gemma
mindnlp.transformers.models.gemma.configuration_gemma
¶
Gemma model configuration
mindnlp.transformers.models.gemma.configuration_gemma.GemmaConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [GemmaModel
]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. google/gemma-7b
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
head_dim |
The attention head dimension.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
rms_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
pad_token_id |
Padding token id.
TYPE:
|
eos_token_id |
End of stream token id.
TYPE:
|
bos_token_id |
Beginning of stream token id.
TYPE:
|
tie_word_embeddings |
Whether to tie weight embeddings
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
attention_bias |
Whether to use a bias in the query, key, value and output projection layers during self-attention.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
Example
>>> from transformers import GemmaModel, GemmaConfig
...
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
...
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/gemma/configuration_gemma.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
mindnlp.transformers.models.gemma.configuration_gemma.GemmaConfig.__init__(vocab_size=256000, hidden_size=3072, intermediate_size=24576, num_hidden_layers=28, num_attention_heads=16, num_key_value_heads=16, head_dim=256, hidden_act='gelu', max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, **kwargs)
¶
Initializes a new instance of GemmaConfig.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
vocab_size |
The size of the vocabulary. Defaults to 256000.
TYPE:
|
hidden_size |
The size of the hidden layers. Defaults to 3072.
TYPE:
|
intermediate_size |
The size of the intermediate layers. Defaults to 24576.
TYPE:
|
num_hidden_layers |
The number of hidden layers. Defaults to 28.
TYPE:
|
num_attention_heads |
The number of attention heads. Defaults to 16.
TYPE:
|
num_key_value_heads |
The number of key-value attention heads. Defaults to 16.
TYPE:
|
head_dim |
The dimension of the attention heads. Defaults to 256.
TYPE:
|
hidden_act |
The activation function for the hidden layers. Defaults to 'gelu'.
TYPE:
|
max_position_embeddings |
The maximum position embeddings. Defaults to 8192.
TYPE:
|
initializer_range |
The range for weight initialization. Defaults to 0.02.
TYPE:
|
rms_norm_eps |
The epsilon value for RMS normalization. Defaults to 1e-06.
TYPE:
|
use_cache |
Whether to use caching. Defaults to True.
TYPE:
|
pad_token_id |
The ID for padding token. Defaults to 0.
TYPE:
|
eos_token_id |
The ID for end-of-sequence token. Defaults to 1.
TYPE:
|
bos_token_id |
The ID for beginning-of-sequence token. Defaults to 2.
TYPE:
|
tie_word_embeddings |
Whether to tie word embeddings. Defaults to True.
TYPE:
|
rope_theta |
The theta value for ROPE. Defaults to 10000.0.
TYPE:
|
attention_bias |
Whether to use attention bias. Defaults to False.
TYPE:
|
attention_dropout |
The dropout rate for attention. Defaults to 0.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If any of the input parameters is invalid. |
Source code in mindnlp/transformers/models/gemma/configuration_gemma.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
mindnlp.transformers.models.gemma.modeling_gemma
¶
MindSpore Gemma model.
mindnlp.transformers.models.gemma.modeling_gemma.GemmaAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaAttention.__init__(config, layer_idx=None)
¶
Initializes a new instance of the GemmaAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
The configuration object for the attention layer.
TYPE:
|
layer_idx |
The index of the layer. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the |
Note
- If
layer_idx
is not provided, a warning message will be logged to indicate potential errors during the forward call if caching is used. - The GemmaAttention class performs attention calculations in the transformer model. It takes in a configuration object and initializes various attributes based on the provided configuration.
- The attention_dropout attribute determines the dropout rate for attention weights.
- The hidden_size attribute specifies the dimensionality of the hidden state.
- The num_heads attribute specifies the number of attention heads.
- The head_dim attribute specifies the dimensionality of each attention head.
- The num_key_value_heads attribute specifies the number of key-value attention heads.
- The num_key_value_groups attribute specifies the number of groups for key-value attention heads.
- The max_position_embeddings attribute specifies the maximum number of position embeddings.
- The rope_theta attribute specifies the base value for the rotary position encoding.
- The is_causal attribute is set to True to indicate causal attention.
- The q_proj attribute is a linear projection layer for the query values.
- The k_proj attribute is a linear projection layer for the key values.
- The v_proj attribute is a linear projection layer for the value values.
- The o_proj attribute is a linear projection layer for the output values.
