Skip to content

led

mindnlp.transformers.models.led.configuration_led

LED model configuration

mindnlp.transformers.models.led.configuration_led.LEDConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [LEDModel]. It is used to instantiate an LED model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LED allenai/led-base-16384 architecture.

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
vocab_size

Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [LEDModel] or [TFLEDModel].

TYPE: `int`, *optional*, defaults to 50265 DEFAULT: 50265

d_model

Dimensionality of the layers and the pooler layer.

TYPE: `int`, *optional*, defaults to 1024 DEFAULT: 1024

encoder_layers

Number of encoder layers.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

decoder_layers

Number of decoder layers.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

encoder_attention_heads

Number of attention heads for each attention layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

decoder_attention_heads

Number of attention heads for each attention layer in the Transformer decoder.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

decoder_ffn_dim

Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.

TYPE: `int`, *optional*, defaults to 4096 DEFAULT: 4096

encoder_ffn_dim

Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.

TYPE: `int`, *optional*, defaults to 4096 DEFAULT: 4096

activation_function

The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

TYPE: `str` or `function`, *optional*, defaults to `"gelu"` DEFAULT: 'gelu'

dropout

The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

attention_dropout

The dropout ratio for the attention probabilities.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

activation_dropout

The dropout ratio for activations inside the fully connected layer.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

classifier_dropout

The dropout ratio for classifier.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

max_encoder_position_embeddings

The maximum sequence length that the encoder might ever be used with.

TYPE: `int`, *optional*, defaults to 16384 DEFAULT: 16384

max_decoder_position_embeddings

The maximum sequence length that the decoder might ever be used with.

TYPE: `int`, *optional*, defaults to 16384 DEFAULT: 1024

init_std

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

encoder_layerdrop

The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

decoder_layerdrop

The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

use_cache

Whether or not the model should return the last key/values attentions (not used by all models)

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

Example
>>> from transformers import LEDModel, LEDConfig
...
>>> # Initializing a LED allenai/led-base-16384 style configuration
>>> configuration = LEDConfig()
...
>>> # Initializing a model from the allenai/led-base-16384 style configuration
>>> model = LEDModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/led/configuration_led.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class LEDConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`LEDModel`]. It is used to instantiate an LED
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LED
    [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LEDModel`] or [`TFLEDModel`].
        d_model (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 12):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_encoder_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that the encoder might ever be used with.
        max_decoder_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that the decoder might ever be used with.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)

    Example:
        ```python
        >>> from transformers import LEDModel, LEDConfig
        ...
        >>> # Initializing a LED allenai/led-base-16384 style configuration
        >>> configuration = LEDConfig()
        ...
        >>> # Initializing a model from the allenai/led-base-16384 style configuration
        >>> model = LEDModel(configuration)
        ...
        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """

    model_type = "led"
    attribute_map = {
        "num_attention_heads": "encoder_attention_heads",
        "hidden_size": "d_model",
        "attention_probs_dropout_prob": "attention_dropout",
        "initializer_range": "init_std",
    }

    def __init__(
        self,
        vocab_size=50265,
        max_encoder_position_embeddings=16384,
        max_decoder_position_embeddings=1024,
        encoder_layers=12,
        encoder_ffn_dim=4096,
        encoder_attention_heads=16,
        decoder_layers=12,
        decoder_ffn_dim=4096,
        decoder_attention_heads=16,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        use_cache=True,
        is_encoder_decoder=True,
        activation_function="gelu",
        d_model=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        decoder_start_token_id=2,
        classifier_dropout=0.0,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        attention_window: Union[List[int], int] = 512,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_encoder_position_embeddings = max_encoder_position_embeddings
        self.max_decoder_position_embeddings = max_decoder_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.classifier_dropout = classifier_dropout
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.attention_window = attention_window

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=decoder_start_token_id,
            **kwargs,
        )

mindnlp.transformers.models.led.modeling_led

MindSpore LED model.

mindnlp.transformers.models.led.modeling_led.LEDClassificationHead

Bases: Module

Head for sentence-level classification tasks.

Source code in mindnlp/transformers/models/led/modeling_led.py
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
class LEDClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(
        self,
        input_dim: int,
        inner_dim: int,
        num_classes: int,
        pooler_dropout: float,
    ):
        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

    def forward(self, hidden_states: mindspore.Tensor):
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = ops.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states

mindnlp.transformers.models.led.modeling_led.LEDDecoder

Bases: LEDPreTrainedModel

Transformer decoder consisting of config.decoder_layers layers. Each layer is a [LEDDecoderLayer]

PARAMETER DESCRIPTION
config

LEDConfig

TYPE: LEDConfig

embed_tokens

output embedding

TYPE: Embedding DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
class LEDDecoder(LEDPreTrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`LEDDecoderLayer`]

    Args:
        config: LEDConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_decoder_position_embeddings

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_positions = LEDLearnedPositionalEmbedding(
            self.max_target_positions,
            config.d_model,
        )
        self.layers = nn.ModuleList([LEDDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            input_ids (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            global_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to decide the attention given on each token, local attention or global attention. Tokens with
                global attention attends to all other tokens, and all other tokens attend to them. This is important
                for task-specific finetuning because it makes the model more flexible at representing the task. For
                example, for classification, the <s> token should be given global attention. For QA, all question
                tokens should also have global attention. Please refer to the [Longformer
                paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:

                - 0 for local attention (a sliding window attention),
                - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
            encoder_hidden_states (`mindspore.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
                selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`mindspore.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (`mindspore.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(mindspore.Tensor))`, *optional*, returned when `use_cache=True`
                is passed or when `config.use_cache=True`):
                Tuple of `tuple(mindspore.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            inputs_embeds (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _create_4d_causal_attention_mask(
                input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
            )

        if attention_mask is not None and combined_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask_inverted(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            )

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _prepare_4d_attention_mask_inverted(
                encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            )

        # embed positions
        positions = self.embed_positions(input_shape, past_key_values_length)

        hidden_states = inputs_embeds + positions
        hidden_states = self.layernorm_embedding(hidden_states)

        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                if attn_mask.shape[0] != len(self.layers):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.shape[0]}."
                    )
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            if self.training:
                dropout_probability = ops.rand([])
                if dropout_probability < self.layerdrop:
                    continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    combined_attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                    None,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=combined_attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
                all_cross_attentions += (layer_outputs[2],)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )

mindnlp.transformers.models.led.modeling_led.LEDDecoder.forward(input_ids=None, attention_mask=None, global_attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
input_ids

Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

Indices can be obtained using [AutoTokenizer]. See [PreTrainedTokenizer.encode] and [PreTrainedTokenizer.__call__] for details.

What are input IDs?

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)` DEFAULT: None

attention_mask

Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

What are attention masks?

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

global_attention_mask

Mask to decide the attention given on each token, local attention or global attention. Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for task-specific finetuning because it makes the model more flexible at representing the task. For example, for classification, the token should be given global attention. For QA, all question tokens should also have global attention. Please refer to the Longformer paper for more details. Mask values selected in [0, 1]:

  • 0 for local attention (a sliding window attention),
  • 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

encoder_hidden_states

Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.

TYPE: `mindspore.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional* DEFAULT: None

encoder_attention_mask

Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

What are attention masks?

TYPE: `mindspore.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional* DEFAULT: None

head_mask

Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,
  • 0 indicates the head is masked.

TYPE: `mindspore.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional* DEFAULT: None

cross_attn_head_mask

Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,
  • 0 indicates the head is masked.

TYPE: `mindspore.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional* DEFAULT: None

inputs_embeds

Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model's internal embedding lookup matrix.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

output_attentions

Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

TYPE: `bool`, *optional* DEFAULT: None

output_hidden_states

Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

TYPE: `bool`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~utils.ModelOutput] instead of a plain tuple.

TYPE: `bool`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
def forward(
    self,
    input_ids=None,
    attention_mask=None,
    global_attention_mask=None,
    encoder_hidden_states=None,
    encoder_attention_mask=None,
    head_mask=None,
    cross_attn_head_mask=None,
    past_key_values=None,
    inputs_embeds=None,
    use_cache=None,
    output_attentions=None,
    output_hidden_states=None,
    return_dict=None,
):
    r"""
    Args:
        input_ids (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
            provide it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        global_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to decide the attention given on each token, local attention or global attention. Tokens with
            global attention attends to all other tokens, and all other tokens attend to them. This is important
            for task-specific finetuning because it makes the model more flexible at representing the task. For
            example, for classification, the <s> token should be given global attention. For QA, all question
            tokens should also have global attention. Please refer to the [Longformer
            paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:

            - 0 for local attention (a sliding window attention),
            - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
        encoder_hidden_states (`mindspore.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
            of the decoder.
        encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
            Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
            selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`mindspore.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`mindspore.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        past_key_values (`tuple(tuple(mindspore.Tensor))`, *optional*, returned when `use_cache=True`
            is passed or when `config.use_cache=True`):
            Tuple of `tuple(mindspore.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
            shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
            cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
            that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
            all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
            returned tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
            for more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # retrieve input_ids and inputs_embeds
    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
    elif input_ids is not None:
        input_shape = input_ids.shape
        input_ids = input_ids.view(-1, input_shape[-1])
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

    # past_key_values_length
    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)

    # create causal mask
    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
    combined_attention_mask = None
    if input_shape[-1] > 1:
        combined_attention_mask = _create_4d_causal_attention_mask(
            input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
        )

    if attention_mask is not None and combined_attention_mask is not None:
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask_inverted(
            attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
        )

    # expand encoder attention mask
    if encoder_hidden_states is not None and encoder_attention_mask is not None:
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        encoder_attention_mask = _prepare_4d_attention_mask_inverted(
            encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
        )

    # embed positions
    positions = self.embed_positions(input_shape, past_key_values_length)

    hidden_states = inputs_embeds + positions
    hidden_states = self.layernorm_embedding(hidden_states)

    hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)

    if self.gradient_checkpointing and self.training:
        if use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

    # decoder layers
    all_hidden_states = () if output_hidden_states else None
    all_self_attns = () if output_attentions else None
    all_cross_attentions = () if output_attentions else None
    next_decoder_cache = () if use_cache else None

    # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
    for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
        if attn_mask is not None:
            if attn_mask.shape[0] != len(self.layers):
                raise ValueError(
                    f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.shape[0]}."
                )
    for idx, decoder_layer in enumerate(self.layers):
        # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
        if self.training:
            dropout_probability = ops.rand([])
            if dropout_probability < self.layerdrop:
                continue

        past_key_value = past_key_values[idx] if past_key_values is not None else None

        if self.gradient_checkpointing and self.training:
            layer_outputs = self._gradient_checkpointing_func(
                decoder_layer.__call__,
                hidden_states,
                combined_attention_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                head_mask[idx] if head_mask is not None else None,
                cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                None,
                output_attentions,
                use_cache,
            )
        else:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=combined_attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                cross_attn_layer_head_mask=(
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                ),
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

        hidden_states = layer_outputs[0]

        if use_cache:
            next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

        if output_attentions:
            all_self_attns += (layer_outputs[1],)
            all_cross_attentions += (layer_outputs[2],)

