gptj
mindnlp.transformers.models.gptj.configuration_gptj
¶
GPT-J model configuration
mindnlp.transformers.models.gptj.configuration_gptj.GPTJConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [GPTJModel
]. It is used to instantiate a GPT-J
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GPT-J
EleutherAI/gpt-j-6B architecture. Configuration objects inherit from
[PretrainedConfig
] and can be used to control the model outputs. Read the documentation from [PretrainedConfig
]
for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
TYPE:
|
n_positions |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
n_embd |
Dimensionality of the embeddings and hidden states.
TYPE:
|
n_layer |
Number of hidden layers in the Transformer encoder.
TYPE:
|
n_head |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
rotary_dim |
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
TYPE:
|
n_inner |
Dimensionality of the inner feed-forward layers.
TYPE:
|
activation_function |
Activation function, to be selected in the list
TYPE:
|
resid_pdrop |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
embd_pdrop |
The dropout ratio for the embeddings.
TYPE:
|
attn_pdrop |
The dropout ratio for the attention.
TYPE:
|
layer_norm_epsilon |
The epsilon to use in the layer normalization layers.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models).
TYPE:
|
Example
>>> from transformers import GPTJModel, GPTJConfig
>>>
>>> # Initializing a GPT-J 6B configuration
>>> configuration = GPTJConfig()
>>>
>>> # Initializing a model from the configuration
>>> model = GPTJModel(configuration)
>>>
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/gptj/configuration_gptj.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
mindnlp.transformers.models.gptj.modeling_gptj
¶
PyTorch GPT-J model.
mindnlp.transformers.models.gptj.modeling_gptj.GPTJAttention
¶
Bases: Module
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJForCausalLM
¶
Bases: GPTJPreTrainedModel
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJForCausalLM.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set
TYPE:
|
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJForQuestionAnswering
¶
Bases: GPTJPreTrainedModel
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJForSequenceClassification
¶
Bases: GPTJPreTrainedModel
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJForSequenceClassification.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
|
mindnlp.transformers.models.gptj.modeling_gptj.GPTJPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/gptj/modeling_gptj.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|