- The rotary_emb attribute is a GemmaRotaryEmbedding object for rotary position encoding.
- If the hidden_size is not divisible by num_heads, a ValueError will be raised.
Example
>>> config = GemmaConfig(hidden_size=768, num_attention_heads=12)
>>> attention = GemmaAttention(config)
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cache_position=None, **kwargs)
¶
This method forwards attention output using the given hidden states and optional attention mask, position ids, past key value, and other parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
hidden_states |
The input hidden states of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
An optional attention mask of shape (batch_size, sequence_length, sequence_length) to mask the attention scores. Default is None.
TYPE:
|
position_ids |
An optional tensor of shape (batch_size, sequence_length) containing the position indices of the input tokens.
TYPE:
|
past_key_value |
An optional cache of previous key and value states. Default is None.
TYPE:
|
output_attentions |
A flag indicating whether to output the attention weights. Default is False.
TYPE:
|
use_cache |
A flag indicating whether to use cache for previous key and value states. Default is False.
TYPE:
|
cache_position |
An optional cache position tensor. Default is None.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size), optional attention weights tensor, and optional tuple of key and value cache states. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaDecoderLayer
¶
Bases: Module
The GemmaDecoderLayer class represents a single layer of the Gemma decoder. It inherits from the nn.Module class and provides methods for forwarding the decoder layer.
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden states in the layer.
TYPE:
|
self_attn |
The attention mechanism used in the layer.
TYPE:
|
mlp |
The multi-layer perceptron used in the layer.
TYPE:
|
input_layernorm |
The layer normalization applied to the input.
TYPE:
|
post_attention_layernorm |
The layer normalization applied after the attention mechanism.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Constructs the decoder layer using the given input and optional arguments. Returns the resulting hidden states and optionally the attention weights and present key value. |
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
Input to the layer of shape (batch, seq_len, embed_dim).
TYPE:
|
attention_mask |
Attention mask of size (batch_size, sequence_length) if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length) if default attention is used.
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers.
TYPE:
|
use_cache |
If set to True, past key value states are returned and can be used to speed up decoding.
TYPE:
|
past_key_value |
Cached past key and value projection states.
TYPE:
|
cache_position |
Position of the cache.
TYPE:
|
**kwargs |
Additional keyword arguments.
|
RAISES | DESCRIPTION |
---|---|
DeprecationWarning
|
If 'padding_mask' is passed, a warning is issued indicating that it is deprecated and will be removed in a future version. |
RETURNS | DESCRIPTION |
---|---|
Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]]]: The resulting hidden states and optionally the attention weights and present key value. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaDecoderLayer.__init__(config, layer_idx)
¶
Initializes a new instance of the GemmaDecoderLayer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
The configuration object containing various settings.
TYPE:
|
layer_idx |
The index of the decoder layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cache_position=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM
¶
Bases: GemmaPreTrainedModel
This class represents a model for Causal Language Modeling using the Gemma architecture. It provides methods for setting and getting input and output embeddings, setting the decoder, and generating text based on input sequences. The class also includes methods for preparing inputs for text generation and reordering past key values.
The class inherits from GemmaPreTrainedModel and includes the following methods:
- init: Initializes the model with the given configuration.
- get_input_embeddings): Returns the input embeddings.
- set_input_embeddings: Sets the input embeddings to the given value.
- get_output_embeddings: Returns the output embeddings.
- set_output_embeddings: Sets the output embeddings to the new embeddings.
- set_decoder: Sets the decoder model.
- get_decoder: Returns the decoder model.
- forward: Constructs the model for text generation.
- prepare_inputs_for_generation: Prepares inputs for text generation.
- _reorder_cache(past_key_values, beam_idx): Reorders the cache based on the beam index.
Example
>>> from transformers import AutoTokenizer, GemmaForCausalLM
...
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
...
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
>>> "What is your favorite condiment?"
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.__init__(config)
¶
Initializes an instance of the GemmaForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
An instance of the configuration class that holds the model configuration settings.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast] |
Example
>>> from transformers import AutoTokenizer, GemmaForCausalLM
...
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
...
