internlm
mindnlp.transformers.models.internlm.modeling_internlm
¶
InternLM Model.
mindnlp.transformers.models.internlm.modeling_internlm.InternLMAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMAttention.__init__(config)
¶
Initializes an instance of the InternLMAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An instance of the InternLMConfig class containing the configuration parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
This method initializes the InternLMAttention class by setting the instance variables and initializing the projection layers.
The config
parameter is an instance of the InternLMConfig class, which contains the following attributes:
hidden_size
(int): The size of the hidden state.num_attention_heads
(int): The number of attention heads.max_position_embeddings
(int): The maximum number of position embeddings.bias
(bool): Whether to include bias in the projection layers.
The method sets the following instance variables:
config
(InternLMConfig): The configuration instance.hidden_size
(int): The size of the hidden state.num_heads
(int): The number of attention heads.head_dim
(int): The dimension of each attention head.max_position_embeddings
(int): The maximum number of position embeddings.
The method also initializes the following projection layers:
q_proj
(Dense): The projection layer for the query.k_proj
(Dense): The projection layer for the key.v_proj
(Dense): The projection layer for the value.o_proj
(Dense): The projection layer for the output.
If the product of head_dim
and num_heads
is not equal to hidden_size
, a ValueError is raised.
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
Constructs the attention mechanism for the InternLMAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
hidden_states |
The input hidden states. Its shape is (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
The attention mask tensor.
It has the same shape as
TYPE:
|
position_ids |
The position ids tensor.
It has the same shape as
TYPE:
|
past_key_value |
The past key-value tuple. Default is None.
TYPE:
|
output_attentions |
Whether to output attention weights. Default is False.
TYPE:
|
use_cache |
Whether to use cache. Default is False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output, attention weights, and the updated past key-value tuple.
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of attention weights is not (batch_size, num_heads, sequence_length, sequence_length). |
ValueError
|
If the shape of attention mask is not (batch_size, 1, sequence_length, sequence_length). |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMDecoderLayer
¶
Bases: Module
DecoderLayer
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMDecoderLayer.__init__(config)
¶
Initialize an instance of the InternLMDecoderLayer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
The configuration object containing various settings for the decoder layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMDynamicNTKScalingRotaryEmbedding
¶
Bases: InternLMRotaryEmbedding
The InternLMDynamicNTKScalingRotaryEmbedding
class is a Python class that represents a dynamic version of the
Neural Tangent Kernel (NTK) Scaling Rotary Embedding used in the context of an InternLM model.
This class inherits from the InternLMRotaryEmbedding
class and provides additional functionality for dynamically
adjusting the NTK scaling factor based on the sequence length. It calculates and caches the cosine and sine values
necessary for the rotary embeddings.
ATTRIBUTE | DESCRIPTION |
---|---|
scaling_factor |
The scaling factor used for adjusting the NTK scaling based on sequence length.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the |
_set_cos_sin_cache |
Sets the cosine and sine cache based on the provided sequence length and data type. Calculates the NTK scaling factor, inverse frequencies, and caches the cosine and sine values. |
Note
This class assumes the existence of the InternLMRotaryEmbedding
superclass.
Example
>>> # Create an instance of InternLMDynamicNTKScalingRotaryEmbedding
>>> embedding = InternLMDynamicNTKScalingRotaryEmbedding(dim=512, max_position_embeddings=1024, base=20000, scaling_factor=0.8)
...
>>> # Access the scaling factor attribute
>>> scaling_factor = embedding.scaling_factor
...
>>> # Call the _set_cos_sin_cache method
>>> embedding._set_cos_sin_cache(seq_len=512, dtype=torch.float32)
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMDynamicNTKScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes an instance of the InternLMDynamicNTKScalingRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class itself. |
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value used in positional encoding calculation. Defaults to 10000.
TYPE:
|
scaling_factor |
The scaling factor applied to the embeddings. Defaults to 1.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM
¶
Bases: InternLMPreTrainedModel
A class representing an InternLM model for causal language modeling.
