_mask
                if (attention_mask is not None and 0 in attention_mask)
                else None
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )

        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            outputs = block(
                hidden_states,
                layer_past=layer_past,
                attention_mask=attention_mask,
                position_ids=position_ids,
                head_mask=head_mask[i],
                use_cache=use_cache,
                output_attentions=output_attentions,
                alibi=alibi,
            )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (
                    outputs[2 if use_cache else 1],
                )

        # Add last hidden state
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    presents,
                    all_hidden_states,
                    all_self_attentions,
                ]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

mindnlp.transformers.models.falcon.modeling_falcon.FalconModel.__init__(config)

Initializes a FalconModel instance.

PARAMETER DESCRIPTION
self

The FalconModel instance to be initialized.

TYPE: FalconModel

config

Configuration object containing various parameters for the model.

  • config.hidden_size (int): Size of the hidden layer dimension.
  • config.num_attention_heads (int): Number of attention heads.
  • config.alibi (bool): Flag indicating whether to use alibi.
  • config.vocab_size (int): Size of the vocabulary.
  • config.num_hidden_layers (int): Number of hidden layers.
  • config.layer_norm_epsilon (float): Epsilon value for layer normalization.

TYPE: FalconConfig

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
def __init__(self, config: FalconConfig):
    """
    Initializes a FalconModel instance.

    Args:
        self (FalconModel): The FalconModel instance to be initialized.
        config (FalconConfig):
            Configuration object containing various parameters for the model.

            - config.hidden_size (int): Size of the hidden layer dimension.
            - config.num_attention_heads (int): Number of attention heads.
            - config.alibi (bool): Flag indicating whether to use alibi.
            - config.vocab_size (int): Size of the vocabulary.
            - config.num_hidden_layers (int): Number of hidden layers.
            - config.layer_norm_epsilon (float): Epsilon value for layer normalization.

    Returns:
        None.

    Raises:
        None
    """
    super().__init__(config)

    self.embed_dim = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.use_alibi = config.alibi

    # Embedding + LN Embedding
    self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)

    # Transformer blocks
    self.h = nn.ModuleList(
        [FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)]
    )

    # Final Layer Norm
    self.ln_f = nn.LayerNorm([self.embed_dim], eps=config.layer_norm_epsilon)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.falcon.modeling_falcon.FalconModel.forward(input_ids=None, past_key_values=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the Falcon model.

PARAMETER DESCRIPTION
self

The FalconModel instance.

TYPE: FalconModel

input_ids

The input tensor containing the tokenized input sequence. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

past_key_values

Tuple of past key and value tensors for fast decoding. Default is None.

TYPE: Optional[Tuple[Tuple[Tensor, Tensor], ...]] DEFAULT: None

attention_mask

The attention mask tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The position ids tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The head mask tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The embedded input tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

use_cache

Whether to use caching for fast decoding. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_attentions

Whether to output attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple[Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]

Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:

Union[Tuple[Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]

The output tensor or a BaseModelOutputWithPastAndCrossAttentions object depending on the return_dict parameter.

RAISES DESCRIPTION
ValueError

If both input_ids and inputs_embeds are specified or if neither input_ids nor inputs_embeds are specified.

ValueError

If the input_ids or inputs_embeds shape is not valid.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[
        Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]
    ] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
    """
    Constructs the Falcon model.

    Args:
        self (FalconModel): The FalconModel instance.
        input_ids (Optional[mindspore.Tensor]):
            The input tensor containing the tokenized input sequence. Default is None.
        past_key_values (Optional[Tuple[Tuple[mindspore.Tensor, mindspore.Tensor], ...]]):
            Tuple of past key and value tensors for fast decoding. Default is None.
        attention_mask (Optional[mindspore.Tensor]): The attention mask tensor. Default is None.
        position_ids (Optional[mindspore.Tensor]): The position ids tensor. Default is None.
        head_mask (Optional[mindspore.Tensor]): The head mask tensor. Default is None.
        inputs_embeds (Optional[mindspore.Tensor]): The embedded input tensor. Default is None.
        use_cache (Optional[bool]): Whether to use caching for fast decoding. Default is None.
        output_attentions (Optional[bool]): Whether to output attentions. Default is None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
        return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

    Returns:
        Union[Tuple[mindspore.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        The output tensor or a BaseModelOutputWithPastAndCrossAttentions object depending on the return_dict parameter.