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.get_decoder()
¶
Returns the decoder model used for causal language modeling in the GemmaForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
The decoder model: which is an instance of the model used for causal language modeling. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.get_input_embeddings()
¶
Retrieves the input embeddings from the GemmaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.get_output_embeddings()
¶
Method to retrieve the output embeddings from a GemmaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of GemmaForCausalLM class. Represents the model object for which the output embeddings are to be retrieved.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns None as it directly provides access to the 'lm_head' attribute containing the output embeddings. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepare inputs for generation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaForCausalLM class.
TYPE:
|
input_ids |
The input tensor containing token indices for the input sequence.
TYPE:
|
past_key_values |
The past key values used in the generation process. If past_key_values is a Cache object, it contains the cached key value states. If past_key_values is a tuple, it represents the cached key value states as a tuple of tensors. If past_key_values is None, no cached key value states are used.
TYPE:
|
attention_mask |
The attention mask tensor used to mask the input sequence. If provided, it should have the same shape as input_ids. If None, no attention mask is applied.
TYPE:
|
inputs_embeds |
The tensor containing the embedded input embeddings. If provided, it should have the same shape as input_ids. If None, input_ids is used for token embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict or None: A dictionary containing the model inputs including input_ids, position_ids, cache_position, past_key_values, use_cache, and attention_mask. Returns None if no inputs are provided. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If input_ids, attention_mask, or inputs_embeds have invalid types. |
ValueError
|
If input_ids and attention_mask have incompatible shapes. |
ValueError
|
If cache_position is not None and is not a valid cache position tensor. |
ValueError
|
If past_key_values is not of type Cache or tuple. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.set_decoder(decoder)
¶
Sets the decoder for the GemmaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaForCausalLM class.
TYPE:
|
decoder |
The decoder object to be set for the model. It should be compatible with the GemmaForCausalLM model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.set_input_embeddings(value)
¶
Set the input embeddings for the GemmaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaForCausalLM class.
TYPE:
|
value |
The input embeddings to be set for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Description
This method sets the input embeddings for the GemmaForCausalLM model. The input embeddings are used to map
input tokens to their corresponding embedding vectors. The value
parameter should be an object containing
the desired input embeddings. The input embeddings are assigned to the embed_tokens
attribute of the model.
Example
>>> model = GemmaForCausalLM()
>>> embeddings = Embeddings()
>>> model.set_input_embeddings(embeddings)
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the GemmaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The GemmaForCausalLM instance.
TYPE:
|
new_embeddings |
The new embeddings to be set as the model's output embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForSequenceClassification
¶
Bases: GemmaPreTrainedModel
A Python class that represents a Gemma model for sequence classification tasks. This class inherits from the GemmaPreTrainedModel class.
This class provides methods for initializing the model, getting and setting input embeddings, and forwarding the model for sequence classification. It also includes methods for computing the loss and returning the model outputs.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for the sequence classification task.
TYPE:
|
model |
The underlying Gemma model.
TYPE:
|
score |
The dense layer for computing the logits.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the GemmaForSequenceClassification instance with the given configuration. |
get_input_embeddings |
Returns the input embeddings of the model. |
set_input_embeddings |
Sets the input embeddings of the model. |
forward |
Constructs the model for sequence classification and returns the model outputs. |
Example
>>> # Initialize the GemmaForSequenceClassification instance
>>> model = GemmaForSequenceClassification(config)
...
>>> # Get the input embeddings
>>> embeddings = model.get_input_embeddings()
...
>>> # Set new input embeddings
>>> model.set_input_embeddings(embeddings)
...
>>> # Construct the model for sequence classification
>>> outputs = model.forward(input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)
...
>>> # Get the logits and past key values
>>> logits = outputs.logits
>>> past_key_values = outputs.past_key_values
...
>>> # Compute the loss
>>> loss = outputs.loss
...
>>> # Return the model outputs
>>> return_dict = True
>>> output = model.forward(input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)
Note
This class assumes that the GemmaPreTrainedModel class is already defined and imported.
