Skip to content

gptj

mindnlp.transformers.models.gptj.configuration_gptj

GPT-J model configuration

mindnlp.transformers.models.gptj.configuration_gptj.GPTJConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [GPTJModel]. It is used to instantiate a GPT-J model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-J EleutherAI/gpt-j-6B architecture. Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
vocab_size

Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [GPTJModel].

TYPE: `int`, *optional*, defaults to 50400 DEFAULT: 50400

n_positions

The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

TYPE: `int`, *optional*, defaults to 2048 DEFAULT: 2048

n_embd

Dimensionality of the embeddings and hidden states.

TYPE: `int`, *optional*, defaults to 4096 DEFAULT: 4096

n_layer

Number of hidden layers in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 28 DEFAULT: 28

n_head

Number of attention heads for each attention layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

rotary_dim

Number of dimensions in the embedding that Rotary Position Embedding is applied to.

TYPE: `int`, *optional*, defaults to 64 DEFAULT: 64

n_inner

Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

TYPE: `int`, *optional*, defaults to None DEFAULT: None

activation_function

Activation function, to be selected in the list ["relu", "silu", "gelu", "tanh", "gelu_new"].

TYPE: `str`, *optional*, defaults to `"gelu_new"` DEFAULT: 'gelu_new'

resid_pdrop

The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.0

embd_pdrop

The dropout ratio for the embeddings.

TYPE: `int`, *optional*, defaults to 0.1 DEFAULT: 0.0

attn_pdrop

The dropout ratio for the attention.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.0

layer_norm_epsilon

The epsilon to use in the layer normalization layers.

TYPE: `float`, *optional*, defaults to 1e-5 DEFAULT: 1e-05

initializer_range

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

use_cache

Whether or not the model should return the last key/values attentions (not used by all models).

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

Example
>>> from transformers import GPTJModel, GPTJConfig
>>>
>>> # Initializing a GPT-J 6B configuration
>>> configuration = GPTJConfig()
>>>
>>> # Initializing a model from the configuration
>>> model = GPTJModel(configuration)
>>>
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/gptj/configuration_gptj.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
class GPTJConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the GPT-J
    [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
    [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
    for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50400):
            Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPTJModel`].
        n_positions (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        rotary_dim (`int`, *optional*, defaults to 64):
            Number of dimensions in the embedding that Rotary Position Embedding is applied to.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:
        ```python
        >>> from transformers import GPTJModel, GPTJConfig
        >>>
        >>> # Initializing a GPT-J 6B configuration
        >>> configuration = GPTJConfig()
        >>>
        >>> # Initializing a model from the configuration
        >>> model = GPTJModel(configuration)
        >>>
        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """

    model_type = "gptj"
    attribute_map = {
        "max_position_embeddings": "n_positions",
        "hidden_size": "n_embd",
        "num_attention_heads": "n_head",
        "num_hidden_layers": "n_layer",
    }

    def __init__(
        self,
        vocab_size=50400,
        n_positions=2048,
        n_embd=4096,
        n_layer=28,
        n_head=16,
        rotary_dim=64,
        n_inner=None,
        activation_function="gelu_new",
        resid_pdrop=0.0,
        embd_pdrop=0.0,
        attn_pdrop=0.0,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        use_cache=True,
        bos_token_id=50256,
        eos_token_id=50256,
        tie_word_embeddings=False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_inner = n_inner
        self.rotary_dim = rotary_dim
        self.activation_function = activation_function
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.use_cache = use_cache

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id

        super().__init__(
            bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
        )

mindnlp.transformers.models.gptj.modeling_gptj

PyTorch GPT-J model.

mindnlp.transformers.models.gptj.modeling_gptj.GPTJAttention

Bases: Module

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
class GPTJAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        max_positions = config.max_position_embeddings
        self.bias = ops.tril(ops.ones((max_positions, max_positions), dtype=mindspore.bool_)).view(
                1, 1, max_positions, max_positions)
        self.masked_bias = mindspore.Tensor(-1e9)

        self.attn_dropout = nn.Dropout(p=config.attn_pdrop)
        self.resid_dropout = nn.Dropout(p=config.resid_pdrop)

        self.is_causal = True

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
                f" `num_attention_heads`: {self.num_attention_heads})."
            )
        self.scale_attn = ops.sqrt(mindspore.Tensor(self.head_dim, dtype=mindspore.float32))