    Raises:
        ValueError: If both input_ids and inputs_embeds are specified
            or if neither input_ids nor inputs_embeds are specified.
        ValueError: If the input_ids or inputs_embeds shape is not valid.
    """
    output_attentions = (
        output_attentions
        if output_attentions is not None
        else self.config.output_attentions
    )
    output_hidden_states = (
        output_hidden_states
        if output_hidden_states is not None
        else self.config.output_hidden_states
    )
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    if input_ids is not None and inputs_embeds is not None:
        raise ValueError(
            "You cannot specify both input_ids and inputs_embeds at the same time"
        )
    if input_ids is not None:
        batch_size, seq_length = input_ids.shape
    elif inputs_embeds is not None:
        batch_size, seq_length, _ = inputs_embeds.shape
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    if past_key_values is None:
        past_key_values = tuple([None] * len(self.h))

    # Prepare head mask if needed
    # 1.0 in head_mask indicate we keep the head
    # attention_probs has shape batch_size x num_heads x N x N
    # head_mask has shape n_layer x batch x num_heads x N x N
    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

    if inputs_embeds is None:
        inputs_embeds = self.word_embeddings(input_ids)

    hidden_states = inputs_embeds

    presents = () if use_cache else None
    all_self_attentions = () if output_attentions else None
    all_hidden_states = () if output_hidden_states else None

    # Compute alibi tensor: check build_alibi_tensor documentation
    past_key_values_length = 0
    if past_key_values[0] is not None:
        past_key_values_length = past_key_values[0][0].shape[-2]

    if self.use_alibi:
        mask = (
            ops.ones(
                (batch_size, seq_length + past_key_values_length),
                dtype=mindspore.int64,
            )
            if attention_mask is None
            else attention_mask
        )
        alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
    else:
        alibi = None
        if position_ids is None:
            position_ids = ops.arange(
                past_key_values_length,
                seq_length + past_key_values_length,
                dtype=mindspore.int64,
            )
            position_ids = position_ids.unsqueeze(0)

    if getattr(self.config, "_flash_attn_2_enabled", False):
        # 2d mask is passed through the layers
        attention_mask = (
            attention_mask
            if (attention_mask is not None and 0 in attention_mask)
            else None
        )
    else:
        # 4d mask is passed through the layers
        attention_mask = _prepare_4d_causal_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
        )

    for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = block(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask[i],
            use_cache=use_cache,
            output_attentions=output_attentions,
            alibi=alibi,
        )

        hidden_states = outputs[0]
        if use_cache is True:
            presents = presents + (outputs[1],)

        if output_attentions:
            all_self_attentions = all_self_attentions + (
                outputs[2 if use_cache else 1],
            )

    # Add last hidden state
    hidden_states = self.ln_f(hidden_states)

    if output_hidden_states:
        all_hidden_states = all_hidden_states + (hidden_states,)

    if not return_dict:
        return tuple(
            v
            for v in [
                hidden_states,
                presents,
                all_hidden_states,
                all_self_attentions,
            ]
            if v is not None
        )

    return BaseModelOutputWithPastAndCrossAttentions(
        last_hidden_state=hidden_states,
        past_key_values=presents,
        hidden_states=all_hidden_states,
        attentions=all_self_attentions,
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconModel.get_input_embeddings()

Returns the input embeddings used by the FalconModel.

PARAMETER DESCRIPTION
self

The instance of the FalconModel class.

TYPE: FalconModel

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
def get_input_embeddings(self):
    """
    Returns the input embeddings used by the FalconModel.

    Args:
        self (FalconModel): The instance of the FalconModel class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.word_embeddings

mindnlp.transformers.models.falcon.modeling_falcon.FalconModel.set_input_embeddings(new_embeddings)

Sets the input embeddings for the FalconModel.

PARAMETER DESCRIPTION
self

The instance of the FalconModel class.

TYPE: FalconModel

new_embeddings

The new embeddings to be set as input embeddings. It should be a tensor object.

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
def set_input_embeddings(self, new_embeddings: mindspore.Tensor):
    """
    Sets the input embeddings for the FalconModel.

    Args:
        self (FalconModel): The instance of the FalconModel class.
        new_embeddings (mindspore.Tensor): The new embeddings to be set as input embeddings.
            It should be a tensor object.

    Returns:
        None.