    # add hidden states from the last decoder layer
    if output_hidden_states:
        all_hidden_states += (hidden_states,)

    next_cache = next_decoder_cache if use_cache else None
    if not return_dict:
        return tuple(
            v
            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
            if v is not None
        )
    return BaseModelOutputWithPastAndCrossAttentions(
        last_hidden_state=hidden_states,
        past_key_values=next_cache,
        hidden_states=all_hidden_states,
        attentions=all_self_attns,
        cross_attentions=all_cross_attentions,
    )

mindnlp.transformers.models.led.modeling_led.LEDDecoderAttention

Bases: Module

Multi-headed attention from 'Attention Is All You Need' paper

Source code in mindnlp/transformers/models/led/modeling_led.py
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
class LEDDecoderAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        if self.head_dim * num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: mindspore.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).swapaxes(1, 2)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        key_value_states: Optional[mindspore.Tensor] = None,
        past_key_value: Optional[Tuple[mindspore.Tensor]] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        layer_head_mask: Optional[mindspore.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, embed_dim = hidden_states.shape

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = ops.cat([past_key_value[0], key_states], axis=2)
            value_states = ops.cat([past_key_value[1], value_states], axis=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(mindspore.Tensor, mindspore.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(mindspore.Tensor, mindspore.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.shape[1]
        attn_weights = ops.bmm(query_states, key_states.swapaxes(1, 2))

        if attn_weights.shape != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.shape}"
            )

        if attention_mask is not None:
            if attention_mask.shape != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.shape}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = ops.softmax(attn_weights, axis=-1)
        if layer_head_mask is not None:
            if layer_head_mask.shape != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.shape}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = ops.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = ops.bmm(attn_probs, value_states)

        if attn_output.shape != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.shape}"
            )

        attn_output = (
            attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
            .swapaxes(1, 2)
            .reshape(bsz, tgt_len, embed_dim)
        )

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value

mindnlp.transformers.models.led.modeling_led.LEDDecoderAttention.forward(hidden_states, key_value_states=None, past_key_value=None, attention_mask=None, layer_head_mask=None, output_attentions=False)

Input shape: Batch x Time x Channel

Source code in mindnlp/transformers/models/led/modeling_led.py
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
def forward(
    self,
    hidden_states: mindspore.Tensor,
    key_value_states: Optional[mindspore.Tensor] = None,
    past_key_value: Optional[Tuple[mindspore.Tensor]] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    layer_head_mask: Optional[mindspore.Tensor] = None,
    output_attentions: bool = False,
) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
    """Input shape: Batch x Time x Channel"""

    # if key_value_states are provided this layer is used as a cross-attention layer
    # for the decoder
    is_cross_attention = key_value_states is not None
    bsz, tgt_len, embed_dim = hidden_states.shape

    # get query proj
    query_states = self.q_proj(hidden_states) * self.scaling
    # get key, value proj
    if is_cross_attention and past_key_value is not None:
        # reuse k,v, cross_attentions
        key_states = past_key_value[0]
        value_states = past_key_value[1]
    elif is_cross_attention:
        # cross_attentions
        key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
        value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
    elif past_key_value is not None:
        # reuse k, v, self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
        key_states = ops.cat([past_key_value[0], key_states], axis=2)
        value_states = ops.cat([past_key_value[1], value_states], axis=2)
    else:
        # self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

    if self.is_decoder:
        # if cross_attention save Tuple(mindspore.Tensor, mindspore.Tensor) of all cross attention key/value_states.
        # Further calls to cross_attention layer can then reuse all cross-attention
        # key/value_states (first "if" case)
        # if uni-directional self-attention (decoder) save Tuple(mindspore.Tensor, mindspore.Tensor) of
        # all previous decoder key/value_states. Further calls to uni-directional self-attention
        # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
        # if encoder bi-directional self-attention `past_key_value` is always `None`
        past_key_value = (key_states, value_states)

    proj_shape = (bsz * self.num_heads, -1, self.head_dim)
    query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
    key_states = key_states.view(*proj_shape)
    value_states = value_states.view(*proj_shape)

    src_len = key_states.shape[1]
    attn_weights = ops.bmm(query_states, key_states.swapaxes(1, 2))

    if attn_weights.shape != (bsz * self.num_heads, tgt_len, src_len):
        raise ValueError(
            f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
            f" {attn_weights.shape}"
        )

    if attention_mask is not None:
        if attention_mask.shape != (bsz, 1, tgt_len, src_len):
            raise ValueError(
                f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.shape}"
            )
        attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
        attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    attn_weights = ops.softmax(attn_weights, axis=-1)
    if layer_head_mask is not None:
        if layer_head_mask.shape != (self.num_heads,):
            raise ValueError(
                f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                f" {layer_head_mask.shape}"
            )
        attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
        attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    if output_attentions:
        # this operation is a bit awkward, but it's required to
        # make sure that attn_weights keeps its gradient.
        # In order to do so, attn_weights have to be reshaped
        # twice and have to be reused in the following
        attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
        attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
    else:
        attn_weights_reshaped = None

    attn_probs = ops.dropout(attn_weights, p=self.dropout, training=self.training)

    attn_output = ops.bmm(attn_probs, value_states)

    if attn_output.shape != (bsz * self.num_heads, tgt_len, self.head_dim):
        raise ValueError(
            f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
            f" {attn_output.shape}"
        )

    attn_output = (
        attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        .swapaxes(1, 2)
        .reshape(bsz, tgt_len, embed_dim)
    )

    attn_output = self.out_proj(attn_output)

    return attn_output, attn_weights_reshaped, past_key_value

mindnlp.transformers.models.led.modeling_led.LEDDecoderLayer

Bases: Module

Source code in mindnlp/transformers/models/led/modeling_led.py
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
class LEDDecoderLayer(nn.Module):
    def __init__(self, config: LEDConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = LEDDecoderAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = LEDDecoderAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        layer_head_mask: Optional[mindspore.Tensor] = None,
        cross_attn_layer_head_mask: Optional[mindspore.Tensor] = None,
        past_key_value: Optional[Tuple[mindspore.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
    ):
        """
        Args:
            hidden_states (`mindspore.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
            attention_mask (`mindspore.Tensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            encoder_hidden_states (`mindspore.Tensor`):
                cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
            encoder_attention_mask (`mindspore.Tensor`): encoder attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            layer_head_mask (`mindspore.Tensor`): mask for attention heads in a given layer of size
                *(decoder_attention_heads,)*.
            cross_attn_layer_head_mask (`mindspore.Tensor`): mask for encoder attention heads in a given layer of
                size *(decoder_attention_heads,)*.
            past_key_value (`Tuple(mindspore.Tensor)`): cached past key and value projection states
            output_attentions (`bool`): Whether the base model outputs attentions.
                This requires the attentions tensor to be reshaped in this function.
        """
        residual = hidden_states

        # Self-Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
            hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
            hidden_states = residual + hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = ops.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs

mindnlp.transformers.models.led.modeling_led.LEDDecoderLayer.forward(hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, output_attentions=False, use_cache=True)

PARAMETER DESCRIPTION
hidden_states

input to the layer of shape (batch, seq_len, embed_dim)

TYPE: `mindspore.Tensor`

attention_mask

attention mask of size (batch, 1, tgt_len, src_len) where padding elements are indicated by very large negative values.

TYPE: `mindspore.Tensor` DEFAULT: None

encoder_hidden_states

cross attention input to the layer of shape (batch, seq_len, embed_dim)

TYPE: `mindspore.Tensor` DEFAULT: None

encoder_attention_mask

encoder attention mask of size (batch, 1, tgt_len, src_len) where padding elements are indicated by very large negative values.

TYPE: `mindspore.Tensor` DEFAULT: None

layer_head_mask

mask for attention heads in a given layer of size (decoder_attention_heads,).

TYPE: `mindspore.Tensor` DEFAULT: None

cross_attn_layer_head_mask

mask for encoder attention heads in a given layer of size (decoder_attention_heads,).

TYPE: `mindspore.Tensor` DEFAULT: None

past_key_value

cached past key and value projection states

TYPE: `Tuple(mindspore.Tensor)` DEFAULT: None

output_attentions

Whether the base model outputs attentions. This requires the attentions tensor to be reshaped in this function.

TYPE: `bool` DEFAULT: False

Source code in mindnlp/transformers/models/led/modeling_led.py
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
def forward(
    self,
    hidden_states: mindspore.Tensor,
    attention_mask: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    layer_head_mask: Optional[mindspore.Tensor] = None,
    cross_attn_layer_head_mask: Optional[mindspore.Tensor] = None,
    past_key_value: Optional[Tuple[mindspore.Tensor]] = None,
    output_attentions: Optional[bool] = False,
    use_cache: Optional[bool] = True,
):
    """
    Args:
        hidden_states (`mindspore.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
        attention_mask (`mindspore.Tensor`): attention mask of size
            *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
        encoder_hidden_states (`mindspore.Tensor`):
            cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
        encoder_attention_mask (`mindspore.Tensor`): encoder attention mask of size
            *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
        layer_head_mask (`mindspore.Tensor`): mask for attention heads in a given layer of size
            *(decoder_attention_heads,)*.
        cross_attn_layer_head_mask (`mindspore.Tensor`): mask for encoder attention heads in a given layer of
            size *(decoder_attention_heads,)*.
        past_key_value (`Tuple(mindspore.Tensor)`): cached past key and value projection states
        output_attentions (`bool`): Whether the base model outputs attentions.
            This requires the attentions tensor to be reshaped in this function.
    """
    residual = hidden_states

    # Self-Attention
    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
    # add present self-attn cache to positions 1,2 of present_key_value tuple
    hidden_states, self_attn_weights, present_key_value = self.self_attn(
        hidden_states=hidden_states,
        past_key_value=self_attn_past_key_value,
        attention_mask=attention_mask,
        layer_head_mask=layer_head_mask,
        output_attentions=output_attentions,
    )
    hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
    hidden_states = residual + hidden_states
    hidden_states = self.self_attn_layer_norm(hidden_states)

    # Cross-Attention Block
    cross_attn_present_key_value = None
    cross_attn_weights = None
    if encoder_hidden_states is not None:
        residual = hidden_states

        # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
        cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
        hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
            hidden_states=hidden_states,
            key_value_states=encoder_hidden_states,
            attention_mask=encoder_attention_mask,
            layer_head_mask=cross_attn_layer_head_mask,
            past_key_value=cross_attn_past_key_value,
            output_attentions=output_attentions,
        )
        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.encoder_attn_layer_norm(hidden_states)

        # add cross-attn to positions 3,4 of present_key_value tuple
        present_key_value = present_key_value + cross_attn_present_key_value

    # Fully Connected
    residual = hidden_states
    hidden_states = self.activation_fn(self.fc1(hidden_states))
    hidden_states = ops.dropout(hidden_states, p=self.activation_dropout, training=self.training)
    hidden_states = self.fc2(hidden_states)
    hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
    hidden_states = residual + hidden_states
    hidden_states = self.final_layer_norm(hidden_states)

    outputs = (hidden_states,)

    if output_attentions:
        outputs += (self_attn_weights, cross_attn_weights)

    if use_cache:
        outputs += (present_key_value,)

    return outputs

mindnlp.transformers.models.led.modeling_led.LEDEncoder

Bases: LEDPreTrainedModel

Transformer encoder consisting of config.encoder_layers self-attention layers. Each layer is a [LEDEncoderLayer].

PARAMETER DESCRIPTION
config

LEDConfig

TYPE: LEDConfig

embed_tokens

output embedding

TYPE: Embedding DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
class LEDEncoder(LEDPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self-attention layers. Each layer is a
    [`LEDEncoderLayer`].