This class extends the InternLMPreTrainedModel class and provides additional functionality specific to causal language modeling tasks. It includes methods for initializing the model, setting and getting input and output embeddings, setting the decoder, forwarding the model, and preparing inputs for generation.
ATTRIBUTE | DESCRIPTION |
---|---|
model |
The underlying InternLM model.
TYPE:
|
lm_head |
The linear layer for mapping hidden states to the vocabulary space.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the InternLMForCausalLM instance. |
get_input_embeddings |
Returns the input embeddings of the model. |
set_input_embeddings |
Sets the input embeddings of the model. |
get_output_embeddings |
Returns the output embeddings of the model. |
set_output_embeddings |
Sets the output embeddings of the model. |
set_decoder |
Sets the decoder for the model. |
get_decoder |
Returns the decoder of the model. |
forward |
Constructs the model and computes the masked language modeling loss. |
prepare_inputs_for_generation |
Prepares inputs for generation by modifying the input_ids, attention_mask, and position_ids. |
Example
>>> from transformers import AutoTokenizer, InternLMForCausalLM
...
>>> model = InternLMForCausalLM(config)
>>> tokenizer = AutoTokenizer.from_pretrained(model)
...
>>> # Access model attributes
>>> input_embeddings = model.get_input_embeddings()
>>> output_embeddings = model.get_output_embeddings()
...
>>> # Modify model attributes
>>> model.set_input_embeddings(new_input_embeddings)
>>> model.set_output_embeddings(new_output_embeddings)
...
>>> # Set decoder
>>> model.set_decoder(decoder_model)
...
>>> # Generate text
>>> model.forward(input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)
>>> generated_text = model.prepare_inputs_for_generation(input_ids, past_key_values, attention_mask, inputs_embeds, **kwargs)
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.__init__(config, size=None)
¶
Initializes a new instance of the InternLMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration for the language model.
|
size |
The size of the language model input. (Optional)
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast] |
Example
>>> from transformers import AutoTokenizer, InternLMForCausalLM
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.get_decoder()
¶
Method to retrieve the decoder from the InternLMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMForCausalLM class. This parameter is required to access the model within the class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method returns the decoder object associated with the InternLMForCausalLM instance. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.get_input_embeddings()
¶
Retrieve the input embeddings from the InternLMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InternLMForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method is used to obtain the input embeddings from the model. The input embeddings are representations of the input tokens that the model uses to process the text. The embeddings capture the semantic meaning and contextual information of the tokens, which is crucial for the model's performance.
Note
The 'embed_tokens' attribute of the 'self.model' object contains the input embeddings. This attribute should be accessed to retrieve the embeddings.
Example
>>> model = InternLMForCausalLM()
>>> embeddings = model.get_input_embeddings()
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.get_output_embeddings()
¶
Returns the output embeddings of the InternLMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
The output embeddings of the model, represented by the 'lm_head' attribute. |
Note
The output embeddings are typically used to map the model's hidden state to a specific output vocabulary. These embeddings can be used for downstream tasks such as text generation or classification.
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepare inputs for generation.
This method prepares the inputs for the generation process in the InternLMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMForCausalLM class.
TYPE:
|
input_ids |
The input tensor containing the tokenized input sequence.
TYPE:
|
past_key_values |
The tensor of past key values for generation. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor. Default is None.
TYPE:
|
inputs_embeds |
The tensor of embedded inputs. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
model_inputs
|
A dictionary containing the prepared model inputs for generation. It can have the following keys:
TYPE:
|
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.set_decoder(decoder)
¶
Sets the decoder for the InternLMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the InternLMForCausalLM class.
TYPE:
|
decoder |
The decoder object to be set for the InternLMForCausalLM instance.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.set_input_embeddings(value)
¶
Sets the input embeddings for the InternLMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InternLMForCausalLM class.
