llama
mindnlp.transformers.models.llama.modeling_llama
¶
MindSpore LLaMA model.
mindnlp.transformers.models.llama.modeling_llama.LlamaAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/llama/modeling_llama.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaAttention.__init__(config)
¶
Initializes an instance of the LlamaAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaAttention class.
|
config |
The configuration object that holds various parameters for the attention mechanism.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the hidden_size is not divisible by num_heads. |
Note
This method initializes various attributes of the LlamaAttention object, such as attention_dropout, hidden_size, num_heads, head_dim, num_key_value_heads, num_key_value_groups, max_position_embeddings, rope_theta, and is_causal. It also initializes the projection layers q_proj, k_proj, v_proj, and o_proj. Additionally, it initializes the rope (a positional encoding used in the attention mechanism) using _init_rope method.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
This method forwards the LlamaAttention layer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaAttention class.
|
hidden_states |
The input hidden states of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
An optional tensor of shape (batch_size, 1, sequence_length, sequence_length) representing the attention mask.
TYPE:
|
position_ids |
An optional tensor of shape (batch_size, sequence_length) representing the position ids.
TYPE:
|
past_key_value |
An optional tuple containing the past key and value states.
TYPE:
|
output_attentions |
A flag indicating whether to output attention weights.
TYPE:
|
use_cache |
A flag indicating whether to use cache for past key-value states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size), optional attention weights tensor, and optional updated past key-value states tuple. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of attention weights or attention mask is not as expected. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaDecoderLayer
¶
Bases: Module
The LlamaDecoderLayer
class represents a layer of the Llama decoder in the Llama model.
It inherits from the nn.Module
class.
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden layer.
TYPE:
|
self_attn |
The attention mechanism used in the layer.
TYPE:
|
mlp |
The multi-layer perceptron used in the layer.
TYPE:
|
input_layernorm |
The input layer normalization module.
TYPE:
|
post_attention_layernorm |
The layer normalization module applied after the attention mechanism.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Applies the Llama decoder layer to the input hidden states. Args:
Returns:
|
Note
The LlamaDecoderLayer
class assumes that the LlamaConfig
instance is already defined and passed as
an argument to the forwardor.
Example
>>> # Create a LlamaDecoderLayer instance
>>> config = LlamaConfig(hidden_size=512)
>>> decoder_layer = LlamaDecoderLayer(config)
...
>>> # Apply the Llama decoder layer to the hidden states
>>> hidden_states = ...
>>> attention_mask = ...
>>> output = decoder_layer.forward(hidden_states, attention_mask)
Source code in mindnlp/transformers/models/llama/modeling_llama.py
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaDecoderLayer.__init__(config)
¶
Initializes a LlamaDecoderLayer instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the LlamaDecoderLayer class.
TYPE:
|
config |
An object of type LlamaConfig containing configuration parameters for the decoder layer. The config object must have the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If config is not an instance of LlamaConfig. |
ValueError
|
If config is missing any required attribute. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/llama/modeling_llama.py
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding
¶
Bases: LlamaRotaryEmbedding
LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
Source code in mindnlp/transformers/models/llama/modeling_llama.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes an instance of the LlamaDynamicNTKScalingRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings to be considered. Default is 2048.
TYPE:
|
base |
The base value used in calculations. Default is 10000.
TYPE:
|
scaling_factor |
The scaling factor applied to the embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM
¶
Bases: LlamaPreTrainedModel
This class represents a Llama model for Causal Language Modeling (LM) tasks. It includes methods for setting and getting input and output embeddings, setting and getting the decoder, as well as methods for model forwardion and preparing inputs for generation. The class inherits from LlamaPreTrainedModel and implements the necessary functionalities for generating text based on a given prompt.
