funnel
mindnlp.transformers.models.funnel.configuration_funnel
¶
Funnel Transformer model configuration
mindnlp.transformers.models.funnel.configuration_funnel.FunnelConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [FunnelModel
] or a [TFBertModel
]. It is used to
instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
Transformer funnel-transformer/small architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
by the
TYPE:
|
block_sizes |
The sizes of the blocks used in the model.
TYPE:
|
block_repeats |
If passed along, each layer of each block is repeated the number of times indicated.
TYPE:
|
num_decoder_layers |
The number of layers in the decoder (when not using the base model).
TYPE:
|
d_model |
Dimensionality of the model's hidden states.
TYPE:
|
n_head |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
d_head |
Dimensionality of the model's heads.
TYPE:
|
d_inner |
Inner dimension in the feed-forward blocks.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the encoder and pooler. If string,
TYPE:
|
hidden_dropout |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
attention_dropout |
The dropout probability for the attention probabilities.
TYPE:
|
activation_dropout |
The dropout probability used between the two layers of the feed-forward blocks.
TYPE:
|
initializer_range |
The upper bound of the uniform initializer for initializing all weight matrices in attention layers.
TYPE:
|
initializer_std |
The standard deviation of the normal initializer for initializing the embedding matrix and the weight of linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for linear layers.
TYPE:
|
layer_norm_eps |
The epsilon used by the layer normalization layers.
TYPE:
|
pooling_type |
Possible values are
TYPE:
|
attention_type |
Possible values are
TYPE:
|
separate_cls |
Whether or not to separate the cls token when applying pooling.
TYPE:
|
truncate_seq |
When using
TYPE:
|
pool_q_only |
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
TYPE:
|
Source code in mindnlp/transformers/models/funnel/configuration_funnel.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
mindnlp.transformers.models.funnel.modeling_funnel
¶
PyTorch Funnel Transformer model.
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure
¶
Bases: Module
Contains helpers for FunnelRelMultiheadAttention
.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.get_position_embeds(seq_len, dtype)
¶
Create and cache inputs related to relative position encoding. Those are very different depending on whether we are using the factorized or the relative shift attention:
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, final formula.
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final formula.
Paper link: https://arxiv.org/abs/2006.03236
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.init_attention_inputs(inputs_embeds, attention_mask=None, token_type_ids=None)
¶
Returns the attention inputs associated to the inputs of the model.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.pool_tensor(tensor, mode='mean', stride=2)
¶
Apply 1D pooling to a tensor of size [B x T (x H)].
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.post_attention_pooling(attention_inputs)
¶
Pool the proper parts of attention_inputs
after the attention layer.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
331 332 333 334 335 336 337 338 339 340 341 342 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.pre_attention_pooling(output, attention_inputs)
¶
Pool output
and the proper parts of attention_inputs
before the attention layer.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.relative_pos(pos, stride, pooled_pos=None, shift=1)
¶
Build the relative positional vector between pos
and pooled_pos
.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.stride_pool(tensor, axis)
¶
Perform pooling by stride slicing the tensor along the given axis.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.stride_pool_pos(pos_id, block_index)
¶
Pool pos_id
while keeping the cls token separate (if config.separate_cls=True
).
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelAttentionStructure.token_type_ids_to_mat(token_type_ids)
¶
Convert token_type_ids
to token_type_mat
.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
118 119 120 121 122 123 124 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelDiscriminatorPredictions
¶
Bases: Module
Prediction module for the discriminator, made up of two dense layers.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForMaskedLM
¶
Bases: FunnelPreTrainedModel
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForMultipleChoice
¶
Bases: FunnelPreTrainedModel
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForMultipleChoice.forward(input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForPreTraining
¶
Bases: FunnelPreTrainedModel
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForPreTraining.forward(input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, FunnelForPreTrainingOutput]
|
|
Example
>>> from transformers import AutoTokenizer, FunnelForPreTraining
>>> import torch
...
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")
...