    Raises:
        None.
    """
    self.word_embeddings = new_embeddings

mindnlp.transformers.models.falcon.modeling_falcon.FalconPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
class FalconPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    # convert_torch_to_mindspore = torch_to_mindspore
    config_class = FalconConfig
    base_model_prefix = "transformer"
    _no_split_modules = ["FalconDecoderLayer"]
    _supports_flash_attn_2 = False  # change to False

    def _init_weights(self, cell):
        """Initialize the weights."""
        if isinstance(cell, (nn.Linear, FalconLinear)):
            # 使用正态分布初始化权重
            cell.weight.set_data(
                initializer(
                    Normal(0.0, self.config.initializer_range),
                    cell.weight.shape,
                    cell.weight.dtype,
                )
            )
            if cell.bias:
                cell.bias.set_data(
                    initializer("zeros", cell.bias.shape, cell.bias.dtype)
                )
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(
                0.0, self.config.initializer_range, cell.weight.shape
            )
            if cell.padding_idx:
                weight[cell.padding_idx] = 0.0

            cell.weight.set_data(mindspore.Tensor(weight, cell.weight.dtype))
        elif isinstance(cell, nn.LayerNorm):
            cell.bias.set_data(initializer("zeros", cell.bias.shape, cell.bias.dtype))
            cell.weight.set_data(
                initializer("ones", cell.weight.shape, cell.weight.dtype)
            )

mindnlp.transformers.models.falcon.modeling_falcon.FalconRotaryEmbedding

Bases: Module

Implementation of RotaryEmbedding from GPT-NeoX. This implementation is designed to operate on queries and keys that are compatible with [batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
class FalconRotaryEmbedding(nn.Module):
    """Implementation of RotaryEmbedding from GPT-NeoX.
    This implementation is designed to operate on queries and keys that are compatible with `[batch_size,
    n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format).
    """
    def __init__(self, dim: int, max_position_embeddings=2048, base=10000):
        """
        Initializes an instance of the FalconRotaryEmbedding class.

        Args:
            self: The instance of the class.
            dim (int): The dimensionality of the embeddings.
            max_position_embeddings (int, optional): The maximum number of position embeddings. Defaults to 2048.
            base (int, optional): The base value used for calculating the inverse frequency. Defaults to 10000.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.dim = dim
        self.base = base
        self.max_position_embeddings = max_position_embeddings
        self.inv_freq = 1.0 / (self.base ** (ops.arange(0, dim, 2).float() / dim))

        # mindspore does not support get_default_dtype()
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, dtype=self.inv_freq.dtype
        )

    def _set_cos_sin_cache(self, seq_len, dtype):
        """
        Sets the cosine and sine cache for FalconRotaryEmbedding.

        Args:
            self (FalconRotaryEmbedding): The instance of the FalconRotaryEmbedding class.
            seq_len (int): The length of the sequence.
            dtype: The desired data type for the cosine and sine cache.

        Returns:
            None: This method updates the cos_cached and sin_cached attributes of the FalconRotaryEmbedding instance.

        Raises:
            None.
        """
        self.max_seq_len_cached = seq_len
        t = ops.arange(self.max_seq_len_cached, dtype=self.inv_freq.dtype)
        freqs = ops.einsum("i,j->ij", t, self.inv_freq)
        # freqs = ops.matmul()(t.reshape(-1, 1), self.inv_freq.reshape(1, -1))
        emb = ops.cat((freqs, freqs), axis=-1)
        self.cos_cached = emb.cos().astype(dtype)
        self.sin_cached = emb.sin().astype(dtype)

    def forward(self, x, seq_len=None):
        """
        Constructs the FalconRotaryEmbedding.

        Args:
            self (FalconRotaryEmbedding): The instance of the FalconRotaryEmbedding class.
            x: The input tensor.
            seq_len (int, optional): The length of the sequence. Default is None.

        Returns:
            tuple: A tuple containing two numpy arrays of cosine and sine values.
                The arrays are of the same type as the input 'x'.

        Raises:
            ValueError: If the sequence length exceeds the maximum sequence length cached in the instance.
        """
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].astype(dtype=x.dtype),
            self.sin_cached[:seq_len].astype(dtype=x.dtype),
        )

mindnlp.transformers.models.falcon.modeling_falcon.FalconRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)

Initializes an instance of the FalconRotaryEmbedding class.