    Args:
        config: LEDConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_encoder_position_embeddings

        if isinstance(config.attention_window, int):
            if config.attention_window % 2 != 0:
                raise ValueError("`config.attention_window` has to be an even value")
            if config.attention_window <= 0:
                raise ValueError("`config.attention_window` has to be positive")
            config.attention_window = [config.attention_window] * config.num_hidden_layers  # one value per layer
        else:
            if len(config.attention_window) != config.num_hidden_layers:
                raise ValueError(
                    "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
                    f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
                )

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = LEDLearnedPositionalEmbedding(
            self.max_source_positions,
            embed_dim,
        )
        self.layers = nn.ModuleList([LEDEncoderLayer(config, i) for i in range(config.encoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(embed_dim)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def _merge_to_attention_mask(self, attention_mask: mindspore.Tensor, global_attention_mask: mindspore.Tensor):
        # longformer self-attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
        # (global_attention_mask + 1) => 1 for local attention, 2 for global attention
        # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
        if attention_mask is not None:
            attention_mask = attention_mask * (global_attention_mask + 1)
        else:
            # simply use `global_attention_mask` as `attention_mask`
            # if no `attention_mask` is given
            attention_mask = global_attention_mask + 1
        return attention_mask

    def _pad_to_window_size(
        self,
        input_ids: mindspore.Tensor,
        attention_mask: mindspore.Tensor,
        inputs_embeds: mindspore.Tensor,
        pad_token_id: int,
    ):
        """A helper function to pad tokens and mask to work with implementation of Longformer self-attention."""
        # padding
        attention_window = (
            self.config.attention_window
            if isinstance(self.config.attention_window, int)
            else max(self.config.attention_window)
        )

        if attention_window % 2 != 0:
            raise ValueError(f"`attention_window` should be an even value. Given {attention_window}")
        input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
        batch_size, seq_len = input_shape[:2]

        padding_len = (attention_window - seq_len % attention_window) % attention_window
        if padding_len > 0:
            logger.warning_once(
                f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
                f"`config.attention_window`: {attention_window}"
            )
            if input_ids is not None:
                input_ids = ops.pad(input_ids, (0, padding_len), value=pad_token_id)
            if inputs_embeds is not None:
                input_ids_padding = ops.full((batch_size, padding_len), self.config.pad_token_id, dtype=mindspore.int64)
                inputs_embeds_padding = self.embed_tokens(input_ids_padding)
                inputs_embeds = ops.cat([inputs_embeds, inputs_embeds_padding], axis=-2)

            attention_mask = ops.pad(
                attention_mask, (0, padding_len), value=False
            )  # no attention on the padding tokens

        return padding_len, input_ids, attention_mask, inputs_embeds

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            input_ids (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            global_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to decide the attention given on each token, local attention or global attention for the encoder.
                Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
                important for task-specific finetuning because it makes the model more flexible at representing the
                task. For example, for classification, the `<s>` token should be given global attention. For QA, all
                question tokens should also have global attention. Please refer to the [Longformer
                paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:

                - 0 for local attention (a sliding window attention),
                - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
            head_mask (`mindspore.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.
            inputs_embeds (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # check input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is None and inputs_embeds is None:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # create default attention_mask
        if attention_mask is None:
            attention_mask = ops.ones(inputs_embeds.shape[:-1], dtype=mindspore.int64)

        # merge `global_attention_mask` and `attention_mask`
        if global_attention_mask is not None:
            attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)

        # pad input if necessary
        padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            pad_token_id=self.config.pad_token_id,
        )

        # retrieve input_shape
        if input_ids is not None:
            input_shape = input_ids.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]

        # convert attention_mask to float
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, seq_len]; 1 -> 0.0; 0 -> "-inf"
            attention_mask = _prepare_4d_attention_mask_inverted(attention_mask, inputs_embeds.dtype)[:, 0, 0, :]

        # get masking tensors
        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        embed_pos = self.embed_positions(input_shape)

        hidden_states = inputs_embeds + embed_pos
        hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_global_attentions = () if (output_attentions and is_global_attn) else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.shape[0] != len(self.layers):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.shape[0]}."
                )
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = ops.rand([])

            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        attention_mask,
                        head_mask[idx] if head_mask is not None else None,
                        is_index_masked,
                        is_index_global_attn,
                        is_global_attn,
                        output_attentions,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask=attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        is_index_masked=is_index_masked,
                        is_index_global_attn=is_index_global_attn,
                        is_global_attn=is_global_attn,
                        output_attentions=output_attentions,
                    )
                hidden_states = layer_outputs[0]

            if output_attentions:
                # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
                all_attentions = all_attentions + (layer_outputs[1].swapaxes(1, 2),)

                if is_global_attn:
                    # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
                    all_global_attentions = all_global_attentions + (layer_outputs[2].swapaxes(2, 3),)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        # undo padding
        if padding_len > 0:
            # unpad `hidden_states` because the calling function is expecting a length == input_ids.shape[1]
            hidden_states = hidden_states[:, :-padding_len]
            if output_hidden_states:
                encoder_states = tuple(state[:, :-padding_len] for state in encoder_states)

            if output_attentions:
                all_attentions = tuple(state[:, :, :-padding_len, :] for state in all_attentions)

        if not return_dict:
            return tuple(
                v for v in [hidden_states, encoder_states, all_attentions, all_global_attentions] if v is not None
            )
        return LEDEncoderBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
            global_attentions=all_global_attentions,
        )

mindnlp.transformers.models.led.modeling_led.LEDEncoder.forward(input_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
input_ids

Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

Indices can be obtained using [AutoTokenizer]. See [PreTrainedTokenizer.encode] and [PreTrainedTokenizer.__call__] for details.

What are input IDs?

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)` DEFAULT: None

attention_mask

Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

What are attention masks?

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

global_attention_mask

Mask to decide the attention given on each token, local attention or global attention for the encoder. Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for task-specific finetuning because it makes the model more flexible at representing the task. For example, for classification, the <s> token should be given global attention. For QA, all question tokens should also have global attention. Please refer to the Longformer paper for more details. Mask values selected in [0, 1]:

  • 0 for local attention (a sliding window attention),
  • 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

head_mask

Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,
  • 0 indicates the head is masked.

TYPE: `mindspore.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional* DEFAULT: None

inputs_embeds

Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model's internal embedding lookup matrix.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

output_attentions

Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

TYPE: `bool`, *optional* DEFAULT: None

output_hidden_states

Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

TYPE: `bool`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~utils.ModelOutput] instead of a plain tuple.

TYPE: `bool`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
def forward(
    self,
    input_ids=None,
    attention_mask=None,
    global_attention_mask=None,
    head_mask=None,
    inputs_embeds=None,
    output_attentions=None,
    output_hidden_states=None,
    return_dict=None,
):
    r"""
    Args:
        input_ids (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
            provide it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        global_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to decide the attention given on each token, local attention or global attention for the encoder.
            Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
            important for task-specific finetuning because it makes the model more flexible at representing the
            task. For example, for classification, the `<s>` token should be given global attention. For QA, all
            question tokens should also have global attention. Please refer to the [Longformer
            paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:

            - 0 for local attention (a sliding window attention),
            - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
        head_mask (`mindspore.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        inputs_embeds (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
            returned tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
            for more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # check input_ids and inputs_embeds
    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
    elif input_ids is None and inputs_embeds is None:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)

    # create default attention_mask
    if attention_mask is None:
        attention_mask = ops.ones(inputs_embeds.shape[:-1], dtype=mindspore.int64)

    # merge `global_attention_mask` and `attention_mask`
    if global_attention_mask is not None:
        attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)

    # pad input if necessary
    padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size(
        input_ids=input_ids,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        pad_token_id=self.config.pad_token_id,
    )

    # retrieve input_shape
    if input_ids is not None:
        input_shape = input_ids.shape
        input_ids = input_ids.view(-1, input_shape[-1])
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]

    # convert attention_mask to float
    if attention_mask is not None:
        # [bsz, seq_len] -> [bsz, seq_len]; 1 -> 0.0; 0 -> "-inf"
        attention_mask = _prepare_4d_attention_mask_inverted(attention_mask, inputs_embeds.dtype)[:, 0, 0, :]

    # get masking tensors
    is_index_masked = attention_mask < 0
    is_index_global_attn = attention_mask > 0
    is_global_attn = is_index_global_attn.flatten().any().item()

    embed_pos = self.embed_positions(input_shape)

    hidden_states = inputs_embeds + embed_pos
    hidden_states = self.layernorm_embedding(hidden_states)
    hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)

    encoder_states = () if output_hidden_states else None
    all_attentions = () if output_attentions else None
    all_global_attentions = () if (output_attentions and is_global_attn) else None

    # check if head_mask has a correct number of layers specified if desired
    if head_mask is not None:
        if head_mask.shape[0] != len(self.layers):
            raise ValueError(
                f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                f" {head_mask.shape[0]}."
            )
    for idx, encoder_layer in enumerate(self.layers):
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)
        # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
        dropout_probability = ops.rand([])

        if self.training and (dropout_probability < self.layerdrop):  # skip the layer
            layer_outputs = (None, None, None)
        else:
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    is_index_masked,
                    is_index_global_attn,
                    is_global_attn,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    is_index_masked=is_index_masked,
                    is_index_global_attn=is_index_global_attn,
                    is_global_attn=is_global_attn,
                    output_attentions=output_attentions,
                )
            hidden_states = layer_outputs[0]

        if output_attentions:
            # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
            all_attentions = all_attentions + (layer_outputs[1].swapaxes(1, 2),)

            if is_global_attn:
                # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
                all_global_attentions = all_global_attentions + (layer_outputs[2].swapaxes(2, 3),)

    if output_hidden_states:
        encoder_states = encoder_states + (hidden_states,)

    # undo padding
    if padding_len > 0:
        # unpad `hidden_states` because the calling function is expecting a length == input_ids.shape[1]
        hidden_states = hidden_states[:, :-padding_len]
        if output_hidden_states:
            encoder_states = tuple(state[:, :-padding_len] for state in encoder_states)

        if output_attentions:
            all_attentions = tuple(state[:, :, :-padding_len, :] for state in all_attentions)

    if not return_dict:
        return tuple(
            v for v in [hidden_states, encoder_states, all_attentions, all_global_attentions] if v is not None
        )
    return LEDEncoderBaseModelOutput(
        last_hidden_state=hidden_states,
        hidden_states=encoder_states,
        attentions=all_attentions,
        global_attentions=all_global_attentions,
    )

mindnlp.transformers.models.led.modeling_led.LEDEncoderAttention

Bases: Module

Source code in mindnlp/transformers/models/led/modeling_led.py
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
class LEDEncoderAttention(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        self.longformer_self_attn = LEDEncoderSelfAttention(config, layer_id=layer_id)
        self.output = nn.Linear(config.d_model, config.d_model)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: Optional[mindspore.Tensor] = None,
        layer_head_mask: Optional[mindspore.Tensor] = None,
        is_index_masked: Optional[mindspore.Tensor] = None,
        is_index_global_attn: Optional[mindspore.Tensor] = None,
        is_global_attn: Optional[bool] = None,
        output_attentions: bool = False,
    ) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        self_outputs = self.longformer_self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )

        attn_output = self.output(self_outputs[0])
        outputs = (attn_output,) + self_outputs[1:]

        return outputs

mindnlp.transformers.models.led.modeling_led.LEDEncoderAttention.forward(hidden_states, attention_mask=None, layer_head_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=False)

Input shape: Batch x Time x Channel

Source code in mindnlp/transformers/models/led/modeling_led.py
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
def forward(
    self,
    hidden_states: mindspore.Tensor,
    attention_mask: Optional[mindspore.Tensor] = None,
    layer_head_mask: Optional[mindspore.Tensor] = None,
    is_index_masked: Optional[mindspore.Tensor] = None,
    is_index_global_attn: Optional[mindspore.Tensor] = None,
    is_global_attn: Optional[bool] = None,
    output_attentions: bool = False,
) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
    """Input shape: Batch x Time x Channel"""

    self_outputs = self.longformer_self_attn(
        hidden_states=hidden_states,
        attention_mask=attention_mask,
        layer_head_mask=layer_head_mask,
        is_index_masked=is_index_masked,
        is_index_global_attn=is_index_global_attn,
        is_global_attn=is_global_attn,
        output_attentions=output_attentions,
    )

    attn_output = self.output(self_outputs[0])
    outputs = (attn_output,) + self_outputs[1:]

    return outputs

mindnlp.transformers.models.led.modeling_led.LEDEncoderBaseModelOutput dataclass

Bases: ModelOutput

Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions.