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> logits = model(**inputs).logits
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForQuestionAnswering
¶
Bases: FunnelPreTrainedModel
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForSequenceClassification
¶
Bases: FunnelPreTrainedModel
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForTokenClassification
¶
Bases: FunnelPreTrainedModel
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the token classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelRelMultiheadAttention
¶
Bases: Module
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelRelMultiheadAttention.relative_positional_attention(position_embeds, q_head, context_len, cls_mask=None)
¶
Relative attention score for the positional encodings
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
|
mindnlp.transformers.models.funnel.modeling_funnel.FunnelRelMultiheadAttention.relative_token_type_attention(token_type_mat, q_head, cls_mask=None)
¶
Relative attention score for the token_type_ids
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
|
mindnlp.transformers.models.funnel.modeling_funnel.upsample(x, stride, target_len, separate_cls=True, truncate_seq=False)
¶
Upsample tensor x
to match target_len
by repeating the tokens stride
time on the sequence length dimension.
Source code in mindnlp/transformers/models/funnel/modeling_funnel.py
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
|
mindnlp.transformers.models.funnel.tokenization_funnel
¶
Tokenization class for Funnel Transformer.
mindnlp.transformers.models.funnel.tokenization_funnel.BasicTokenizer
¶
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
PARAMETER | DESCRIPTION |
---|---|
do_lower_case |
Whether or not to lowercase the input when tokenizing.
TYPE:
|
never_split |
Collection of tokens which will never be split during tokenization. Only has an effect when
TYPE:
|
tokenize_chinese_chars |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).
TYPE:
|
strip_accents |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for
TYPE:
|
do_split_on_punc |
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions.
TYPE:
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.BasicTokenizer.tokenize(text, never_split=None)
¶
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.FunnelTokenizer
¶
Bases: PreTrainedTokenizer
Construct a Funnel Transformer tokenizer. Based on WordPiece.
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
File containing the vocabulary.
TYPE:
|
do_lower_case |
Whether or not to lowercase the input when tokenizing.
TYPE:
|
do_basic_tokenize |
Whether or not to do basic tokenization before WordPiece.
TYPE:
|
never_split |
Collection of tokens which will never be split during tokenization. Only has an effect when
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
bos_token |
The beginning of sentence token.
TYPE:
|
eos_token |
The end of sentence token.
TYPE:
|
tokenize_chinese_chars |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).
TYPE:
|
strip_accents |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for
TYPE:
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.FunnelTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
- single sequence:
[CLS] X [SEP]
- pair of sequences:
[CLS] A [SEP] B [SEP]
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.FunnelTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
237 238 239 240 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.FunnelTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format:
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.FunnelTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.WordpieceTokenizer
¶
Runs WordPiece tokenization.
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.WordpieceTokenizer.tokenize(text)
¶
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary.
For example, input = "unaffable"
wil return as output ["un", "##aff", "##able"]
.
PARAMETER | DESCRIPTION |
---|---|
text |
A single token or whitespace separated tokens. This should have already been passed through BasicTokenizer.
|
RETURNS | DESCRIPTION |
---|---|
A list of wordpiece tokens. |
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.load_vocab(vocab_file)
¶
Loads a vocabulary file into a dictionary.
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
74 75 76 77 78 79 80 81 82 |
|
mindnlp.transformers.models.funnel.tokenization_funnel.whitespace_tokenize(text)
¶
Runs basic whitespace cleaning and splitting on a piece of text.
Source code in mindnlp/transformers/models/funnel/tokenization_funnel.py
86 87 88 89 90 91 92 |
|
mindnlp.transformers.models.funnel.tokenization_funnel_fast
¶
Tokenization class for Funnel Transformer.
mindnlp.transformers.models.funnel.tokenization_funnel_fast.FunnelTokenizerFast
¶
Bases: PreTrainedTokenizerFast
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's tokenizers library). Based on WordPiece.
This tokenizer inherits from [PreTrainedTokenizerFast
] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
File containing the vocabulary.
TYPE:
|
do_lower_case |
Whether or not to lowercase the input when tokenizing.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
clean_text |
Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one.
TYPE:
|
tokenize_chinese_chars |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).
TYPE:
|
bos_token |
The beginning of sentence token.
TYPE:
|
eos_token |
The end of sentence token.
TYPE:
|
strip_accents |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for
TYPE:
|
wordpieces_prefix |
The prefix for subwords.
TYPE:
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel_fast.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
mindnlp.transformers.models.funnel.tokenization_funnel_fast.FunnelTokenizerFast.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Funnel sequence has the following format:
- single sequence:
[CLS] X [SEP]
- pair of sequences:
[CLS] A [SEP] B [SEP]
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel_fast.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|
mindnlp.transformers.models.funnel.tokenization_funnel_fast.FunnelTokenizerFast.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format:
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/funnel/tokenization_funnel_fast.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|