ATTRIBUTE | DESCRIPTION |
---|---|
model |
Instance of LlamaModel used for the LM task.
|
vocab_size |
Size of the vocabulary used in the LM task.
|
lm_head |
Neural network layer for LM head.
|
METHOD | DESCRIPTION |
---|---|
get_input_embeddings |
Retrieve the input embeddings from the model. |
set_input_embeddings |
Set new input embeddings for the model. |
get_output_embeddings |
Get the output embeddings for the LM task. |
set_output_embeddings |
Set new output embeddings. |
set_decoder |
Set a new decoder for the model. |
get_decoder |
Get the current decoder used in the model. |
forward |
forward the model for the LM task with specified inputs and return the outputs. |
prepare_inputs_for_generation |
Prepare input data for text generation based on past key values and attention mask. |
_reorder_cache |
Reorder cache elements based on beam index for efficient generation. |
Example
>>> from transformers import AutoTokenizer, LlamaForCausalLM
...
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__(config)
¶
Initializes an instance of the LlamaForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaForCausalLM class.
TYPE:
|
config |
The configuration dictionary containing parameters for model initialization. Must include the following keys:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the 'config' dictionary is missing required keys or if the values are of incorrect types. |
TypeError
|
If 'config' is not a dictionary or if any of the values in the 'config' dictionary are of incorrect types. |
RuntimeError
|
If an error occurs during model initialization. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast] |
Example
>>> from transformers import AutoTokenizer, LlamaForCausalLM
...
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder()
¶
This method returns the decoder model used for the LlamaForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns the decoder model associated with the LlamaForCausalLM instance. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings()
¶
Method to retrieve input embeddings from the 'LlamaForCausalLM' class model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the 'LlamaForCausalLM' class. This parameter is used to access the model's embed tokens for input embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns None as it directly retrieves and returns the input embeddings from the model. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings()
¶
Retrieve the output embeddings from the LlamaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the LlamaForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
lm_head
|
This method returns the output embeddings from the lm_head layer of the LlamaForCausalLM model. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Method to prepare inputs for generation in the LlamaForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
input_ids |
The input tensor representing tokenized input sequence.
TYPE:
|
past_key_values |
Tuple containing past key values for autoregressive generation. Default is None.
TYPE:
|
attention_mask |
Mask tensor indicating attention areas. Default is None.
TYPE:
|
inputs_embeds |
Embedding tensor for the input tokens. Default is None.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the prepared model inputs including 'input_ids', 'position_ids', 'past_key_values', 'use_cache', and 'attention_mask'. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids shape is incorrect or if attention_mask is not provided. |
TypeError
|
If the position_ids are not of type torch.Tensor. |
RuntimeError
|
If an unexpected error occurs during position_ids calculation. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder(decoder)
¶
Sets the decoder for the LlamaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaForCausalLM class.
TYPE:
|
decoder |
The decoder object to be set for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method sets the decoder object provided as an argument to the 'model' attribute of the LlamaForCausalLM instance. The 'model' attribute represents the decoder used for the causal language modeling task.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings(value)
¶
Description: Sets the input embeddings of the LlamaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaForCausalLM class.
TYPE:
|
value |
The input embeddings to be set for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the LlamaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the model's lm_head.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method allows the user to update the output embeddings of the LlamaForCausalLM model by replacing the current embeddings with the provided new_embeddings. The new_embeddings should be a tensor of the same shape and size as the current embeddings. This method is useful in fine-tuning the model with custom embeddings or when transferring the model to a different task that requires different output embeddings.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForSequenceClassification
¶
Bases: LlamaPreTrainedModel
LlamaForSequenceClassification
This class is a sequence classification model based on the Llama architecture. It inherits from the LlamaPreTrainedModel class.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for the sequence classification task.
TYPE:
|
model |
The LlamaModel instance used for the sequence classification.