PARAMETER DESCRIPTION
last_hidden_state

Sequence of hidden-states at the output of the last layer of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`

Source code in mindnlp/transformers/models/led/modeling_led.py
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
@dataclass
# Copied from transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput with Longformer->LEDEncoder
class LEDEncoderBaseModelOutput(ModelOutput):
    """
    Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions.

    Args:
        last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
            attention_window + 1)`, where `x` is the number of tokens with global attention mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first `x` values) and to every token in the attention window (remaining `attention_window
            + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
            remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
            token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
            (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
            If the attention window contains a token with global attention, the attention weight at the corresponding
            index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
            attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
            accessed from `global_attentions`.
        global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    last_hidden_state: mindspore.Tensor
    hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    global_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None

mindnlp.transformers.models.led.modeling_led.LEDEncoderLayer

Bases: Module

Source code in mindnlp/transformers/models/led/modeling_led.py
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
class LEDEncoderLayer(nn.Module):
    def __init__(self, config: LEDConfig, layer_id: int):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = LEDEncoderAttention(config, layer_id)
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: mindspore.Tensor,
        layer_head_mask: mindspore.Tensor,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        """
        Args:
            hidden_states (`mindspore.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
            attention_mask (`mindspore.Tensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            layer_head_mask (`mindspore.Tensor`): mask for attention heads in a given layer of size
                *(encoder_attention_heads,)*.
        """
        residual = hidden_states
        attn_outputs = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )
        hidden_states = attn_outputs[0]
        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = ops.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        if hidden_states.dtype == mindspore.float16 and (
            ops.isinf(hidden_states).any() or ops.isnan(hidden_states).any()
        ):
            clamp_value = finfo(hidden_states.dtype, 'max') - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)
        return (hidden_states,) + attn_outputs[1:]

mindnlp.transformers.models.led.modeling_led.LEDEncoderLayer.forward(hidden_states, attention_mask, layer_head_mask, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=False)

PARAMETER DESCRIPTION
hidden_states

input to the layer of shape (batch, seq_len, embed_dim)

TYPE: `mindspore.Tensor`

attention_mask

attention mask of size (batch, 1, tgt_len, src_len) where padding elements are indicated by very large negative values.

TYPE: `mindspore.Tensor`

layer_head_mask

mask for attention heads in a given layer of size (encoder_attention_heads,).

TYPE: `mindspore.Tensor`

Source code in mindnlp/transformers/models/led/modeling_led.py
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
def forward(
    self,
    hidden_states: mindspore.Tensor,
    attention_mask: mindspore.Tensor,
    layer_head_mask: mindspore.Tensor,
    is_index_masked=None,
    is_index_global_attn=None,
    is_global_attn=None,
    output_attentions=False,
):
    """
    Args:
        hidden_states (`mindspore.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
        attention_mask (`mindspore.Tensor`): attention mask of size
            *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
        layer_head_mask (`mindspore.Tensor`): mask for attention heads in a given layer of size
            *(encoder_attention_heads,)*.
    """
    residual = hidden_states
    attn_outputs = self.self_attn(
        hidden_states=hidden_states,
        attention_mask=attention_mask,
        layer_head_mask=layer_head_mask,
        is_index_masked=is_index_masked,
        is_index_global_attn=is_index_global_attn,
        is_global_attn=is_global_attn,
        output_attentions=output_attentions,
    )
    hidden_states = attn_outputs[0]
    hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
    hidden_states = residual + hidden_states
    hidden_states = self.self_attn_layer_norm(hidden_states)

    residual = hidden_states
    hidden_states = self.activation_fn(self.fc1(hidden_states))
    hidden_states = ops.dropout(hidden_states, p=self.activation_dropout, training=self.training)
    hidden_states = self.fc2(hidden_states)
    hidden_states = ops.dropout(hidden_states, p=self.dropout, training=self.training)
    hidden_states = residual + hidden_states
    hidden_states = self.final_layer_norm(hidden_states)

    if hidden_states.dtype == mindspore.float16 and (
        ops.isinf(hidden_states).any() or ops.isnan(hidden_states).any()
    ):
        clamp_value = finfo(hidden_states.dtype, 'max') - 1000
        hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)
    return (hidden_states,) + attn_outputs[1:]

mindnlp.transformers.models.led.modeling_led.LEDEncoderSelfAttention

Bases: Module

Source code in mindnlp/transformers/models/led/modeling_led.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
class LEDEncoderSelfAttention(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        # separate projection layers for tokens with global attention
        self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        attention_window = config.attention_window[self.layer_id]
        assert (
            attention_window % 2 == 0
        ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
        assert (
            attention_window > 0
        ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"

        self.one_sided_attn_window_size = attention_window // 2

        self.config = config

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        """
        [`LEDEncoderSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
        *attention_window* happens in [`LEDEncoderModel.forward`] to avoid redoing the padding on each layer.

        The *attention_mask* is changed in [`LEDEncoderModel.forward`] from 0, 1, 2 to:

        - -10000: no attention
        - 0: local attention
        - +10000: global attention
        """
        hidden_states = hidden_states.swapaxes(0, 1)

        # project hidden states
        query_vectors = self.query(hidden_states)
        key_vectors = self.key(hidden_states)
        value_vectors = self.value(hidden_states)

        seq_len, batch_size, embed_dim = hidden_states.shape
        assert (
            embed_dim == self.embed_dim
        ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"

        # normalize query
        query_vectors /= math.sqrt(self.head_dim)

        query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)
        key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)

        attn_scores = self._sliding_chunks_query_key_matmul(
            query_vectors, key_vectors, self.one_sided_attn_window_size
        )

        # values to pad for attention probs
        remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None]

        # cast to fp32/fp16 then replace 1's with -inf
        float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
            remove_from_windowed_attention_mask, finfo(query_vectors.dtype, 'min')
        )
        # diagonal mask with zeros everywhere and -inf inplace of padding
        diagonal_mask = self._sliding_chunks_query_key_matmul(
            float_mask.new_ones(size=float_mask.shape), float_mask, self.one_sided_attn_window_size
        )

        # pad local attention probs
        attn_scores += diagonal_mask

        assert list(attn_scores.shape) == [
            batch_size,
            seq_len,
            self.num_heads,
            self.one_sided_attn_window_size * 2 + 1,
        ], (
            f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
            f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.shape}"
        )

        # compute local attention probs from global attention keys and contact over window dim
        if is_global_attn:
            # compute global attn indices required through out forward fn
            (
                max_num_global_attn_indices,
                is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero,
            ) = self._get_global_attn_indices(is_index_global_attn)
            # calculate global attn probs from global key

            global_key_attn_scores = self._concat_with_global_key_attn_probs(
                query_vectors=query_vectors,
                key_vectors=key_vectors,
                max_num_global_attn_indices=max_num_global_attn_indices,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
            )
            # concat to local_attn_probs
            # (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
            attn_scores = ops.cat((global_key_attn_scores, attn_scores), axis=-1)

            # free memory
            del global_key_attn_scores

        attn_probs = ops.softmax(
            attn_scores, axis=-1, dtype=mindspore.float32
        )  # use fp32 for numerical stability

        if layer_head_mask is not None:
            assert layer_head_mask.shape == (
                self.num_heads,
            ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.shape}"
            attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs

        # softmax sometimes inserts NaN if all positions are masked, replace them with 0
        attn_probs = ops.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0)
        attn_probs = attn_probs.type_as(attn_scores)

        # free memory
        del attn_scores

        # apply dropout
        attn_probs = ops.dropout(attn_probs, p=self.dropout, training=self.training)

        value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)

        # compute local attention output with global attention value and add
        if is_global_attn:
            # compute sum of global and local attn
            attn_output = self._compute_attn_output_with_global_indices(
                value_vectors=value_vectors,
                attn_probs=attn_probs,
                max_num_global_attn_indices=max_num_global_attn_indices,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
            )
        else:
            # compute local attn only
            attn_output = self._sliding_chunks_matmul_attn_probs_value(
                attn_probs, value_vectors, self.one_sided_attn_window_size
            )

        assert attn_output.shape == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
        attn_output = attn_output.swapaxes(0, 1).reshape(seq_len, batch_size, embed_dim)

        # compute value for global attention and overwrite to attention output
        # TODO: remove the redundant computation
        if is_global_attn:
            global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
                hidden_states=hidden_states,
                max_num_global_attn_indices=max_num_global_attn_indices,
                layer_head_mask=layer_head_mask,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
                is_index_masked=is_index_masked,
            )

            # get only non zero global attn output
            nonzero_global_attn_output = global_attn_output[
                is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
            ]

            # overwrite values with global attention
            attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
                len(is_local_index_global_attn_nonzero[0]), -1
            )
            # The attention weights for tokens with global attention are
            # just filler values, they were never used to compute the output.
            # Fill with 0 now, the correct values are in 'global_attn_probs'.
            attn_probs[is_index_global_attn_nonzero] = 0

        outputs = (attn_output.swapaxes(0, 1),)

        if output_attentions:
            outputs += (attn_probs,)

        return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs

    @staticmethod
    def _pad_and_transpose_last_two_dims(hidden_states_padded, padding):
        """pads rows and then flips rows and columns"""
        hidden_states_padded = ops.pad(
            hidden_states_padded, padding
        )  # padding value is not important because it will be overwritten
        hidden_states_padded = hidden_states_padded.view(
            *hidden_states_padded.shape[:-2], hidden_states_padded.shape[-1], hidden_states_padded.shape[-2]
        )
        return hidden_states_padded

    @staticmethod
    def _pad_and_diagonalize(chunked_hidden_states):
        """
        shift every row 1 step right, converting columns into diagonals.