TYPE:
|
value |
The input embeddings to be set for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the InternLMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the output layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the new_embeddings parameter is not of type Tensor. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForSequenceClassification
¶
Bases: InternLMPreTrainedModel
This class represents an InternLM model for sequence classification tasks. It is a subclass of the InternLMPreTrainedModel class.
The InternLMForSequenceClassification class is initialized with a configuration object, which includes the number of labels for the classification task. The model architecture consists of an InternLMModel and a score layer.
The class provides methods for getting and setting the input embeddings of the model. The get_input_embeddings method returns the embedded tokens of the model, while the set_input_embeddings method allows for setting new input embeddings.
The forward method is responsible for processing input data and generating classification outputs. It takes several optional parameters, including input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, and return_dict. The method returns either a tuple or a SequenceClassifierOutputWithPast object, depending on the value of the return_dict parameter.
If labels are provided, the method computes the sequence classification loss based on the configured problem type. The problem type can be 'regression', 'single_label_classification', or 'multi_label_classification', depending on the number of labels and the data type of the labels. The loss is computed using various loss functions, such as mean squared error (MSE) loss, cross-entropy loss, or binary cross-entropy with logits loss.
If the return_dict parameter is False, the method returns a tuple containing the pooled logits and other transformer outputs. If the loss is not None, it is included in the tuple. If the return_dict parameter is True, the method returns a SequenceClassifierOutputWithPast object, which includes the loss, pooled logits, past key values, hidden states, and attentions.
Note
The class assumes that the batch size is 1 or that a padding token ID is defined. If the batch size is greater than 1 and no padding token ID is defined, a ValueError is raised.
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForSequenceClassification.__init__(config)
¶
Initializes a new instance of the InternLMForSequenceClassification
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
An instance of the
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForSequenceClassification.get_input_embeddings()
¶
Retrieve the input embeddings from the InternLMForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InternLMForSequenceClassification class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method retrieves the input embeddings from the model's embed_tokens attribute. The input embeddings are used as the input to the model for sequence classification tasks. The method does not modify the input embeddings or perform any additional processing. The retrieved input embeddings can be used for further analysis or visualization, if needed.
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMForSequenceClassification.set_input_embeddings(value)
¶
This method is a part of the 'InternLMForSequenceClassification' class and is used to set the input embeddings for the model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
value |
The input embeddings value to be set for the model. It can be of any valid type that represents the input embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value explicitly, but it sets the input embeddings for the model. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMMLP
¶
Bases: Module
MLP
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMMLP.__init__(hidden_size, intermediate_size, hidden_act)
¶
Initializes the InternLMMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
hidden_size |
The size of the hidden layer in the neural network.
TYPE:
|
intermediate_size |
The size of the intermediate layer in the neural network.
TYPE:
|
hidden_act |
The activation function for the hidden layer. It should be one of the supported activation functions.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input parameters are not of the expected types. |
ValueError
|
If the hidden_act parameter does not correspond to a supported activation function. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMMLP.forward(x)
¶
Constructs the output of the InternLMMLP model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InternLMMLP class.
TYPE:
|
x |
The input data for the model (type: unspecified).
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMModel
¶
Bases: InternLMPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [DecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
InternLMConfig
TYPE:
|
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMModel.__init__(config)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMModel class.
TYPE:
|
config |
An instance of the InternLMConfig class containing the configuration for the language model. It specifies the model's parameters such as vocabulary size, hidden size, number of hidden layers, etc. The config parameter is required and must be an instance of the InternLMConfig class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
Constructs the internal language model for the model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
input_ids |
The input tensor of token indices. Defaults to None.
TYPE:
|
attention_mask |
The mask tensor to avoid attention on padding tokens. Defaults to None.
TYPE:
|
position_ids |
The tensor of token positions. Defaults to None.
TYPE:
|
past_key_values |
List of tensors containing past key values. Defaults to None.
TYPE:
|
inputs_embeds |
The input embeddings tensor. Defaults to None.