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForSequenceClassification.__init__(config)
¶
Initializes a new instance of the GemmaForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
A configuration class that contains the necessary parameters for initializing the model. This includes the number of labels for classification.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForSequenceClassification.get_input_embeddings()
¶
This method retrieves the input embeddings from the GemmaForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaForSequenceClassification class.
|
RETURNS | DESCRIPTION |
---|---|
embed_tokens
|
This method returns the input embeddings from the model. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaForSequenceClassification.set_input_embeddings(value)
¶
Sets the input embeddings for the GemmaForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaForSequenceClassification class. |
value |
The input embeddings to be set for the model. This should be an object that represents the embeddings, such as a tensor or a list of tensors.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaMLP
¶
Bases: Module
GemmaMLP is a class representing a multi-layer perceptron (MLP) model for neural network operations. It inherits from nn.Module and implements functionality for forwarding the MLP.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
A configuration object containing parameters for the MLP.
|
hidden_size |
The size of the hidden layers in the MLP.
|
intermediate_size |
The size of the intermediate layers in the MLP.
|
gate_proj |
A dense layer for projecting input to the intermediate size with no bias.
|
up_proj |
A dense layer for projecting input to the intermediate size with no bias.
|
down_proj |
A dense layer for projecting from intermediate size to hidden size with no bias.
|
act_fn |
The activation function to be used in the hidden layers.
|
METHOD | DESCRIPTION |
---|---|
forward |
Constructs the multi-layer perceptron using the given input x by applying the specified operations. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaMLP.__init__(config)
¶
Initializes a GemmaMLP instance with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The GemmaMLP instance to be initialized.
TYPE:
|
config |
An object containing configuration parameters for the GemmaMLP model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If config is not provided or is not of type Config. |
ValueError
|
If hidden_size or intermediate_size are not valid integer values. |
RuntimeError
|
If there is an issue initializing the gate_proj, up_proj, down_proj, or act_fn attributes. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaMLP.forward(x)
¶
Constructs a multi-layer perceptron using the GemmaMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaMLP class.
TYPE:
|
x |
Input tensor or data to be processed by the MLP.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method modifies the internal state of the GemmaMLP instance. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If any of the input parameters are of incorrect types. |
ValueError
|
If there are issues during the execution of the method. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaModel
¶
Bases: GemmaPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [GemmaDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
GemmaConfig
TYPE:
|
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaModel.__init__(config)
¶
Initializes a GemmaModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaModel class.
|
config |
An instance of GemmaConfig containing the configuration parameters for the GemmaModel. This includes information such as the vocabulary size, hidden size, number of hidden layers, pad token id, maximum position embeddings, and RMS normalization epsilon.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method initializes various attributes of the GemmaModel instance, such as padding_idx, vocab_size, embed_tokens, layers, norm, gradient_checkpointing, causal_mask, and invokes the post_init method. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None)
¶
Constructs GemmaModel.
This method forwards the GemmaModel and performs the forward pass of the model. It takes various input parameters and returns the output hidden states, cache values, and attention values.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaModel class.
TYPE:
|
input_ids |
The input tensor containing the tokenized input sequence. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor to avoid attending to padding tokens. Default is None.
TYPE:
|
position_ids |
The position indices tensor to specify the position of each token. Default is None.
TYPE:
|
past_key_values |
The list of tensors containing the cached key-value pairs of the previous attention mechanism. Default is None.
TYPE:
|
inputs_embeds |
The input embedding tensor. Default is None.
TYPE:
|
use_cache |
Whether to use cache mechanism. Default is None.
TYPE:
|
output_attentions |
Whether to output the attention values. Default is None.
TYPE:
|
output_hidden_states |
Whether to output the hidden states. Default is None.
TYPE:
|
return_dict |
Whether to return the output as a dictionary. Default is None.
TYPE:
|
cache_position |
The tensor representing the position of each token in the cache. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: The output of the model. It can be a tuple containing hidden states, cache values, hidden states from all layers, and attention values from all layers; or an instance of BaseModelOutputWithPast containing the last hidden state, cache values, hidden states from all layers, and attention values from all layers. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified or neither of them is specified. |
Warning
|
If use_cache is set to True while using gradient checkpointing, it will be set to False as it is not compatible. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaModel.get_input_embeddings()
¶
Get the input embeddings for the GemmaModel.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaModel.set_input_embeddings(value)
¶
Set the input embeddings for the GemmaModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaModel class.
TYPE:
|
value |
The input embeddings to set for the model. This should be a tensor of shape (vocab_size, embedding_dim).
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaPreTrainedModel
¶
Bases: PreTrainedModel
The GemmaPreTrainedModel
class is a subclass of PreTrainedModel
that represents a pre-trained model for
natural language processing tasks. It provides methods for initializing weights, setting up cache, and
resetting cache.