        Example:
            ```python
            >>> chunked_hidden_states: [
            ...     0.4983,
            ...     2.6918,
            ...     -0.0071,
            ...     1.0492,
            ...     -1.8348,
            ...     0.7672,
            ...     0.2986,
            ...     0.0285,
            ...     -0.7584,
            ...     0.4206,
            ...     -0.0405,
            ...     0.1599,
            ...     2.0514,
            ...     -1.1600,
            ...     0.5372,
            ...     0.2629,
            ... ]
            >>> window_overlap = num_rows = 4
            ```
             (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
               0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206,
               -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
        """
        total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.shape
        chunked_hidden_states = ops.pad(
            chunked_hidden_states, (0, window_overlap + 1)
        )  # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
        chunked_hidden_states = chunked_hidden_states.view(
            total_num_heads, num_chunks, -1
        )  # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap
        chunked_hidden_states = chunked_hidden_states[
            :, :, :-window_overlap
        ]  # total_num_heads x num_chunks x window_overlap*window_overlap
        chunked_hidden_states = chunked_hidden_states.view(
            total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim
        )
        chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
        return chunked_hidden_states

    @staticmethod
    def _chunk(hidden_states, window_overlap, onnx_export: bool = False):
        """convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
        if not onnx_export:
            # non-overlapping chunks of size = 2w
            hidden_states = hidden_states.view(
                hidden_states.shape[0],
                scalar_div(hidden_states.shape[1], (window_overlap * 2), rounding_mode="trunc"),
                window_overlap * 2,
                hidden_states.shape[2],
            )
            # use `as_strided` to make the chunks overlap with an overlap size = window_overlap
            chunk_size = list(hidden_states.shape)
            chunk_size[1] = chunk_size[1] * 2 - 1

            chunk_stride = list(hidden_states.stride())
            chunk_stride[1] = chunk_stride[1] // 2
            return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)

        # When exporting to ONNX, use this separate logic
        # have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export

        # TODO replace this with
        # > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).swapaxes(2, 3)
        # once `unfold` is supported
        # the case hidden_states.shape[1] == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow

        chunk_size = [
            hidden_states.shape[0],
            scalar_div(hidden_states.shape[1], window_overlap, rounding_mode="trunc") - 1,
            window_overlap * 2,
            hidden_states.shape[2],
        ]

        overlapping_chunks = ops.zeros(chunk_size)
        for chunk in range(chunk_size[1]):
            overlapping_chunks[:, chunk, :, :] = hidden_states[
                :, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, :
            ]
        return overlapping_chunks

    @staticmethod
    def _mask_invalid_locations(input_tensor, affected_seq_len) -> mindspore.Tensor:
        beginning_mask_2d = input_tensor.new_ones((affected_seq_len, affected_seq_len + 1)).tril().flip(dims=[0])
        beginning_mask = beginning_mask_2d[None, :, None, :]
        ending_mask = beginning_mask.flip(dims=(1, 3))
        beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1]
        beginning_mask = beginning_mask.expand(beginning_input.shape)
        input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = ops.full_like(
            beginning_input, -float("inf")
        ).where(beginning_mask.bool(), beginning_input)
        ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :]
        ending_mask = ending_mask.expand(ending_input.shape)
        input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = ops.full_like(
            ending_input, -float("inf")
        ).where(ending_mask.bool(), ending_input)

    def _sliding_chunks_query_key_matmul(self, query: mindspore.Tensor, key: mindspore.Tensor, window_overlap: int):
        """
        Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
        implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained LEDEncoder) with an
        overlap of size window_overlap
        """
        batch_size, seq_len, num_heads, head_dim = query.shape
        assert (
            seq_len % (window_overlap * 2) == 0
        ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
        assert query.shape == key.shape

        chunks_count = scalar_div(seq_len, window_overlap, rounding_mode="trunc") - 1

        # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
        query = query.swapaxes(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
        key = key.swapaxes(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)

        query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False))
        key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False))

        # matrix multiplication
        # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
        # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
        # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
        diagonal_chunked_attention_scores = ops.einsum("bcxd,bcyd->bcxy", (query, key))  # multiply

        # convert diagonals into columns
        diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(
            diagonal_chunked_attention_scores, padding=(0, 0, 0, 1)
        )

        # allocate space for the overall attention matrix where the chunks are combined. The last dimension
        # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
        # window_overlap previous words). The following column is attention score from each word to itself, then
        # followed by window_overlap columns for the upper triangle.

        diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros(
            (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1)
        )

        # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
        # - copying the main diagonal and the upper triangle
        diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[
            :, :, :window_overlap, : window_overlap + 1
        ]
        diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[
            :, -1, window_overlap:, : window_overlap + 1
        ]
        # - copying the lower triangle
        diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[
            :, :, -(window_overlap + 1) : -1, window_overlap + 1 :
        ]

        diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[
            :, 0, : window_overlap - 1, 1 - window_overlap :
        ]

        # separate batch_size and num_heads dimensions again
        diagonal_attention_scores = diagonal_attention_scores.view(
            batch_size, num_heads, seq_len, 2 * window_overlap + 1
        ).swapaxes(2, 1)

        self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
        return diagonal_attention_scores

    def _sliding_chunks_matmul_attn_probs_value(
        self, attn_probs: mindspore.Tensor, value: mindspore.Tensor, window_overlap: int
    ):
        """
        Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
        same shape as `attn_probs`
        """
        batch_size, seq_len, num_heads, head_dim = value.shape

        assert seq_len % (window_overlap * 2) == 0
        assert attn_probs.shape[:3] == value.shape[:3]
        assert attn_probs.shape[3] == 2 * window_overlap + 1
        chunks_count = scalar_div(seq_len, window_overlap, rounding_mode="trunc") - 1
        # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap

        chunked_attn_probs = attn_probs.swapaxes(1, 2).reshape(
            batch_size * num_heads,
            scalar_div(seq_len, window_overlap, rounding_mode="trunc"),
            window_overlap,
            2 * window_overlap + 1,
        )

        # group batch_size and num_heads dimensions into one
        value = value.swapaxes(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)

        # pad seq_len with w at the beginning of the sequence and another window overlap at the end
        padded_value = ops.pad(value, (0, 0, window_overlap, window_overlap), value=-1)

        # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
        chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim)
        chunked_value_stride = padded_value.stride()
        chunked_value_stride = (
            chunked_value_stride[0],
            window_overlap * chunked_value_stride[1],
            chunked_value_stride[1],
            chunked_value_stride[2],
        )
        chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride)

        chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)

        context = ops.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value))
        return context.view(batch_size, num_heads, seq_len, head_dim).swapaxes(1, 2)

    @staticmethod
    def _get_global_attn_indices(is_index_global_attn):
        """compute global attn indices required throughout forward pass"""
        # helper variable
        num_global_attn_indices = is_index_global_attn.long().sum(axis=1)

        # max number of global attn indices in batch
        max_num_global_attn_indices = num_global_attn_indices.max().item()

        # indices of global attn
        is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True)

        # helper variable
        is_local_index_global_attn = ops.arange(max_num_global_attn_indices) < num_global_attn_indices.unsqueeze(dim=-1)

        # location of the non-padding values within global attention indices
        is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True)

        # location of the padding values within global attention indices
        is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True)
        return (
            max_num_global_attn_indices,
            is_index_global_attn_nonzero,
            is_local_index_global_attn_nonzero,
            is_local_index_no_global_attn_nonzero,
        )

    def _concat_with_global_key_attn_probs(
        self,
        key_vectors,
        query_vectors,
        max_num_global_attn_indices,
        is_index_global_attn_nonzero,
        is_local_index_global_attn_nonzero,
        is_local_index_no_global_attn_nonzero,
    ):
        batch_size = key_vectors.shape[0]

        # create only global key vectors
        key_vectors_only_global = key_vectors.new_zeros(
            (batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim)
        )

        key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero]

        # (batch_size, seq_len, num_heads, max_num_global_attn_indices)
        attn_probs_from_global_key = ops.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global))

        # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
        attn_probs_from_global_key = attn_probs_from_global_key.swapaxes(1, 3)
        attn_probs_from_global_key[
            is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
        ] = finfo(attn_probs_from_global_key.dtype, 'min')
        attn_probs_from_global_key = attn_probs_from_global_key.swapaxes(1, 3)

        return attn_probs_from_global_key

    def _compute_attn_output_with_global_indices(
        self,
        value_vectors,
        attn_probs,
        max_num_global_attn_indices,
        is_index_global_attn_nonzero,
        is_local_index_global_attn_nonzero,
    ):
        batch_size = attn_probs.shape[0]

        # cut local attn probs to global only
        attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices)
        # get value vectors for global only
        value_vectors_only_global = value_vectors.new_zeros(
            (batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim)
        )
        value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero]

        # use `matmul` because `einsum` crashes sometimes with fp16
        # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
        # compute attn output only global
        attn_output_only_global = ops.matmul(
            attn_probs_only_global.swapaxes(1, 2).copy(), value_vectors_only_global.swapaxes(1, 2).copy()
        ).swapaxes(1, 2)

        # reshape attn probs
        attn_probs_without_global = attn_probs.narrow(
            -1, max_num_global_attn_indices, attn_probs.shape[-1] - max_num_global_attn_indices
        )

        # compute attn output with global
        attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
            attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
        )
        return attn_output_only_global + attn_output_without_global

    def _compute_global_attn_output_from_hidden(
        self,
        hidden_states,
        max_num_global_attn_indices,
        layer_head_mask,
        is_local_index_global_attn_nonzero,
        is_index_global_attn_nonzero,
        is_local_index_no_global_attn_nonzero,
        is_index_masked,
    ):
        seq_len, batch_size = hidden_states.shape[:2]

        # prepare global hidden states
        global_attn_hidden_states = hidden_states.new_zeros((max_num_global_attn_indices, batch_size, self.embed_dim))
        global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[
            is_index_global_attn_nonzero[::-1]
        ]

        # global key, query, value
        global_query_vectors_only_global = self.query_global(global_attn_hidden_states)
        global_key_vectors = self.key_global(hidden_states)
        global_value_vectors = self.value_global(hidden_states)

        # normalize
        global_query_vectors_only_global /= math.sqrt(self.head_dim)

        # reshape
        global_query_vectors_only_global = (
            global_query_vectors_only_global
            .view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim)
            .swapaxes(0, 1)
        )  # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim)
        global_key_vectors = (
            global_key_vectors.view(-1, batch_size * self.num_heads, self.head_dim).swapaxes(0, 1)
        )  # batch_size * self.num_heads, seq_len, head_dim)
        global_value_vectors = (
            global_value_vectors.view(-1, batch_size * self.num_heads, self.head_dim).swapaxes(0, 1)
        )  # batch_size * self.num_heads, seq_len, head_dim)

        # compute attn scores
        global_attn_scores = ops.bmm(global_query_vectors_only_global, global_key_vectors.swapaxes(1, 2))

        assert list(global_attn_scores.shape) == [
            batch_size * self.num_heads,
            max_num_global_attn_indices,
            seq_len,
        ], (
            "global_attn_scores have the wrong size. Size should be"
            f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is"
            f" {global_attn_scores.shape}."
        )

        global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)

        # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
        global_attn_scores = global_attn_scores.swapaxes(1, 2)
        global_attn_scores[
            is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
        ] = finfo(global_attn_scores.dtype, 'min')
        global_attn_scores = global_attn_scores.swapaxes(1, 2)

        global_attn_scores = global_attn_scores.masked_fill(
            is_index_masked[:, None, None, :],
            finfo(global_attn_scores.dtype, 'min'),
        )

        global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)

        # compute global attn probs
        global_attn_probs_float = ops.softmax(
            global_attn_scores, axis=-1, dtype=mindspore.float32
        )  # use fp32 for numerical stability

        # apply layer head masking
        if layer_head_mask is not None:
            assert layer_head_mask.shape == (
                self.num_heads,
            ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.shape}"
            global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view(
                batch_size, self.num_heads, max_num_global_attn_indices, seq_len
            )
            global_attn_probs_float = global_attn_probs_float.view(
                batch_size * self.num_heads, max_num_global_attn_indices, seq_len
            )

        global_attn_probs = ops.dropout(
            global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training
        )

        # global attn output
        global_attn_output = ops.bmm(global_attn_probs, global_value_vectors)

        assert list(global_attn_output.shape) == [
            batch_size * self.num_heads,
            max_num_global_attn_indices,
            self.head_dim,
        ], (
            "global_attn_output tensor has the wrong size. Size should be"
            f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is"
            f" {global_attn_output.shape}."
        )

        global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
        global_attn_output = global_attn_output.view(
            batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim
        )
        return global_attn_output, global_attn_probs

mindnlp.transformers.models.led.modeling_led.LEDEncoderSelfAttention.forward(hidden_states, attention_mask=None, layer_head_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=False)

[LEDEncoderSelfAttention] expects len(hidden_states) to be multiple of attention_window. Padding to attention_window happens in [LEDEncoderModel.forward] to avoid redoing the padding on each layer.