TYPE:
|
use_cache |
Flag to use caching. Defaults to None.
TYPE:
|
output_attentions |
Flag to output attentions. Defaults to None.
TYPE:
|
output_hidden_states |
Flag to output hidden states. Defaults to None.
TYPE:
|
return_dict |
Flag to return a dictionary. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: The output as a tuple or an instance of BaseModelOutputWithPast. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified, or if neither of them is specified. |
Warning
|
If |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMModel.get_input_embeddings()
¶
This method retrieves the input embeddings from the InternLMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
embed_tokens
|
This method returns the input embeddings from the InternLMModel. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMModel.set_input_embeddings(value)
¶
Sets the input embeddings for the InternLMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMModel class.
TYPE:
|
value |
The input embeddings value to be set for the model. It should be an object of appropriate type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMPreTrainedModel
¶
Bases: PreTrainedModel
The 'InternLMPreTrainedModel' class represents a pre-trained language model for internal use. It inherits from the 'PreTrainedModel' class and includes methods for initializing weights and setting gradient checkpointing.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration for the pre-trained model.
|
METHOD | DESCRIPTION |
---|---|
_init_weights |
Initializes the weights for the specified cell using the specified initializer range. |
_set_gradient_checkpointing |
Sets the gradient checkpointing for the specified module to the specified value. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMRMSNorm
¶
Bases: Module
RMSNorm
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMRMSNorm.__init__(hidden_size, eps=1e-06)
¶
RMSNorm is equivalent to T5LayerNorm
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
86 87 88 89 90 91 92 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMRMSNorm.forward(hidden_states)
¶
Constructs the RMS normalization of hidden states.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InternLMRMSNorm class.
TYPE:
|
hidden_states |
Tensor holding the hidden states. Should be of type mindspore.Tensor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method modifies the input hidden states in-place. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input hidden_states are not of type mindspore.Tensor. |
TypeError
|
If the weight dtype is not mindspore.float16 or mindspore.bfloat16. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMRotaryEmbedding
¶
Bases: Module
RotaryEmbedding
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
init method in the InternLMRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimension of the input embeddings.
TYPE:
|
max_position_embeddings |
The maximum position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value for calculations. Defaults to 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
mindnlp.transformers.models.internlm.modeling_internlm.InternLMRotaryEmbedding.forward(x, seq_len=None)
¶
This method forwards the rotary embeddings for the input sequence.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMRotaryEmbedding class.
TYPE:
|
x |
The input tensor for which the rotary embeddings are to be forwarded.
|
seq_len |
The length of the input sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If seq_len is greater than the maximum sequence length cached. |
TypeError
|
If the input parameters are not of the expected types. |
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
mindnlp.transformers.models.internlm.modeling_internlm.apply_rotary_pos_emb(q, k, cos, sin, position_ids)
¶
Apply rotary positional embeddings to input queries (q) and keys (k).
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
290 291 292 293 294 295 296 297 298 299 300 301 |
|
mindnlp.transformers.models.internlm.modeling_internlm.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/internlm/modeling_internlm.py
284 285 286 287 288 |
|
mindnlp.transformers.models.internlm.configuration_internlm
¶
InternLM model configuration
mindnlp.transformers.models.internlm.configuration_internlm.InternLMConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [InternLMModel
]. It is used to instantiate
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer encoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
rms_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
tie_word_embeddings(`bool`, |
Whether to tie weight embeddings
TYPE:
|
Source code in mindnlp/transformers/models/internlm/configuration_internlm.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
mindnlp.transformers.models.internlm.configuration_internlm.InternLMConfig.__init__(vocab_size=103168, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, bias=True, rotary={'base': 10000, 'type': 'dynamic'}, attn_implementation='eager', **kwargs)
¶
This method initializes an instance of the InternLMConfig class with the provided configuration parameters.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
The size of the vocabulary used in the language model.
TYPE:
|
hidden_size |
The size of the hidden layers in the model.