TYPE:
|
score |
The final layer that computes the logits for the classification.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes a new instance of the LlamaForSequenceClassification class. |
get_input_embeddings |
Retrieves the input embeddings from the LlamaModel. |
set_input_embeddings |
Sets the input embeddings in the LlamaModel. |
forward |
forwards the sequence classification model. Parameters:
Returns:
|
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForSequenceClassification.__init__(config)
¶
Initializes an instance of the LlamaForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object of type 'Config', containing the configuration parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForSequenceClassification.get_input_embeddings()
¶
Returns the input embeddings of the given sequence for the LlamaForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the LlamaForSequenceClassification class.
|
RETURNS | DESCRIPTION |
---|---|
embed_tokens
|
The method returns a value of type 'None'. |
This method retrieves the input embeddings for the given sequence from the LlamaForSequenceClassification model. Input embeddings are the vector representations of the input tokens in the sequence that the model uses for further processing. These embeddings capture the contextual information of the tokens and are essential for downstream tasks such as sequence classification.
Note
The input embeddings are obtained by calling the 'embed_tokens' method of the model instance.
Example
>>> llama_classifier = LlamaForSequenceClassification()
>>> embeddings = llama_classifier.get_input_embeddings()
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaForSequenceClassification.set_input_embeddings(value)
¶
Set the embedding layer of the LlamaForSequenceClassification model with a specified value.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the LlamaForSequenceClassification class. |
value |
The embedding layer to be set in the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the value parameter is not an instance of torch.nn.Embedding. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding
¶
Bases: LlamaRotaryEmbedding
LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev
Source code in mindnlp/transformers/models/llama/modeling_llama.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes a new instance of the LlamaLinearScalingRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the class. |
dim |
The dimensionality of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Default is 2048.
TYPE:
|
base |
The base value used for scaling. Default is 10000.
TYPE:
|
scaling_factor |
The scaling factor applied to the embeddings. Default is 1.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaMLP
¶
Bases: Module
This class represents a multi-layer perceptron (MLP) model called LlamaMLP.
LlamaMLP inherits from the nn.Module class and is designed for deep learning tasks. It consists of multiple layers, including gate projection, up projection, and down projection layers, which are used to transform the input data and produce the final output.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration object that stores the hyperparameters of the LlamaMLP model.
TYPE:
|
hidden_size |
The size of the hidden layer in the LlamaMLP model.
TYPE:
|
intermediate_size |
The size of the intermediate layer in the LlamaMLP model.
TYPE:
|
gate_proj |
The dense layer responsible for the gate projection in the LlamaMLP model.
TYPE:
|
up_proj |
The dense layer responsible for the up projection in the LlamaMLP model.
TYPE:
|
down_proj |
The dense layer responsible for the down projection in the LlamaMLP model.
TYPE:
|
act_fn |
The activation function used in the LlamaMLP model.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes a new instance of the LlamaMLP class. |
forward |
forwards the LlamaMLP model by applying the necessary transformations on the input data. This method returns the final output of the LlamaMLP model. |
Note
The LlamaMLP model supports pretraining when the 'pretraining_tp' hyperparameter is greater than 1. In this case, the input data is split into slices to perform parallel computations. Otherwise, the computations are performed in a single path.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaMLP.__init__(config)
¶
Initializes an instance of the LlamaMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object of type 'Config' containing the configuration settings for the MLP. The 'Config' object should have the following properties:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaMLP.forward(x)
¶
forwards the output of the LlamaMLP model based on the input and configuration settings.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaMLP class.
TYPE:
|
x |
The input tensor to be processed by the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the value of 'pretraining_tp' in the configuration is less than or equal to 1. |
TypeError
|
If any of the operations cannot be performed due to data type mismatch or other reasons. |
IndexError
|
If any index used for slicing or accessing tensors is out of bounds. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaModel
¶
Bases: LlamaPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [LlamaDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
LlamaConfig
TYPE:
|
Source code in mindnlp/transformers/models/llama/modeling_llama.py
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaModel.__init__(config)
¶
Initializes a new instance of the LlamaModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
config |
The configuration object for the LlamaModel. This parameter specifies the configuration settings for the model. It should be an instance of the LlamaConfig class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
forwards the LlamaModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaModel class.
TYPE:
|
input_ids |
The input IDs tensor. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor. Default is None.