The attention_mask is changed in [LEDEncoderModel.forward] from 0, 1, 2 to:

  • -10000: no attention
  • 0: local attention
  • +10000: global attention
Source code in mindnlp/transformers/models/led/modeling_led.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def forward(
    self,
    hidden_states,
    attention_mask=None,
    layer_head_mask=None,
    is_index_masked=None,
    is_index_global_attn=None,
    is_global_attn=None,
    output_attentions=False,
):
    """
    [`LEDEncoderSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
    *attention_window* happens in [`LEDEncoderModel.forward`] to avoid redoing the padding on each layer.

    The *attention_mask* is changed in [`LEDEncoderModel.forward`] from 0, 1, 2 to:

    - -10000: no attention
    - 0: local attention
    - +10000: global attention
    """
    hidden_states = hidden_states.swapaxes(0, 1)

    # project hidden states
    query_vectors = self.query(hidden_states)
    key_vectors = self.key(hidden_states)
    value_vectors = self.value(hidden_states)

    seq_len, batch_size, embed_dim = hidden_states.shape
    assert (
        embed_dim == self.embed_dim
    ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"

    # normalize query
    query_vectors /= math.sqrt(self.head_dim)

    query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)
    key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)

    attn_scores = self._sliding_chunks_query_key_matmul(
        query_vectors, key_vectors, self.one_sided_attn_window_size
    )

    # values to pad for attention probs
    remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None]

    # cast to fp32/fp16 then replace 1's with -inf
    float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
        remove_from_windowed_attention_mask, finfo(query_vectors.dtype, 'min')
    )
    # diagonal mask with zeros everywhere and -inf inplace of padding
    diagonal_mask = self._sliding_chunks_query_key_matmul(
        float_mask.new_ones(size=float_mask.shape), float_mask, self.one_sided_attn_window_size
    )

    # pad local attention probs
    attn_scores += diagonal_mask

    assert list(attn_scores.shape) == [
        batch_size,
        seq_len,
        self.num_heads,
        self.one_sided_attn_window_size * 2 + 1,
    ], (
        f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
        f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.shape}"
    )

    # compute local attention probs from global attention keys and contact over window dim
    if is_global_attn:
        # compute global attn indices required through out forward fn
        (
            max_num_global_attn_indices,
            is_index_global_attn_nonzero,
            is_local_index_global_attn_nonzero,
            is_local_index_no_global_attn_nonzero,
        ) = self._get_global_attn_indices(is_index_global_attn)
        # calculate global attn probs from global key

        global_key_attn_scores = self._concat_with_global_key_attn_probs(
            query_vectors=query_vectors,
            key_vectors=key_vectors,
            max_num_global_attn_indices=max_num_global_attn_indices,
            is_index_global_attn_nonzero=is_index_global_attn_nonzero,
            is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
            is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
        )
        # concat to local_attn_probs
        # (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
        attn_scores = ops.cat((global_key_attn_scores, attn_scores), axis=-1)

        # free memory
        del global_key_attn_scores

    attn_probs = ops.softmax(
        attn_scores, axis=-1, dtype=mindspore.float32
    )  # use fp32 for numerical stability

    if layer_head_mask is not None:
        assert layer_head_mask.shape == (
            self.num_heads,
        ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.shape}"
        attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs

    # softmax sometimes inserts NaN if all positions are masked, replace them with 0
    attn_probs = ops.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0)
    attn_probs = attn_probs.type_as(attn_scores)

    # free memory
    del attn_scores

    # apply dropout
    attn_probs = ops.dropout(attn_probs, p=self.dropout, training=self.training)

    value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)

    # compute local attention output with global attention value and add
    if is_global_attn:
        # compute sum of global and local attn
        attn_output = self._compute_attn_output_with_global_indices(
            value_vectors=value_vectors,
            attn_probs=attn_probs,
            max_num_global_attn_indices=max_num_global_attn_indices,
            is_index_global_attn_nonzero=is_index_global_attn_nonzero,
            is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
        )
    else:
        # compute local attn only
        attn_output = self._sliding_chunks_matmul_attn_probs_value(
            attn_probs, value_vectors, self.one_sided_attn_window_size
        )

    assert attn_output.shape == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
    attn_output = attn_output.swapaxes(0, 1).reshape(seq_len, batch_size, embed_dim)

    # compute value for global attention and overwrite to attention output
    # TODO: remove the redundant computation
    if is_global_attn:
        global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
            hidden_states=hidden_states,
            max_num_global_attn_indices=max_num_global_attn_indices,
            layer_head_mask=layer_head_mask,
            is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
            is_index_global_attn_nonzero=is_index_global_attn_nonzero,
            is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
            is_index_masked=is_index_masked,
        )

        # get only non zero global attn output
        nonzero_global_attn_output = global_attn_output[
            is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
        ]

        # overwrite values with global attention
        attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
            len(is_local_index_global_attn_nonzero[0]), -1
        )
        # The attention weights for tokens with global attention are
        # just filler values, they were never used to compute the output.
        # Fill with 0 now, the correct values are in 'global_attn_probs'.
        attn_probs[is_index_global_attn_nonzero] = 0

    outputs = (attn_output.swapaxes(0, 1),)

    if output_attentions:
        outputs += (attn_probs,)

    return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs

mindnlp.transformers.models.led.modeling_led.LEDForConditionalGeneration

Bases: LEDPreTrainedModel

Source code in mindnlp/transformers/models/led/modeling_led.py
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
class LEDForConditionalGeneration(LEDPreTrainedModel):
    base_model_prefix = "led"
    # _keys_to_ignore_on_load_missing = ["final_logits_bias"]
    _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]

    def __init__(self, config: LEDConfig):
        super().__init__(config)
        self.led = LEDModel(config)
        self.final_logits_bias = ops.zeros((1, self.led.shared.vocab_size))
        self.lm_head = nn.Linear(config.d_model, self.led.shared.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_encoder(self):
        return self.led.get_encoder()

    def get_decoder(self):
        return self.led.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        self._resize_final_logits_bias(new_embeddings.weight.shape[0])
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = ops.zeros((1, new_num_tokens - old_num_tokens))
            new_bias = ops.cat([self.final_logits_bias, extra_bias], axis=1)
        self.final_logits_bias = new_bias

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        decoder_input_ids: Optional[mindspore.Tensor] = None,
        decoder_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        decoder_head_mask: Optional[mindspore.Tensor] = None,
        cross_attn_head_mask: Optional[mindspore.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], LEDSeq2SeqLMOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:
            `Union[Tuple[mindspore.Tensor], LEDSeq2SeqLMOutput]`

        Example:
            ```python
            >>> from transformers import AutoTokenizer, LEDForConditionalGeneration
            ...
            >>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
            >>> TXT = "My friends are <mask> but they eat too many carbs."
            ...
            >>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
            >>> input_ids = tokenizer([TXT], return_tensors="ms")["input_ids"]
            ...
            >>> prediction = model.generate(input_ids)[0]
            >>> print(tokenizer.decode(prediction, skip_special_tokens=True))
            ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.led(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_outputs=encoder_outputs,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

        masked_lm_loss = None
        if labels is not None:
            masked_lm_loss = ops.cross_entropy(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return LEDSeq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            encoder_global_attentions=outputs.encoder_global_attentions,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        attention_mask=None,
        global_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        # cut decoder_input_ids if past is used
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "global_attention_mask": global_attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }

    def prepare_decoder_input_ids_from_labels(self, labels: mindspore.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2])
                + layer_past[2:],
            )
        return reordered_past

mindnlp.transformers.models.led.modeling_led.LEDForConditionalGeneration.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, global_attention_mask=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple[Tensor], LEDSeq2SeqLMOutput]

Union[Tuple[mindspore.Tensor], LEDSeq2SeqLMOutput]

Example
>>> from transformers import AutoTokenizer, LEDForConditionalGeneration
...
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> TXT = "My friends are <mask> but they eat too many carbs."
...
>>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
>>> input_ids = tokenizer([TXT], return_tensors="ms")["input_ids"]
...
>>> prediction = model.generate(input_ids)[0]
>>> print(tokenizer.decode(prediction, skip_special_tokens=True))
Source code in mindnlp/transformers/models/led/modeling_led.py
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    decoder_input_ids: Optional[mindspore.Tensor] = None,
    decoder_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    decoder_head_mask: Optional[mindspore.Tensor] = None,
    cross_attn_head_mask: Optional[mindspore.Tensor] = None,
    encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], LEDSeq2SeqLMOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

    Returns:
        `Union[Tuple[mindspore.Tensor], LEDSeq2SeqLMOutput]`

    Example:
        ```python
        >>> from transformers import AutoTokenizer, LEDForConditionalGeneration
        ...
        >>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
        >>> TXT = "My friends are <mask> but they eat too many carbs."
        ...
        >>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
        >>> input_ids = tokenizer([TXT], return_tensors="ms")["input_ids"]
        ...
        >>> prediction = model.generate(input_ids)[0]
        >>> print(tokenizer.decode(prediction, skip_special_tokens=True))
        ```
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if labels is not None:
        if use_cache:
            logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
        use_cache = False
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            )

    outputs = self.led(
        input_ids,
        attention_mask=attention_mask,
        decoder_input_ids=decoder_input_ids,
        decoder_attention_mask=decoder_attention_mask,
        encoder_outputs=encoder_outputs,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        decoder_head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        decoder_inputs_embeds=decoder_inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

    masked_lm_loss = None
    if labels is not None:
        masked_lm_loss = ops.cross_entropy(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

    if not return_dict:
        output = (lm_logits,) + outputs[1:]
        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

    return LEDSeq2SeqLMOutput(
        loss=masked_lm_loss,
        logits=lm_logits,
        past_key_values=outputs.past_key_values,
        decoder_hidden_states=outputs.decoder_hidden_states,
        decoder_attentions=outputs.decoder_attentions,
        cross_attentions=outputs.cross_attentions,
        encoder_last_hidden_state=outputs.encoder_last_hidden_state,
        encoder_hidden_states=outputs.encoder_hidden_states,
        encoder_attentions=outputs.encoder_attentions,
        encoder_global_attentions=outputs.encoder_global_attentions,
    )

mindnlp.transformers.models.led.modeling_led.LEDForQuestionAnswering

Bases: LEDPreTrainedModel

Source code in mindnlp/transformers/models/led/modeling_led.py
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
class LEDForQuestionAnswering(LEDPreTrainedModel):
    _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]

    def __init__(self, config):
        super().__init__(config)

        config.num_labels = 2
        self.num_labels = config.num_labels

        self.led = LEDModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        decoder_input_ids: Optional[mindspore.Tensor] = None,
        decoder_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        decoder_head_mask: Optional[mindspore.Tensor] = None,
        cross_attn_head_mask: Optional[mindspore.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], LEDSeq2SeqQuestionAnsweringModelOutput]:
        r"""
        Args:
            start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the start of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
                are not taken into account for computing the loss.
            end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the end of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
                are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if start_positions is not None and end_positions is not None:
            use_cache = False

        outputs = self.led(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (
                start_logits,
                end_logits,
            ) + outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return LEDSeq2SeqQuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            encoder_global_attentions=outputs.encoder_global_attentions,
        )

mindnlp.transformers.models.led.modeling_led.LEDForQuestionAnswering.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, global_attention_mask=None, start_positions=None, end_positions=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
start_positions

Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

end_positions

Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    decoder_input_ids: Optional[mindspore.Tensor] = None,
    decoder_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    decoder_head_mask: Optional[mindspore.Tensor] = None,
    cross_attn_head_mask: Optional[mindspore.Tensor] = None,
    encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], LEDSeq2SeqQuestionAnsweringModelOutput]:
    r"""
    Args:
        start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
            are not taken into account for computing the loss.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    if start_positions is not None and end_positions is not None:
        use_cache = False

    outputs = self.led(
        input_ids,
        attention_mask=attention_mask,
        decoder_input_ids=decoder_input_ids,
        decoder_attention_mask=decoder_attention_mask,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        decoder_head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        encoder_outputs=encoder_outputs,
        inputs_embeds=inputs_embeds,
        decoder_inputs_embeds=decoder_inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (
            start_logits,
            end_logits,
        ) + outputs[1:]
        return ((total_loss,) + output) if total_loss is not None else output

    return LEDSeq2SeqQuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        past_key_values=outputs.past_key_values,
        decoder_hidden_states=outputs.decoder_hidden_states,
        decoder_attentions=outputs.decoder_attentions,
        cross_attentions=outputs.cross_attentions,
        encoder_last_hidden_state=outputs.encoder_last_hidden_state,
        encoder_hidden_states=outputs.encoder_hidden_states,
        encoder_attentions=outputs.encoder_attentions,
        encoder_global_attentions=outputs.encoder_global_attentions,
    )

mindnlp.transformers.models.led.modeling_led.LEDForSequenceClassification

Bases: LEDPreTrainedModel

Source code in mindnlp/transformers/models/led/modeling_led.py
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
class LEDForSequenceClassification(LEDPreTrainedModel):
    _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]

    def __init__(self, config: LEDConfig, **kwargs):
        warnings.warn(
            "The `transformers.LEDForSequenceClassification` class is deprecated and will be removed in version 5 of"
            " Transformers. No actual method were provided in the original paper on how to perfom"
            " sequence classification.",
            FutureWarning,
        )
        super().__init__(config, **kwargs)
        self.led = LEDModel(config)
        self.classification_head = LEDClassificationHead(
            config.d_model,
            config.d_model,
            config.num_labels,
            config.classifier_dropout,
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        decoder_input_ids: Optional[mindspore.Tensor] = None,
        decoder_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        decoder_head_mask: Optional[mindspore.Tensor] = None,
        cross_attn_head_mask: Optional[mindspore.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], LEDSeq2SeqSequenceClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        if input_ids is None and inputs_embeds is not None:
            raise NotImplementedError(
                f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
            )

        outputs = self.led(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = outputs[0]  # last hidden state

        eos_mask = input_ids.eq(self.config.eos_token_id)
        if len(ops.unique_consecutive(eos_mask.sum(1))) > 1:
            raise ValueError("All examples must have the same number of <eos> tokens.")
        sentence_representation = hidden_states[eos_mask].view(hidden_states.shape[0], -1, hidden_states.shape[-1])[:, -1, :]
        logits = self.classification_head(sentence_representation)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.config.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.config.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.config.num_labels == 1:
                    loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy_with_logits(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return LEDSeq2SeqSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            encoder_global_attentions=outputs.encoder_global_attentions,
        )

mindnlp.transformers.models.led.modeling_led.LEDForSequenceClassification.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, global_attention_mask=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    decoder_input_ids: Optional[mindspore.Tensor] = None,
    decoder_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    decoder_head_mask: Optional[mindspore.Tensor] = None,
    cross_attn_head_mask: Optional[mindspore.Tensor] = None,
    encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], LEDSeq2SeqSequenceClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    if labels is not None:
        use_cache = False

    if input_ids is None and inputs_embeds is not None:
        raise NotImplementedError(
            f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
        )

    outputs = self.led(
        input_ids,
        attention_mask=attention_mask,
        decoder_input_ids=decoder_input_ids,
        decoder_attention_mask=decoder_attention_mask,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        decoder_head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        encoder_outputs=encoder_outputs,
        inputs_embeds=inputs_embeds,
        decoder_inputs_embeds=decoder_inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = outputs[0]  # last hidden state

    eos_mask = input_ids.eq(self.config.eos_token_id)
    if len(ops.unique_consecutive(eos_mask.sum(1))) > 1:
        raise ValueError("All examples must have the same number of <eos> tokens.")
    sentence_representation = hidden_states[eos_mask].view(hidden_states.shape[0], -1, hidden_states.shape[-1])[:, -1, :]
    logits = self.classification_head(sentence_representation)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.config.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.config.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.config.num_labels == 1:
                loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy_with_logits(logits, labels)
    if not return_dict:
        output = (logits,) + outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return LEDSeq2SeqSequenceClassifierOutput(
        loss=loss,
        logits=logits,
        past_key_values=outputs.past_key_values,
        decoder_hidden_states=outputs.decoder_hidden_states,
        decoder_attentions=outputs.decoder_attentions,
        cross_attentions=outputs.cross_attentions,
        encoder_last_hidden_state=outputs.encoder_last_hidden_state,
        encoder_hidden_states=outputs.encoder_hidden_states,
        encoder_attentions=outputs.encoder_attentions,
        encoder_global_attentions=outputs.encoder_global_attentions,
    )

mindnlp.transformers.models.led.modeling_led.LEDLearnedPositionalEmbedding

Bases: Embedding

This module learns positional embeddings up to a fixed maximum size.

Source code in mindnlp/transformers/models/led/modeling_led.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
class LEDLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int):
        super().__init__(num_embeddings, embedding_dim)

    def forward(self, input_ids_shape, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = ops.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=mindspore.int64
        )
        return super().forward(positions)

mindnlp.transformers.models.led.modeling_led.LEDLearnedPositionalEmbedding.forward(input_ids_shape, past_key_values_length=0)

input_ids_shape is expected to be [bsz x seqlen].

Source code in mindnlp/transformers/models/led/modeling_led.py
100
101
102
103
104
105
106
def forward(self, input_ids_shape, past_key_values_length: int = 0):
    """`input_ids_shape` is expected to be [bsz x seqlen]."""
    bsz, seq_len = input_ids_shape[:2]
    positions = ops.arange(
        past_key_values_length, past_key_values_length + seq_len, dtype=mindspore.int64
    )
    return super().forward(positions)

mindnlp.transformers.models.led.modeling_led.LEDPreTrainedModel

Bases: PreTrainedModel

Source code in mindnlp/transformers/models/led/modeling_led.py
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
class LEDPreTrainedModel(PreTrainedModel):
    config_class = LEDConfig
    base_model_prefix = "led"
    supports_gradient_checkpointing = True

    def _init_weights(self, cell):
        """Initialize the weights"""
        std = self.config.init_std
        if isinstance(cell, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(std), cell.weight.shape, cell.weight.dtype))
            if cell.bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, std, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0

            cell.weight.set_data(Tensor(weight, cell.weight.dtype))

    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = mindspore.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]])
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
        }
        return dummy_inputs

mindnlp.transformers.models.led.modeling_led.LEDSeq2SeqLMOutput dataclass

Bases: ModelOutput

Base class for sequence-to-sequence language models outputs.

PARAMETER DESCRIPTION
loss

Language modeling loss.

TYPE: `mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided DEFAULT: None

logits

Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)` DEFAULT: None

encoder_last_hidden_state

Sequence of hidden-states at the output of the last layer of the encoder of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
@dataclass
class LEDSeq2SeqLMOutput(ModelOutput):
    """
    Base class for sequence-to-sequence language models outputs.

    Args:
        loss (`mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss.
        logits (`mindspore.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`List[mindspore.Tensor]`, *optional*, returned when `use_cache=True`
            is passed or when `config.use_cache=True`):
            List of `mindspore.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[mindspore.Tensor] = None
    logits: mindspore.Tensor = None
    past_key_values: Optional[List[mindspore.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    decoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    cross_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_last_hidden_state: Optional[mindspore.Tensor] = None
    encoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_global_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None

mindnlp.transformers.models.led.modeling_led.LEDSeq2SeqModelOutput dataclass

Bases: ModelOutput

Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding.

PARAMETER DESCRIPTION
last_hidden_state

Sequence of hidden-states at the output of the last layer of the decoder of the model.

If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)` DEFAULT: None

encoder_last_hidden_state

Sequence of hidden-states at the output of the last layer of the encoder of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
@dataclass
class LEDSeq2SeqModelOutput(ModelOutput):
    """
    Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
    decoding.

    Args:
        last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        past_key_values (`List[mindspore.Tensor]`, *optional*, returned when `use_cache=True` is passed
            or when `config.use_cache=True`):
            List of `mindspore.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    last_hidden_state: mindspore.Tensor = None
    past_key_values: Optional[List[mindspore.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    decoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    cross_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_last_hidden_state: Optional[mindspore.Tensor] = None
    encoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_global_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None

mindnlp.transformers.models.led.modeling_led.LEDSeq2SeqQuestionAnsweringModelOutput dataclass

Bases: ModelOutput

Base class for outputs of sequence-to-sequence question answering models.

PARAMETER DESCRIPTION
loss

Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

TYPE: `mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided DEFAULT: None

start_logits

Span-start scores (before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)` DEFAULT: None

end_logits

Span-end scores (before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)` DEFAULT: None

encoder_last_hidden_state

Sequence of hidden-states at the output of the last layer of the encoder of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
@dataclass
class LEDSeq2SeqQuestionAnsweringModelOutput(ModelOutput):
    """
    Base class for outputs of sequence-to-sequence question answering models.

    Args:
        loss (`mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_logits (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
            Span-start scores (before SoftMax).
        end_logits (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
            Span-end scores (before SoftMax).
        past_key_values (`List[mindspore.Tensor]`, *optional*, returned when `use_cache=True`
            is passed or when `config.use_cache=True`):
            List of `mindspore.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[mindspore.Tensor] = None
    start_logits: mindspore.Tensor = None
    end_logits: mindspore.Tensor = None
    past_key_values: Optional[List[mindspore.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    decoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    cross_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_last_hidden_state: Optional[mindspore.Tensor] = None
    encoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_global_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None

mindnlp.transformers.models.led.modeling_led.LEDSeq2SeqSequenceClassifierOutput dataclass

Bases: ModelOutput

Base class for outputs of sequence-to-sequence sentence classification models.

PARAMETER DESCRIPTION
loss

Classification (or regression if config.num_labels==1) loss.

TYPE: `mindspore.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided DEFAULT: None

logits

Classification (or regression if config.num_labels==1) scores (before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, config.num_labels)` DEFAULT: None

encoder_last_hidden_state

Sequence of hidden-states at the output of the last layer of the encoder of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/led/modeling_led.py
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
@dataclass
class LEDSeq2SeqSequenceClassifierOutput(ModelOutput):
    """
    Base class for outputs of sequence-to-sequence sentence classification models.