METHOD | DESCRIPTION |
---|---|
`_init_weights` |
Initializes the weights of the given |
`_setup_cache` |
Sets up the cache for the model using the specified cache class, maximum batch size, and maximum cache length. |
`_reset_cache` |
Resets the cache for the model. |
Example
>>> model = GemmaPreTrainedModel()
>>> model._init_weights(cell)
>>> model._setup_cache(cache_cls, max_batch_size, max_cache_len)
>>> model._reset_cache()
Note
The GemmaPreTrainedModel
class inherits from PreTrainedModel
. Refer to the documentation of PreTrainedModel
for more information.
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaRMSNorm
¶
Bases: Module
This class represents a custom implementation of Root Mean Square Normalization (RMSNorm) called GemmaRMSNorm, which is designed for neural network operations. It inherits from the nn.Module class. The GemmaRMSNorm class initializes with parameters for dimension and epsilon value, and includes methods for calculating the normalized output based on the input data and weight parameters. The _norm method calculates the normalized output based on the input data and epsilon value. The forward method applies the normalization and weight parameters to the input data to generate the final output.
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaRMSNorm.__init__(dim, eps=1e-06)
¶
Initializes a GemmaRMSNorm instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance itself.
|
dim |
The dimension of the GemmaRMSNorm.
TYPE:
|
eps |
The epsilon value for numerical stability. Defaults to 1e-06.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaRMSNorm.forward(x)
¶
Constructs a normalized tensor using the GemmaRMSNorm algorithm.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaRMSNorm class.
TYPE:
|
x |
The input tensor to be normalized. It should have a numeric data type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. The normalized tensor is stored internally within the GemmaRMSNorm instance. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input tensor |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding
¶
Bases: Module
This class represents a GemmaRotaryEmbedding module, which is a custom embedding layer used in neural networks. It inherits from the nn.Module class.
The GemmaRotaryEmbedding module is designed to forward rotary embeddings for input data sequences. It creates embeddings based on the positions in the input sequence, using a sinusoidal function. The embeddings are computed as the cosine and sine of the frequency values derived from the positions.
ATTRIBUTE | DESCRIPTION |
---|---|
dim |
The dimension of the embeddings.
TYPE:
|
max_position_embeddings |
The maximum number of positions in the input sequence. Defaults to 2048.
TYPE:
|
base |
The base value used in the frequency calculation. Defaults to 10000.
TYPE:
|
inv_freq |
An array storing the precomputed inverse frequencies. Defaults to None.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the GemmaRotaryEmbedding module with the given parameters. Args:
|
forward |
Constructs the rotary embeddings based on the input data and position IDs. Args:
Returns:
|
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
Initialize GemmaRotaryEmbedding object with specified parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
Maximum number of positions for the embeddings. Default is 2048.
TYPE:
|
base |
Base value used for calculations. Default is 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
mindnlp.transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding.forward(x, position_ids, seq_len=None)
¶
Constructs GemmaRotaryEmbedding for positional encoding.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaRotaryEmbedding class.
TYPE:
|
x |
The input tensor.
TYPE:
|
position_ids |
The tensor containing positional IDs.
TYPE:
|
seq_len |
The length of the input sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
The concatenated cosine and sine embeddings of the positional encoding. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If self.inv_freq is not initialized. |
TypeError
|
If the input tensors x and position_ids are not of the correct data type. |
IndexError
|
If the dimensions of the input tensors are incompatible for matrix multiplication. |
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
mindnlp.transformers.models.gemma.modeling_gemma.apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
Deprecated and unused.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
mindnlp.transformers.models.gemma.modeling_gemma.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
364 365 366 367 368 369 370 371 372 373 |
|
mindnlp.transformers.models.gemma.modeling_gemma.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/gemma/modeling_gemma.py
260 261 262 263 264 265 |
|
mindnlp.transformers.models.gemma.tokenization_gemma
¶
Tokenization classes for Gemma.
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer
¶
Bases: PreTrainedTokenizer
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is no padding token in the original model.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
Path to the vocabulary file.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
TYPE:
|
eos_token |
The end of sequence token.
TYPE:
|
pad_token |
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation.
TYPE:
|
sp_model_kwargs |
Will be passed to the
TYPE:
|
add_bos_token |
Whether or not to add an
TYPE:
|
add_eos_token |
Whether or not to add an
TYPE:
|
clean_up_tokenization_spaces |
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces.
TYPE:
|
use_default_system_prompt |
Whether or not the default system prompt for Gemma should be used.