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.rotary_dim = config.rotary_dim
        pos_embd_dim = self.rotary_dim or self.embed_dim
        self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)

    def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
        """
        Splits hidden dim into attn_head_size and num_attention_heads
        """
        new_shape = tensor.shape[:-1] + (num_attention_heads, attn_head_size)
        tensor = tensor.view(new_shape)
        if rotary:
            return tensor
        if len(tensor.shape) == 5:
            return tensor.permute(0, 1, 3, 2, 4)  # (batch, blocks, head, block_length, head_features)
        elif len(tensor.shape) == 4:
            return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")

    def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
        """
        if len(tensor.shape) == 5:
            tensor = tensor.permute(0, 1, 3, 2, 4)
        elif len(tensor.shape) == 4:
            tensor = tensor.permute(0, 2, 1, 3)
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
        new_shape = tensor.shape[:-2] + (num_attention_heads * attn_head_size,)
        return tensor.view(new_shape)

    def _attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
        head_mask=None,
    ):
        # compute causal mask from causal mask buffer
        query_length, key_length = query.shape[-2], key.shape[-2]
        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]

        # Keep the attention weights computation in fp32 to avoid overflow issues
        query = query.to(mindspore.float32)
        key = key.to(mindspore.float32)

        attn_weights = ops.matmul(query, key.swapaxes(-1, -2))

        mask_value = Tensor(np.finfo(mindspore.dtype_to_nptype(attn_weights.dtype)).min)
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = mindspore.Tensor(mask_value, dtype=attn_weights.dtype)
        attn_weights = ops.where(causal_mask, attn_weights, mask_value)

        attn_weights = attn_weights / self.scale_attn

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = ops.softmax(attn_weights, axis=-1)
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = ops.matmul(attn_weights, value)

        return attn_output, attn_weights

    def _get_embed_positions(self, position_ids):
        embed_positions = self.embed_positions
        return embed_positions.repeat(position_ids.shape[0], 1, 1)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        layer_past: Optional[Tuple[mindspore.Tensor]] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[mindspore.Tensor, Tuple[mindspore.Tensor]],
        Optional[Tuple[mindspore.Tensor, Tuple[mindspore.Tensor], Tuple[mindspore.Tensor, ...]]],
    ]:
        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
        value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)

        # if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
        #     # The logic to conditionally copy to GPU could not be traced, so we do this
        #     # every time in the torch.fx case
        #     embed_positions = get_embed_positions(self.embed_positions, position_ids)
        # else:
        embed_positions = self._get_embed_positions(position_ids)

        repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
        # sincos = ops.gather(embed_positions, repeated_position_ids, axis=1)
        sincos = ops.gather_elements(embed_positions, 1, repeated_position_ids)

        sin, cos = ops.split(sincos, sincos.shape[-1] // 2, axis=-1)

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

            k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
            q_rot = apply_rotary_pos_emb(q_rot, sin, cos)

            key = ops.cat([k_rot, k_pass], axis=-1)
            query = ops.cat([q_rot, q_pass], axis=-1)
        else:
            key = apply_rotary_pos_emb(key, sin, cos)
            query = apply_rotary_pos_emb(query, sin, cos)

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        if layer_past is not None:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = ops.cat((past_key, key), axis=-2)
            value = ops.cat((past_value, value), axis=-2)

        if use_cache is True:
            # Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
            # Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
            present = (key.to(hidden_states.dtype), value)
        else:
            present = None

        # compute self-attention: V x Softmax(QK^T)
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)

mindnlp.transformers.models.gptj.modeling_gptj.GPTJForCausalLM

Bases: GPTJPreTrainedModel

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
class GPTJForCausalLM(GPTJPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTJModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        self.model_parallel = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # Omit tokens covered by past_key_values
        if past_key_values:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -input_ids.shape[1] :]