PARAMETER DESCRIPTION
self

The instance of the class.

dim

The dimensionality of the embeddings.

TYPE: int

max_position_embeddings

The maximum number of position embeddings. Defaults to 2048.

TYPE: int DEFAULT: 2048

base

The base value used for calculating the inverse frequency. Defaults to 10000.

TYPE: int DEFAULT: 10000

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def __init__(self, dim: int, max_position_embeddings=2048, base=10000):
    """
    Initializes an instance of the FalconRotaryEmbedding class.

    Args:
        self: The instance of the class.
        dim (int): The dimensionality of the embeddings.
        max_position_embeddings (int, optional): The maximum number of position embeddings. Defaults to 2048.
        base (int, optional): The base value used for calculating the inverse frequency. Defaults to 10000.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.dim = dim
    self.base = base
    self.max_position_embeddings = max_position_embeddings
    self.inv_freq = 1.0 / (self.base ** (ops.arange(0, dim, 2).float() / dim))

    # mindspore does not support get_default_dtype()
    self._set_cos_sin_cache(
        seq_len=max_position_embeddings, dtype=self.inv_freq.dtype
    )

mindnlp.transformers.models.falcon.modeling_falcon.FalconRotaryEmbedding.forward(x, seq_len=None)

Constructs the FalconRotaryEmbedding.

PARAMETER DESCRIPTION
self

The instance of the FalconRotaryEmbedding class.

TYPE: FalconRotaryEmbedding

x

The input tensor.

seq_len

The length of the sequence. Default is None.

TYPE: int DEFAULT: None

RETURNS DESCRIPTION
tuple

A tuple containing two numpy arrays of cosine and sine values. The arrays are of the same type as the input 'x'.

RAISES DESCRIPTION
ValueError

If the sequence length exceeds the maximum sequence length cached in the instance.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
def forward(self, x, seq_len=None):
    """
    Constructs the FalconRotaryEmbedding.

    Args:
        self (FalconRotaryEmbedding): The instance of the FalconRotaryEmbedding class.
        x: The input tensor.
        seq_len (int, optional): The length of the sequence. Default is None.

    Returns:
        tuple: A tuple containing two numpy arrays of cosine and sine values.
            The arrays are of the same type as the input 'x'.

    Raises:
        ValueError: If the sequence length exceeds the maximum sequence length cached in the instance.
    """
    # x: [bs, num_attention_heads, seq_len, head_size]
    if seq_len > self.max_seq_len_cached:
        self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype)

    return (
        self.cos_cached[:seq_len].astype(dtype=x.dtype),
        self.sin_cached[:seq_len].astype(dtype=x.dtype),
    )

mindnlp.transformers.models.falcon.modeling_falcon.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)

Applies Rotary Position Embedding to the query and key tensors.

PARAMETER DESCRIPTION
q

The query tensor.

TYPE: `mindspore.Tensor`

k

The key tensor.

TYPE: `mindspore.Tensor`

cos

The cosine part of the rotary embedding.

TYPE: `mindspore.Tensor`

sin

The sine part of the rotary embedding.

TYPE: `mindspore.Tensor`

position_ids

The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.

TYPE: `mindspore.Tensor`

unsqueeze_dim

The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`mindspore.Tensor`): The query tensor.
        k (`mindspore.Tensor`): The key tensor.
        cos (`mindspore.Tensor`): The cosine part of the rotary embedding.
        sin (`mindspore.Tensor`): The sine part of the rotary embedding.
        position_ids (`mindspore.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(mindspore.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

mindnlp.transformers.models.falcon.modeling_falcon.build_alibi_tensor(attention_mask, num_heads, dtype)

Builds the alibi tensor used for attention bias in the Falcon model.

PARAMETER DESCRIPTION
attention_mask

The attention mask tensor.

TYPE: Tensor

num_heads

The number of attention heads.

TYPE: int

dtype

The data type of the tensor.

TYPE: dtype

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The alibi tensor of shape (batch_size * num_heads, 1, seq_length).

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def build_alibi_tensor(
    attention_mask: mindspore.Tensor, num_heads: int, dtype: mindspore.dtype
) -> mindspore.Tensor:
    """
    Builds the alibi tensor used for attention bias in the Falcon model.

    Args:
        attention_mask (mindspore.Tensor): The attention mask tensor.
        num_heads (int): The number of attention heads.
        dtype (mindspore.dtype): The data type of the tensor.