TYPE:
|
spaces_between_special_tokens |
Whether or not to add spaces between special tokens.
TYPE:
|
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.vocab_size
property
¶
Returns vocab size
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.__getstate__()
¶
Get the state of the GemmaTokenizer object for serialization.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the GemmaTokenizer class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.__init__(vocab_file, unk_token='<unk>', bos_token='<bos>', eos_token='<eos>', pad_token='<pad>', sp_model_kwargs=None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, use_default_system_prompt=False, spaces_between_special_tokens=False, **kwargs)
¶
This method initializes an instance of GemmaTokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
vocab_file |
The path to the vocabulary file.
TYPE:
|
unk_token |
The unknown token. Default is '
TYPE:
|
bos_token |
The beginning of sequence token. Default is '
TYPE:
|
eos_token |
The end of sequence token. Default is '
TYPE:
|
pad_token |
The padding token. Default is '
TYPE:
|
sp_model_kwargs |
Optional keyword arguments for SentencePiece model configuration. Default is None.
TYPE:
|
add_bos_token |
Whether to add the beginning of sequence token. Default is True.
TYPE:
|
add_eos_token |
Whether to add the end of sequence token. Default is False.
TYPE:
|
clean_up_tokenization_spaces |
Whether to clean up tokenization spaces. Default is False.
TYPE:
|
use_default_system_prompt |
Whether to use the default system prompt. Default is False.
TYPE:
|
spaces_between_special_tokens |
Whether to add spaces between special tokens. Default is False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the provided vocab_file is invalid or does not exist. |
OSError
|
If an I/O or OS error occurs while loading the vocab_file. |
TypeError
|
If the provided sp_model_kwargs is not a dictionary. |
RuntimeError
|
If an error occurs during the initialization process. |
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.__setstate__(d)
¶
This method 'setstate' in the class 'GemmaTokenizer' is used to set the internal state of the tokenizer object based on the provided dictionary 'd'.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaTokenizer class on which this method is called. It represents the tokenizer object itself.
TYPE:
|
d |
A dictionary containing the state information to be set on the tokenizer object. This dictionary should include the necessary information for reforwarding the object's state.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value explicitly. It updates the state of the GemmaTokenizer object in-place. |
RAISES | DESCRIPTION |
---|---|
None
|
However, potential exceptions could be raised during the execution of the code within the method, such as:
|
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
build_inputs_with_special_tokens method in GemmaTokenizer class.
This method takes three parameters:
PARAMETER | DESCRIPTION |
---|---|
self |
GemmaTokenizer object.
|
token_ids_0 |
list of integers. The token IDs for the first sequence.
|
token_ids_1 |
(optional) list of integers. The token IDs for the second sequence.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
list of integers: The concatenated token IDs with special tokens added at the beginning and end of each sequence. |
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
if token_ids_1 is None, only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of ids.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.get_vocab()
¶
Returns vocab as a dict
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
209 210 211 212 213 |
|
mindnlp.transformers.models.gemma.tokenization_gemma.GemmaTokenizer.save_vocabulary(save_directory, filename_prefix=None)
¶
Save the vocabulary and special tokens file to a directory.
PARAMETER | DESCRIPTION |
---|---|
save_directory |
The directory in which to save the vocabulary.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
|
Source code in mindnlp/transformers/models/gemma/tokenization_gemma.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
mindnlp.transformers.models.gemma.tokenization_gemma_fast
¶
Gemma Tokenizer
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast
¶
Bases: PreTrainedTokenizerFast
Construct a Gemma tokenizer fast. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no prefix space. Normalization is applied to replace " "
with "▁"
Example
>>> from transformers import GemmaTokenizerFast
...
>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]
If you want to change the bos_token
or the eos_token
, make sure to specify them when initializing the model, or
call tokenizer.update_post_processor()
to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://hf-mirror.com/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [PreTrainedTokenizerFast
] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
SentencePiece file (generally has a .model extension) that contains the vocabulary necessary to instantiate a tokenizer.
TYPE:
|
tokenizer_file |
tokenizers file (generally has a .json extension) that contains everything needed to load the tokenizer.
TYPE:
|
clean_up_tokenization_spaces |
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
TYPE:
|
eos_token |
The end of sequence token.