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            # position_ids.masked_fill_(attention_mask == 0, 1)
            position_ids=ops.where(attention_mask == 0, 1, position_ids)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
            }
        )

        return model_inputs

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
                `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
                are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]


        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(mindspore.float32)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :]
            shift_labels = labels[..., 1:]
            # Flatten the tokens
            loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1))

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[mindspore.Tensor]], beam_idx: mindspore.Tensor
    ) -> Tuple[Tuple[mindspore.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
            for layer_past in past_key_values
        )

mindnlp.transformers.models.gptj.modeling_gptj.GPTJForCausalLM.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    transformer_outputs = self.transformer(
        input_ids,
        past_key_values=past_key_values,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = transformer_outputs[0]


    # make sure sampling in fp16 works correctly and
    # compute loss in fp32 to match with mesh-tf version
    # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
    lm_logits = self.lm_head(hidden_states).to(mindspore.float32)

    loss = None
    if labels is not None:
        # move labels to correct device to enable model parallelism
        # Shift so that tokens < n predict n
        shift_logits = lm_logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        # Flatten the tokens
        loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1))

        loss = loss.to(hidden_states.dtype)

    if not return_dict:
        output = (lm_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return CausalLMOutputWithPast(
        loss=loss,
        logits=lm_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

mindnlp.transformers.models.gptj.modeling_gptj.GPTJForQuestionAnswering

Bases: GPTJPreTrainedModel

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Model parallel
        self.model_parallel = False

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        Args:
            start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the start of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
            end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the end of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.gptj.modeling_gptj.GPTJForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
start_positions

Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

end_positions

Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
    r"""
    Args:
        start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.transformer(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + outputs[2:]
        return ((total_loss,) + output) if total_loss is not None else output

    return QuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.gptj.modeling_gptj.GPTJForSequenceClassification

Bases: GPTJPreTrainedModel

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
class GPTJForSequenceClassification(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
        self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)

        # Model parallel
        self.model_parallel = False

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = ops.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
                )

        pooled_logits = logits[ops.arange(batch_size), sequence_lengths]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

mindnlp.transformers.models.gptj.modeling_gptj.GPTJForSequenceClassification.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    transformer_outputs = self.transformer(
        input_ids,
        past_key_values=past_key_values,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = transformer_outputs[0]
    logits = self.score(hidden_states)

    if input_ids is not None:
        batch_size = input_ids.shape[0]
    else:
        batch_size = inputs_embeds.shape[0]

    if self.config.pad_token_id is None and batch_size != 1:
        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
    if self.config.pad_token_id is None:
        sequence_lengths = -1
    else:
        if input_ids is not None:
            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
            sequence_lengths = ops.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
            sequence_lengths = sequence_lengths % input_ids.shape[-1]
        else:
            sequence_lengths = -1
            logger.warning(
                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
            )

    pooled_logits = logits[ops.arange(batch_size), sequence_lengths]

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse(pooled_logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse(pooled_logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(pooled_logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss_fct = nn.BCEWithLogitsLoss()
            loss = loss_fct(pooled_logits, labels)
    if not return_dict:
        output = (pooled_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutputWithPast(
        loss=loss,
        logits=pooled_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

mindnlp.transformers.models.gptj.modeling_gptj.GPTJPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
class GPTJPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPTJConfig
    base_model_prefix = "transformer"
    is_parallelizable = True
    supports_gradient_checkpointing = True
    _no_split_modules = ["GPTJBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    # def __init__(self, *inputs, **kwargs):
    #     super().__init__(*inputs, **kwargs)

    def _init_weights(self, cell):
        """Initialize the weights."""
        if isinstance(cell, (nn.Linear,)):
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                             cell.weight.shape, cell.weight.dtype))
            if cell.bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, self.config.initializer_range, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0
            cell.weight.set_data(Tensor(weight, cell.weight.dtype))
        elif isinstance(cell, nn.LayerNorm):
            cell.weight.set_data(initializer('ones', cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))