    Returns:
        mindspore.Tensor: The alibi tensor of shape (batch_size * num_heads, 1, seq_length).
    """
    batch_size, seq_length = attention_mask.shape
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    base = mindspore.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=mindspore.float32
    )
    powers = ops.arange(1, 1 + closest_power_of_2, dtype=mindspore.int32)
    slopes = ops.pow(base, powers)

    if closest_power_of_2 != num_heads:
        extra_base = mindspore.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
            dtype=mindspore.float32,
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = ops.arange(
            1, 1 + 2 * num_remaining_heads, 2, dtype=mindspore.int32
        )
        slopes = ops.cat([slopes, ops.pow(extra_base, extra_powers)], axis=0)

    arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :]
    alibi = slopes[..., None].astype(mindspore.float32) * arange_tensor
    return ops.reshape(alibi, (batch_size * num_heads, 1, seq_length)).astype(dtype)

mindnlp.transformers.models.falcon.modeling_falcon.dropout_add(x, residual, prob, training)

Dropout add function

PARAMETER DESCRIPTION
x

input tensor

TYPE: `mindspore.tensor`, *required*

residual

residual tensor

TYPE: `mindspore.tensor`, *required*

prob

dropout probability

TYPE: `float`, *required*

training

training mode

TYPE: `bool`, *required*

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def dropout_add(
    x: mindspore.Tensor, residual: mindspore.Tensor, prob: float, training: bool
) -> mindspore.Tensor:
    """
    Dropout add function

    Args:
        x (`mindspore.tensor`, *required*):
            input tensor
        residual (`mindspore.tensor`, *required*):
            residual tensor
        prob (`float`, *required*):
            dropout probability
        training (`bool`, *required*):
            training mode
    """
    out = ops.dropout(x, p=prob, training=training)
    out = residual + out
    return out

mindnlp.transformers.models.falcon.modeling_falcon.rotate_half(x)

Rotates the input tensor by half along the last dimension.

PARAMETER DESCRIPTION
x

The input tensor.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

The rotated tensor.

Source code in mindnlp/transformers/models/falcon/modeling_falcon.py
61
62
63
64
65
66
67
68
69
70
71
def rotate_half(x):
    """
    Rotates the input tensor by half along the last dimension.

    Args:
        x (Tensor): The input tensor.

    Returns:
        Tensor: The rotated tensor."""
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return ops.cat((-x2, x1), axis=-1)

mindnlp.transformers.models.falcon.configuration_falcon

Falcon configuration

mindnlp.transformers.models.falcon.configuration_falcon.FalconConfig

Bases: PretrainedConfig

Falcon config

Source code in mindnlp/transformers/models/falcon/configuration_falcon.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
class FalconConfig(PretrainedConfig):
    r"""
    Falcon config
    """
    model_type = "falcon"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=65024,
        hidden_size=4544,
        num_hidden_layers=32,
        num_attention_heads=71,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        use_cache=True,
        hidden_dropout=0.0,
        attention_dropout=0.0,
        num_kv_heads=None,
        alibi=False,
        new_decoder_architecture=False,
        multi_query=True,
        parallel_attn=True,
        bias=False,
        max_position_embeddings=2048,
        rope_theta=10000.0,
        rope_scaling=None,
        bos_token_id=11,
        eos_token_id=11,
        **kwargs,
    ):
        """
        Initializes an instance of the FalconConfig class.

        Args:
            self: The instance of the FalconConfig class.
            vocab_size (int, optional): The size of the vocabulary. Default is 65024.
            hidden_size (int, optional): The size of the hidden layer. Default is 4544.
            num_hidden_layers (int, optional): The number of hidden layers. Default is 32.
            num_attention_heads (int, optional): The number of attention heads. Default is 71.
            layer_norm_epsilon (float, optional): The epsilon value for layer normalization. Default is 1e-05.
            initializer_range (float, optional): The range of the initializer. Default is 0.02.
            use_cache (bool, optional): Whether to use cache. Default is True.
            hidden_dropout (float, optional): The dropout rate for the hidden layer. Default is 0.0.
            attention_dropout (float, optional): The dropout rate for attention. Default is 0.0.
            num_kv_heads (int, optional): The number of attention heads for key-value pairs. Default is the same as num_attention_heads.
            alibi (bool, optional): Whether to enable alibi. Default is False.
            new_decoder_architecture (bool, optional): Whether to use the new decoder architecture. Default is False.
            multi_query (bool, optional): Whether to enable multi-query. Default is True.
            parallel_attn (bool, optional): Whether to enable parallel attention. Default is True.
            bias (bool, optional): Whether to enable bias. Default is False.
            max_position_embeddings (int, optional): The maximum position embeddings. Default is 2048.
            rope_theta (float, optional): The theta value for rope. Default is 10000.0.
            rope_scaling (None or float, optional): The scaling value for rope. Default is None.
            bos_token_id (int, optional): The ID of the beginning of sentence token. Default is 11.
            eos_token_id (int, optional): The ID of the end of sentence token. Default is 11.

