imagegpt
mindnlp.transformers.models.imagegpt.configuration_imagegpt
¶
OpenAI ImageGPT configuration
mindnlp.transformers.models.imagegpt.configuration_imagegpt.ImageGPTConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [ImageGPTModel
] or a [TFImageGPTModel
]. It is
used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT
openai/imagegpt-small architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
TYPE:
|
n_positions |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
n_embd |
Dimensionality of the embeddings and hidden states.
TYPE:
|
n_layer |
Number of hidden layers in the Transformer encoder.
TYPE:
|
n_head |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
n_inner |
Dimensionality of the inner feed-forward layers.
TYPE:
|
activation_function |
Activation function (can be one of the activation functions defined in src/transformers/activations.py). Defaults to "quick_gelu".
TYPE:
|
resid_pdrop |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
embd_pdrop |
The dropout ratio for the embeddings.
TYPE:
|
attn_pdrop |
The dropout ratio for the attention.
TYPE:
|
layer_norm_epsilon |
The epsilon to use in the layer normalization layers.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
scale_attn_weights |
Scale attention weights by dividing by sqrt(hidden_size)..
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models).
TYPE:
|
scale_attn_by_inverse_layer_idx |
Whether to additionally scale attention weights by
TYPE:
|
reorder_and_upcast_attn |
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision.
TYPE:
|
Example
>>> from transformers import ImageGPTConfig, ImageGPTModel
>>> # Initializing a ImageGPT configuration
>>> configuration = ImageGPTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = ImageGPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/imagegpt/configuration_imagegpt.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
mindnlp.transformers.models.imagegpt.feature_extraction_imagegpt
¶
Feature extractor class for ImageGPT.
mindnlp.transformers.models.imagegpt.image_processing_imagegpt
¶
Image processor class for ImageGPT.
mindnlp.transformers.models.imagegpt.image_processing_imagegpt.ImageGPTImageProcessor
¶
Bases: BaseImageProcessor
Constructs a ImageGPT image processor. This image processor can be used to resize images to a smaller resolution (such as 32x32 or 64x64), normalize them and finally color quantize them to obtain sequences of "pixel values" (color clusters).
PARAMETER | DESCRIPTION |
---|---|
clusters |
The color clusters to use, of shape
TYPE:
|
do_resize |
Whether to resize the image's dimensions to
TYPE:
|
size |
256, "width": 256}
TYPE:
|
resample |
Resampling filter to use if resizing the image. Can be overridden by
TYPE:
|
do_normalize |
Whether to normalize the image pixel value to between [-1, 1]. Can be overridden by
TYPE:
|
do_color_quantize |
Whether to color quantize the image. Can be overridden by
TYPE:
|
Source code in mindnlp/transformers/models/imagegpt/image_processing_imagegpt.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
mindnlp.transformers.models.imagegpt.image_processing_imagegpt.ImageGPTImageProcessor.normalize(image, data_format=None, input_data_format=None)
¶
Normalizes an images' pixel values to between [-1, 1].
PARAMETER | DESCRIPTION |
---|---|
image |
Image to normalize.
TYPE:
|
data_format |
The channel dimension format of the image. If not provided, it will be the same as the input image.
TYPE:
|
input_data_format |
The channel dimension format of the input image. If not provided, it will be inferred.
TYPE:
|
Source code in mindnlp/transformers/models/imagegpt/image_processing_imagegpt.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
|
mindnlp.transformers.models.imagegpt.image_processing_imagegpt.ImageGPTImageProcessor.preprocess(images, do_resize=None, size=None, resample=None, do_normalize=None, do_color_quantize=None, clusters=None, return_tensors=None, data_format=ChannelDimension.FIRST, input_data_format=None, **kwargs)
¶
Preprocess an image or batch of images.
PARAMETER | DESCRIPTION |
---|---|
images |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set
TYPE:
|
do_resize |
Whether to resize the image.
TYPE:
|
size |
Size of the image after resizing.
TYPE:
|
resample |
Resampling filter to use if resizing the image. This can be one of the enum
TYPE:
|
do_normalize |
Whether to normalize the image
TYPE:
|
do_color_quantize |
Whether to color quantize the image.
TYPE:
|
clusters |
Clusters used to quantize the image of shape
TYPE:
|
return_tensors |
The type of tensors to return. Can be one of:
TYPE:
|
data_format |
The channel dimension format for the output image. Can be one of:
TYPE:
|
input_data_format |
The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
TYPE:
|
Source code in mindnlp/transformers/models/imagegpt/image_processing_imagegpt.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
mindnlp.transformers.models.imagegpt.image_processing_imagegpt.ImageGPTImageProcessor.resize(image, size, resample=PILImageResampling.BILINEAR, data_format=None, input_data_format=None, **kwargs)
¶
Resize an image to (size["height"], size["width"])
.
PARAMETER | DESCRIPTION |
---|---|
image |
Image to resize.
TYPE:
|
size |
Dictionary in the format
TYPE:
|
resample |
TYPE:
|
data_format |
The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of:
TYPE:
|
input_data_format |
The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
|
Source code in mindnlp/transformers/models/imagegpt/image_processing_imagegpt.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt
¶
MindSpore OpenAI ImageGPT model.
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTAttention
¶
Bases: Module
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTForCausalImageModeling
¶
Bases: ImageGPTPreTrainedModel
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTForCausalImageModeling.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithCrossAttentions]
|
|
Example
>>> from transformers import AutoImageProcessor, ImageGPTForCausalImageModeling
>>> import torch
>>> import matplotlib.pyplot as plt
>>> import numpy as np
...
>>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
>>> model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small")
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> model.to(device) # doctest: +IGNORE_RESULT
...
>>> # unconditional generation of 8 images
>>> batch_size = 4
>>> context = torch.full((batch_size, 1), model.config.vocab_size - 1) # initialize with SOS token
>>> context = context.to(device)
>>> output = model.generate(
... input_ids=context, max_length=model.config.n_positions + 1, temperature=1.0, do_sample=True, top_k=40
... )
...
>>> clusters = image_processor.clusters
>>> height = image_processor.size["height"]
>>> width = image_processor.size["width"]
...
>>> samples = output[:, 1:].cpu().detach().numpy()
>>> samples_img = [
... np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [height, width, 3]).astype(np.uint8) for s in samples
... ] # convert color cluster tokens back to pixels
>>> f, axes = plt.subplots(1, batch_size, dpi=300)
...
>>> for img, ax in zip(samples_img, axes): # doctest: +IGNORE_RESULT
... ax.axis("off")
... ax.imshow(img)
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTForImageClassification
¶
Bases: ImageGPTPreTrainedModel
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTForImageClassification.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, SequenceClassifierOutputWithPast]
|
|
Example
>>> from transformers import AutoImageProcessor, ImageGPTForImageClassification
>>> from PIL import Image
>>> import requests
...
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
...
>>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
>>> model = ImageGPTForImageClassification.from_pretrained("openai/imagegpt-small")
...
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTModel
¶
Bases: ImageGPTPreTrainedModel
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTModel.forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]
|
|
Example
>>> from transformers import AutoImageProcessor, ImageGPTModel
>>> from PIL import Image
>>> import requests
...
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
...
>>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
>>> model = ImageGPTModel.from_pretrained("openai/imagegpt-small")
...
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.ImageGPTPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
|
mindnlp.transformers.models.imagegpt.modeling_imagegpt.load_tf_weights_in_imagegpt(model, config, imagegpt_checkpoint_path)
¶
Load tf checkpoints in a pytorch model
Source code in mindnlp/transformers/models/imagegpt/modeling_imagegpt.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|