TYPE:
|
pad_token |
The padding token
TYPE:
|
add_bos_token |
Whether or not to add an
TYPE:
|
add_eos_token |
Whether or not to add an
TYPE:
|
Source code in mindnlp/transformers/models/gemma/tokenization_gemma_fast.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.add_bos_token
property
writable
¶
This method adds the beginning of sentence (BOS) token to the tokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of GemmaTokenizerFast class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.add_eos_token
property
writable
¶
Adds an end-of-sentence (EOS) token to the GemmaTokenizerFast object.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaTokenizerFast class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method adds an EOS token to the GemmaTokenizerFast object. The EOS token is used to mark the end of a sentence or text sequence. It is commonly used in natural language processing tasks such as language modeling and text generation. By adding an EOS token, the GemmaTokenizerFast object can handle text sequences more effectively, allowing for better analysis and processing.
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.can_save_slow_tokenizer: bool
property
¶
Checks if the slow tokenizer can be saved.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaTokenizerFast class.
|
RETURNS | DESCRIPTION |
---|---|
bool
|
A boolean value indicating whether the slow tokenizer can be saved. Returns True if the vocab_file exists, otherwise False.
TYPE:
|
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.__init__(vocab_file=None, tokenizer_file=None, clean_up_tokenization_spaces=False, unk_token='<unk>', bos_token='<bos>', eos_token='<eos>', pad_token='<pad>', add_bos_token=True, add_eos_token=False, **kwargs)
¶
Initialize GemmaTokenizerFast object.
PARAMETER | DESCRIPTION |
---|---|
self |
The GemmaTokenizerFast object itself.
TYPE:
|
vocab_file |
Path to the vocabulary file. Default is None.
TYPE:
|
tokenizer_file |
Path to the tokenizer file. Default is None.
TYPE:
|
clean_up_tokenization_spaces |
Whether to clean up tokenization spaces. Default is False.
TYPE:
|
unk_token |
Unknown token to be used. Default is '
TYPE:
|
bos_token |
Beginning of sentence token. Default is '
TYPE:
|
eos_token |
End of sentence token. Default is '
TYPE:
|
pad_token |
Padding token. Default is '
TYPE:
|
add_bos_token |
Whether to add the beginning of sentence token. Default is True.
TYPE:
|
add_eos_token |
Whether to add the end of sentence token. Default is False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/gemma/tokenization_gemma_fast.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build inputs with special tokens for the GemmaTokenizerFast.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the GemmaTokenizerFast class.
TYPE:
|
token_ids_0 |
A list of token IDs representing the first sequence.
TYPE:
|
token_ids_1 |
A list of token IDs representing the second sequence. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list
|
A list of token IDs representing the input sequences with added special tokens. |
This method takes two sequences of token IDs and adds special tokens, such as beginning of sequence (bos) and end of sequence (eos) tokens. The special tokens are added based on the configuration of the tokenizer.
The token_ids_0 parameter is a list of token IDs representing the first sequence. This parameter is required.
The token_ids_1 parameter is an optional list of token IDs representing the second sequence. If provided, the method concatenates the first and second sequences with the special tokens in between.
The method returns a list of token IDs representing the input sequences with the special tokens added.
Example
>>> tokenizer = GemmaTokenizerFast()
>>> token_ids_0 = [101, 202, 303]
>>> token_ids_1 = [404, 505]
>>> inputs = tokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1)
>>> print(inputs)
Output:
[101, 202, 303, 102, 404, 505, 102]
Source code in mindnlp/transformers/models/gemma/tokenization_gemma_fast.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.save_vocabulary(save_directory, filename_prefix=None)
¶
Save the vocabulary of the GemmaTokenizerFast instance to the specified directory with an optional filename prefix.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the GemmaTokenizerFast class.
TYPE:
|
save_directory |
The directory path where the vocabulary will be saved.
TYPE:
|
filename_prefix |
An optional prefix to be added to the filename. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
Tuple[str]: A tuple containing the path to the saved vocabulary file. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the fast tokenizer does not have the necessary information to save the vocabulary for a slow tokenizer. |
OSError
|
If the save_directory provided is not a valid directory path. |
IOError
|
If an error occurs during the file copying process. |
Source code in mindnlp/transformers/models/gemma/tokenization_gemma_fast.py
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
mindnlp.transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast.update_post_processor()
¶
Updates the underlying post processor with the current bos_token
and eos_token
.
Source code in mindnlp/transformers/models/gemma/tokenization_gemma_fast.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|