        Returns:
            None

        Raises:
            None
        """
        self.vocab_size = vocab_size
        # Backward compatibility with n_embed kwarg
        n_embed = kwargs.pop("n_embed", None)
        self.hidden_size = hidden_size if n_embed is None else n_embed
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.use_cache = use_cache
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.num_kv_heads = (
            num_attention_heads if num_kv_heads is None else num_kv_heads
        )
        self.alibi = alibi
        self.new_decoder_architecture = new_decoder_architecture
        self.multi_query = multi_query  # Ignored when new_decoder_architecture is True
        self.parallel_attn = parallel_attn
        self.bias = bias
        self.max_position_embeddings = max_position_embeddings
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()

        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

    @property
    def head_dim(self):
        """
        Gets the dimension of each attention head.

        Returns:
            int: The dimension of each attention head."""
        return self.hidden_size // self.num_attention_heads

    @property
    def rotary(self):
        """
        Checks if the rotary property is enabled.

        Returns:
            bool: True if the rotary property is enabled, False otherwise."""
        return not self.alibi

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if self.rotary:
            raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if (
            rope_scaling_factor is None
            or not isinstance(rope_scaling_factor, float)
            or rope_scaling_factor <= 1.0
        ):
            raise ValueError(
                f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
            )

mindnlp.transformers.models.falcon.configuration_falcon.FalconConfig.head_dim property

Gets the dimension of each attention head.

RETURNS DESCRIPTION
int

The dimension of each attention head.

mindnlp.transformers.models.falcon.configuration_falcon.FalconConfig.rotary property

Checks if the rotary property is enabled.

RETURNS DESCRIPTION
bool

True if the rotary property is enabled, False otherwise.

mindnlp.transformers.models.falcon.configuration_falcon.FalconConfig.__init__(vocab_size=65024, hidden_size=4544, num_hidden_layers=32, num_attention_heads=71, layer_norm_epsilon=1e-05, initializer_range=0.02, use_cache=True, hidden_dropout=0.0, attention_dropout=0.0, num_kv_heads=None, alibi=False, new_decoder_architecture=False, multi_query=True, parallel_attn=True, bias=False, max_position_embeddings=2048, rope_theta=10000.0, rope_scaling=None, bos_token_id=11, eos_token_id=11, **kwargs)

Initializes an instance of the FalconConfig class.

PARAMETER DESCRIPTION
self

The instance of the FalconConfig class.

vocab_size

The size of the vocabulary. Default is 65024.

TYPE: int DEFAULT: 65024

hidden_size

The size of the hidden layer. Default is 4544.

TYPE: int DEFAULT: 4544

num_hidden_layers

The number of hidden layers. Default is 32.

TYPE: int DEFAULT: 32

num_attention_heads

The number of attention heads. Default is 71.

TYPE: int DEFAULT: 71

layer_norm_epsilon

The epsilon value for layer normalization. Default is 1e-05.

TYPE: float DEFAULT: 1e-05

initializer_range

The range of the initializer. Default is 0.02.

TYPE: float DEFAULT: 0.02

use_cache

Whether to use cache. Default is True.

TYPE: bool DEFAULT: True

hidden_dropout

The dropout rate for the hidden layer. Default is 0.0.

TYPE: float DEFAULT: 0.0

attention_dropout

The dropout rate for attention. Default is 0.0.

TYPE: float DEFAULT: 0.0

num_kv_heads

The number of attention heads for key-value pairs. Default is the same as num_attention_heads.

TYPE: int DEFAULT: None

alibi

Whether to enable alibi. Default is False.

TYPE: bool DEFAULT: False

new_decoder_architecture

Whether to use the new decoder architecture. Default is False.