    Args:
        loss (`mindspore.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`mindspore.Tensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        past_key_values (`List[mindspore.Tensor]`, *optional*, returned when `use_cache=True`
            is passed or when `config.use_cache=True`):
            List of `mindspore.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True`
            is passed or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True`
            is passed or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """

    loss: Optional[mindspore.Tensor] = None
    logits: mindspore.Tensor = None
    past_key_values: Optional[List[mindspore.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    decoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    cross_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_last_hidden_state: Optional[mindspore.Tensor] = None
    encoder_hidden_states: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None
    encoder_global_attentions: Optional[Tuple[mindspore.Tensor, ...]] = None

mindnlp.transformers.models.led.modeling_led.scalar_div(input, other, *, rounding_mode='trunc')

scalar div since ops.div do not support scalar

Source code in mindnlp/transformers/models/led/modeling_led.py
46
47
48
49
50
51
52
53
54
55
def scalar_div(input, other, *, rounding_mode="trunc"):
    """scalar div since ops.div do not support scalar"""
    if rounding_mode == 'trunc':
        res = input // other
        if res < 0:
            res = res + 1
        return res
    if rounding_mode == 'floor':
        return input // other
    return input / other

mindnlp.transformers.models.led.modeling_led.shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id)

Shift input ids one token to the right.

Source code in mindnlp/transformers/models/led/modeling_led.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def shift_tokens_right(input_ids: mindspore.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].copy()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids = shifted_input_ids.masked_fill(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids

mindnlp.transformers.models.led.tokenization_led

Tokenization classes for LED.

mindnlp.transformers.models.led.tokenization_led.LEDTokenizer

Bases: PreTrainedTokenizer

Constructs a LED tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding.

This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not:

Example
>>> from transformers import LEDTokenizer
...
>>> tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

You can get around that behavior by passing add_prefix_space=True when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.

When used with is_split_into_words=True, this tokenizer will add a space before each word (even the first one).

This tokenizer inherits from [PreTrainedTokenizer] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

PARAMETER DESCRIPTION
vocab_file

Path to the vocabulary file.

TYPE: `str`

merges_file

Path to the merges file.

TYPE: `str`

errors

Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information.

TYPE: `str`, *optional*, defaults to `"replace"` DEFAULT: 'replace'

bos_token

The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the cls_token.

TYPE: `str`, *optional*, defaults to `"<s>"` DEFAULT: '<s>'

eos_token

The end of sequence token.

When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the sep_token.

TYPE: `str`, *optional*, defaults to `"</s>"` DEFAULT: '</s>'

sep_token

The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

TYPE: `str`, *optional*, defaults to `"</s>"` DEFAULT: '</s>'

cls_token

The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

TYPE: `str`, *optional*, defaults to `"<s>"` DEFAULT: '<s>'

unk_token

The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

TYPE: `str`, *optional*, defaults to `"<unk>"` DEFAULT: '<unk>'

pad_token

The token used for padding, for example when batching sequences of different lengths.

TYPE: `str`, *optional*, defaults to `"<pad>"` DEFAULT: '<pad>'

mask_token

The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

TYPE: `str`, *optional*, defaults to `"<mask>"` DEFAULT: '<mask>'

add_prefix_space

Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space).

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

Source code in mindnlp/transformers/models/led/tokenization_led.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
class LEDTokenizer(PreTrainedTokenizer):
    r"""
    Constructs a LED tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding.

    This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
    be encoded differently whether it is at the beginning of the sentence (without space) or not:

    Example:
        ```python
        >>> from transformers import LEDTokenizer
        ...
        >>> tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
        >>> tokenizer("Hello world")["input_ids"]
        [0, 31414, 232, 2]
        >>> tokenizer(" Hello world")["input_ids"]
        [0, 20920, 232, 2]
        ```

    You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
    call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.

    <Tip>

    When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).

    </Tip>

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
        merges_file (`str`):
            Path to the merges file.
        errors (`str`, *optional*, defaults to `"replace"`):
            Paradigm to follow when decoding bytes to UTF-8. See
            [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
        bos_token (`str`, *optional*, defaults to `"<s>"`):
            The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the beginning of
            sequence. The token used is the `cls_token`.

            </Tip>

        eos_token (`str`, *optional*, defaults to `"</s>"`):
            The end of sequence token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the end of sequence.
            The token used is the `sep_token`.

            </Tip>

        sep_token (`str`, *optional*, defaults to `"</s>"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        cls_token (`str`, *optional*, defaults to `"<s>"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        unk_token (`str`, *optional*, defaults to `"<unk>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        pad_token (`str`, *optional*, defaults to `"<pad>"`):
            The token used for padding, for example when batching sequences of different lengths.
        mask_token (`str`, *optional*, defaults to `"<mask>"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        add_prefix_space (`bool`, *optional*, defaults to `False`):
            Whether or not to add an initial space to the input. This allows to treat the leading word just as any
            other word. (BART tokenizer detect beginning of words by the preceding space).
    """

    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names = ["input_ids", "attention_mask"]

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.__init__
    def __init__(
        self,
        vocab_file,
        merges_file,
        errors="replace",
        bos_token="<s>",
        eos_token="</s>",
        sep_token="</s>",
        cls_token="<s>",
        unk_token="<unk>",
        pad_token="<pad>",
        mask_token="<mask>",
        add_prefix_space=False,
        **kwargs,
    ):
        bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
        eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
        sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
        cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
        unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
        pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token

        # Mask token behave like a normal word, i.e. include the space before it
        mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token

        with open(vocab_file, encoding="utf-8") as vocab_handle:
            self.encoder = json.load(vocab_handle)
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.errors = errors  # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        with open(merges_file, encoding="utf-8") as merges_handle:
            bpe_merges = merges_handle.read().split("\n")[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}
        self.add_prefix_space = add_prefix_space

        # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

        super().__init__(
            errors=errors,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            add_prefix_space=add_prefix_space,
            **kwargs,
        )

    @property
    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
    def vocab_size(self):
        return len(self.encoder)

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.get_vocab
    def get_vocab(self):
        return dict(self.encoder, **self.added_tokens_encoder)

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.bpe
    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                except ValueError:
                    new_word.extend(word[i:])
                    break
                else:
                    new_word.extend(word[i:j])
                    i = j

                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
                    new_word.append(first + second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = " ".join(word)
        self.cache[token] = word
        return word

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer._tokenize
    def _tokenize(self, text):
        """Tokenize a string."""
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            token = "".join(
                self.byte_encoder[b] for b in token.encode("utf-8")
            )  # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
        return bpe_tokens

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer._convert_token_to_id
    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer._convert_id_to_token
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.decoder.get(index)

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.convert_tokens_to_string
    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        text = "".join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
        return text

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.save_vocabulary
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )
        merge_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
        )

        with open(vocab_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write("#version: 0.2\n")
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
                        " Please check that the tokenizer is not corrupted!"
                    )
                    index = token_index
                writer.write(" ".join(bpe_tokens) + "\n")
                index += 1

        return vocab_file, merge_file

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.build_inputs_with_special_tokens with BART->LED
    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A LED sequence has the following format:

        - single sequence: `<s> X </s>`
        - pair of sequences: `<s> A </s></s> B </s>`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + sep + token_ids_1 + sep

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.create_token_type_ids_from_sequences with BART->LED
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not
        make use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

    # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.prepare_for_tokenization
    def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
        add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
        if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
            text = " " + text
        return (text, kwargs)

    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        encoded_inputs = super()._pad(
            encoded_inputs=encoded_inputs,
            max_length=max_length,
            padding_strategy=padding_strategy,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
        )

        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        if return_attention_mask and "global_attention_mask" in encoded_inputs:
            required_input = encoded_inputs[self.model_input_names[0]]
            # `global_attention_mask` need to have the same length as other (sequential) inputs.
            needs_to_be_padded = len(encoded_inputs["global_attention_mask"]) != len(required_input)

            if needs_to_be_padded:
                difference = len(required_input) - len(encoded_inputs["global_attention_mask"])

                if self.padding_side == "right":
                    # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
                    encoded_inputs["global_attention_mask"] = (
                        encoded_inputs["global_attention_mask"] + [-1] * difference
                    )
                elif self.padding_side == "left":
                    encoded_inputs["global_attention_mask"] = [-1] * difference + encoded_inputs[
                        "global_attention_mask"
                    ]
                else:
                    raise ValueError("Invalid padding strategy:" + str(self.padding_side))

        return encoded_inputs

mindnlp.transformers.models.led.tokenization_led.LEDTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A LED sequence has the following format:

  • single sequence: <s> X </s>
  • pair of sequences: <s> A </s></s> B </s>
PARAMETER DESCRIPTION
token_ids_0

List of IDs to which the special tokens will be added.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

RETURNS DESCRIPTION
List[int]

List[int]: List of input IDs with the appropriate special tokens.

Source code in mindnlp/transformers/models/led/tokenization_led.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def build_inputs_with_special_tokens(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
    """
    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
    adding special tokens. A LED sequence has the following format:

    - single sequence: `<s> X </s>`
    - pair of sequences: `<s> A </s></s> B </s>`

    Args:
        token_ids_0 (`List[int]`):
            List of IDs to which the special tokens will be added.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.

    Returns:
        `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
    """
    if token_ids_1 is None:
        return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
    cls = [self.cls_token_id]
    sep = [self.sep_token_id]
    return cls + token_ids_0 + sep + sep + token_ids_1 + sep

mindnlp.transformers.models.led.tokenization_led.LEDTokenizer.convert_tokens_to_string(tokens)

Converts a sequence of tokens (string) in a single string.

Source code in mindnlp/transformers/models/led/tokenization_led.py
288
289
290
291
292
def convert_tokens_to_string(self, tokens):
    """Converts a sequence of tokens (string) in a single string."""
    text = "".join(tokens)
    text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
    return text

mindnlp.transformers.models.led.tokenization_led.LEDTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)

Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not make use of token type ids, therefore a list of zeros is returned.

PARAMETER DESCRIPTION
token_ids_0

List of IDs.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

RETURNS DESCRIPTION
List[int]

List[int]: List of zeros.

Source code in mindnlp/transformers/models/led/tokenization_led.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def create_token_type_ids_from_sequences(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
    """
    Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not
    make use of token type ids, therefore a list of zeros is returned.

    Args:
        token_ids_0 (`List[int]`):
            List of IDs.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.

    Returns:
        `List[int]`: List of zeros.
    """
    sep = [self.sep_token_id]
    cls = [self.cls_token_id]

    if token_ids_1 is None:
        return len(cls + token_ids_0 + sep) * [0]
    return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

mindnlp.transformers.models.led.tokenization_led.LEDTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

PARAMETER DESCRIPTION
token_ids_0

List of IDs.

TYPE: `List[int]`

token_ids_1

Optional second list of IDs for sequence pairs.

TYPE: `List[int]`, *optional* DEFAULT: None

already_has_special_tokens

Whether or not the token list is already formatted with special tokens for the model.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
List[int]

List[int]: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Source code in mindnlp/transformers/models/led/tokenization_led.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def get_special_tokens_mask(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
    """
    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
    special tokens using the tokenizer `prepare_for_model` method.

    Args:
        token_ids_0 (`List[int]`):
            List of IDs.
        token_ids_1 (`List[int]`, *optional*):
            Optional second list of IDs for sequence pairs.
        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
            Whether or not the token list is already formatted with special tokens for the model.

    Returns:
        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
    """
    if already_has_special_tokens:
        return super().get_special_tokens_mask(
            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
        )

    if token_ids_1 is None:
        return [1] + ([0] * len(token_ids_0)) + [1]
    return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

mindnlp.transformers.models.led.tokenization_led.bytes_to_unicode() cached

Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on.

The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.

Source code in mindnlp/transformers/models/led/tokenization_led.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
    characters the bpe code barfs on.

    The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
    if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
    decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
    tables between utf-8 bytes and unicode strings.
    """
    bs = (
        list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
    )
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

mindnlp.transformers.models.led.tokenization_led.get_pairs(word)

Return set of symbol pair