TYPE:
|
intermediate_size |
The size of the intermediate layers in the model.
TYPE:
|
num_hidden_layers |
The number of hidden layers in the model.
TYPE:
|
num_attention_heads |
The number of attention heads in the model.
TYPE:
|
hidden_act |
The activation function used in the hidden layers.
TYPE:
|
max_position_embeddings |
The maximum position index that can be used in the model.
TYPE:
|
initializer_range |
The range for weight initialization.
TYPE:
|
rms_norm_eps |
The epsilon value for RMS norm.
TYPE:
|
use_cache |
Whether to use cache during model computation.
TYPE:
|
pad_token_id |
The token ID used for padding sequences.
TYPE:
|
bos_token_id |
The token ID used for the beginning of a sequence.
TYPE:
|
eos_token_id |
The token ID used for the end of a sequence.
TYPE:
|
tie_word_embeddings |
Whether to tie the word embeddings.
TYPE:
|
bias |
Whether to include bias in the model.
TYPE:
|
rotary |
Dictionary with keys 'base' (int) and 'type' (str) defining rotary settings.
TYPE:
|
attn_implementation |
The implementation method for attention. If None, defaults to 'eager'.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/configuration_internlm.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
mindnlp.transformers.models.internlm.tokenization_internlm
¶
tokenization internlm
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer
¶
Bases: PreTrainedTokenizer
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
Path to the vocabulary file.
TYPE:
|
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.vocab_size
property
¶
Returns vocab size
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.__getstate__()
¶
Method 'getstate' in the class 'InternLMTokenizer' is used to retrieve the state of the object for pickling or serialization purposes.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'InternLMTokenizer' class.
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not explicitly return any value. However, it modifies the state of the object by setting the 'sp_model' attribute to None and returns the modified state as a dictionary. |
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.__init__(vocab_file, unk_token='<unk>', bos_token='<s>', eos_token='</s>', pad_token=None, sp_model_kwargs=None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, **kwargs)
¶
Initializes an instance of the InternLMTokenizer class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the InternLMTokenizer class.
|
vocab_file |
The path to the vocabulary file.
TYPE:
|
unk_token |
The unknown token. Defaults to '
TYPE:
|
bos_token |
The beginning of sentence token. Defaults to '
TYPE:
|
eos_token |
The end of sentence token. Defaults to ''.
TYPE:
|
pad_token |
The padding token. Defaults to None.
TYPE:
|
sp_model_kwargs |
Additional keyword arguments for the SentencePieceProcessor. Defaults to None.
TYPE:
|
add_bos_token |
Whether to add the bos_token to the vocabulary. Defaults to True.
TYPE:
|
add_eos_token |
Whether to add the eos_token to the vocabulary. Defaults to False.
TYPE:
|
clean_up_tokenization_spaces |
Whether to clean up tokenization spaces. Defaults to False.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.__setstate__(d)
¶
Sets the state of the InternLMTokenizer object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMTokenizer class.
TYPE:
|
d |
The dictionary containing the state information to be set. The dictionary should have the 'dict' attribute which stores the internal state of the object.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Method to build input tokens with special tokens for an internal language model tokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the InternLMTokenizer class.
TYPE:
|
token_ids_0 |
List of token IDs for the first input sequence.
TYPE:
|
token_ids_1 |
List of token IDs for the second input sequence. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list
|
A list of token IDs with special tokens added at the beginning and end of each input sequence. |
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
if token_ids_1 is None, only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of ids.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.get_vocab()
¶
Returns vocab as a dict
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
161 162 163 164 165 |
|
mindnlp.transformers.models.internlm.tokenization_internlm.InternLMTokenizer.save_vocabulary(save_directory, filename_prefix=None)
¶
Save the vocabulary and special tokens file to a directory.
PARAMETER | DESCRIPTION |
---|---|
save_directory |
The directory in which to save the vocabulary.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[str]
|
|
Source code in mindnlp/transformers/models/internlm/tokenization_internlm.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|