TYPE: bool DEFAULT: False

multi_query

Whether to enable multi-query. Default is True.

TYPE: bool DEFAULT: True

parallel_attn

Whether to enable parallel attention. Default is True.

TYPE: bool DEFAULT: True

bias

Whether to enable bias. Default is False.

TYPE: bool DEFAULT: False

max_position_embeddings

The maximum position embeddings. Default is 2048.

TYPE: int DEFAULT: 2048

rope_theta

The theta value for rope. Default is 10000.0.

TYPE: float DEFAULT: 10000.0

rope_scaling

The scaling value for rope. Default is None.

TYPE: None or float DEFAULT: None

bos_token_id

The ID of the beginning of sentence token. Default is 11.

TYPE: int DEFAULT: 11

eos_token_id

The ID of the end of sentence token. Default is 11.

TYPE: int DEFAULT: 11

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/falcon/configuration_falcon.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def __init__(
    self,
    vocab_size=65024,
    hidden_size=4544,
    num_hidden_layers=32,
    num_attention_heads=71,
    layer_norm_epsilon=1e-5,
    initializer_range=0.02,
    use_cache=True,
    hidden_dropout=0.0,
    attention_dropout=0.0,
    num_kv_heads=None,
    alibi=False,
    new_decoder_architecture=False,
    multi_query=True,
    parallel_attn=True,
    bias=False,
    max_position_embeddings=2048,
    rope_theta=10000.0,
    rope_scaling=None,
    bos_token_id=11,
    eos_token_id=11,
    **kwargs,
):
    """
    Initializes an instance of the FalconConfig class.

    Args:
        self: The instance of the FalconConfig class.
        vocab_size (int, optional): The size of the vocabulary. Default is 65024.
        hidden_size (int, optional): The size of the hidden layer. Default is 4544.
        num_hidden_layers (int, optional): The number of hidden layers. Default is 32.
        num_attention_heads (int, optional): The number of attention heads. Default is 71.
        layer_norm_epsilon (float, optional): The epsilon value for layer normalization. Default is 1e-05.
        initializer_range (float, optional): The range of the initializer. Default is 0.02.
        use_cache (bool, optional): Whether to use cache. Default is True.
        hidden_dropout (float, optional): The dropout rate for the hidden layer. Default is 0.0.
        attention_dropout (float, optional): The dropout rate for attention. Default is 0.0.
        num_kv_heads (int, optional): The number of attention heads for key-value pairs. Default is the same as num_attention_heads.
        alibi (bool, optional): Whether to enable alibi. Default is False.
        new_decoder_architecture (bool, optional): Whether to use the new decoder architecture. Default is False.
        multi_query (bool, optional): Whether to enable multi-query. Default is True.
        parallel_attn (bool, optional): Whether to enable parallel attention. Default is True.
        bias (bool, optional): Whether to enable bias. Default is False.
        max_position_embeddings (int, optional): The maximum position embeddings. Default is 2048.
        rope_theta (float, optional): The theta value for rope. Default is 10000.0.
        rope_scaling (None or float, optional): The scaling value for rope. Default is None.
        bos_token_id (int, optional): The ID of the beginning of sentence token. Default is 11.
        eos_token_id (int, optional): The ID of the end of sentence token. Default is 11.

    Returns:
        None

    Raises:
        None
    """
    self.vocab_size = vocab_size
    # Backward compatibility with n_embed kwarg
    n_embed = kwargs.pop("n_embed", None)
    self.hidden_size = hidden_size if n_embed is None else n_embed
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.layer_norm_epsilon = layer_norm_epsilon
    self.initializer_range = initializer_range
    self.use_cache = use_cache
    self.hidden_dropout = hidden_dropout
    self.attention_dropout = attention_dropout

    self.bos_token_id = bos_token_id
    self.eos_token_id = eos_token_id
    self.num_kv_heads = (
        num_attention_heads if num_kv_heads is None else num_kv_heads
    )
    self.alibi = alibi
    self.new_decoder_architecture = new_decoder_architecture
    self.multi_query = multi_query  # Ignored when new_decoder_architecture is True
    self.parallel_attn = parallel_attn
    self.bias = bias
    self.max_position_embeddings = max_position_embeddings
    self.rope_theta = rope_theta
    self.rope_scaling = rope_scaling
    self._rope_scaling_validation()

    super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)