TYPE:
|
position_ids |
The position IDs tensor. Default is None.
TYPE:
|
past_key_values |
The list of past key values. Default is None.
TYPE:
|
inputs_embeds |
The input embeddings tensor. Default is None.
TYPE:
|
use_cache |
Whether to use cache. Default is None.
TYPE:
|
output_attentions |
Whether to output attentions. Default is None.
TYPE:
|
output_hidden_states |
Whether to output hidden states. Default is None.
TYPE:
|
return_dict |
Whether to return a dictionary. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: The output of the LlamaModel. It can be a tuple containing hidden states, next cache, all hidden states, and all self attentions; or an instance of BaseModelOutputWithPast. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified. |
ValueError
|
If neither input_ids nor inputs_embeds are specified. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings()
¶
Description
This method retrieves the input embeddings from the LlamaModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The LlamaModel instance that this method is called on.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns the embed_tokens attribute of the LlamaModel instance, which represents the input embeddings. The return value is of type None. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings(value)
¶
Sets the input embeddings for the LlamaModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The LlamaModel instance.
TYPE:
|
value |
The input embeddings to be set. It should be a tensor of shape (num_embeddings, embedding_dim).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input value is not a tensor. |
ValueError
|
If the input tensor shape is invalid. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaPreTrainedModel
¶
Bases: PreTrainedModel
LlamaPreTrainedModel is a Python class representing a pre-trained model for llama-based machine learning tasks. This class inherits from PreTrainedModel and provides methods for initializing weights.
The _init_weights method initializes the weights for the given cell. If the cell is of type nn.Linear, the weight is initialized using the Normal initializer within the specified range. If the cell has bias, it is initialized with zeros. If the cell is of type nn.Embedding, the weight is initialized with random normal values within the specified range, and the padding index is set to 0 if provided.
PARAMETER | DESCRIPTION |
---|---|
cell |
The cell for which the weights need to be initialized.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaRMSNorm
¶
Bases: Module
LlamaRMSNorm is a class that represents a normalization layer, equivalent to T5LayerNorm, used in deep learning models. It inherits from the nn.Module class.
This class provides methods to initialize and apply RMS normalization to the input hidden states. The RMS normalization is calculated based on the variance of the hidden states and a weight parameter. The normalized hidden states are then multiplied by the weight parameter to obtain the final output.
ATTRIBUTE | DESCRIPTION |
---|---|
weight |
The weight parameter used in the RMS normalization.
TYPE:
|
variance_epsilon |
The epsilon value added to the variance to avoid division by zero.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes a new instance of the LlamaRMSNorm class. |
forward |
Applies RMS normalization to the input hidden states. |
Example
>>> # Create an instance of LlamaRMSNorm
>>> norm = LlamaRMSNorm(hidden_size=256)
...
>>> # Apply RMS normalization to hidden states
>>> output = norm.forward(hidden_states)
Please note that the LlamaRMSNorm class is designed to be used as part of a neural network model and requires the MindSpore library for execution.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaRMSNorm.__init__(hidden_size, eps=1e-06)
¶
LlamaRMSNorm is equivalent to T5LayerNorm
Source code in mindnlp/transformers/models/llama/modeling_llama.py
71 72 73 74 75 76 77 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaRMSNorm.forward(hidden_states)
¶
forwards the RMS normalization of the hidden states.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaRMSNorm class.
TYPE:
|
hidden_states |
The input hidden states to be normalized. Should be a tensor or numpy array of any shape.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. The normalization is applied in place. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input hidden_states is not a valid tensor or numpy array. |
RuntimeError
|
If an error occurs during the normalization process. |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaRotaryEmbedding
¶
Bases: Module
The LlamaRotaryEmbedding
class represents a rotary positional embedding layer that can be used in
neural network models. It inherits from the nn.Module
class.
ATTRIBUTE | DESCRIPTION |
---|---|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings.
TYPE:
|
base |
The base value used for calculating inverse frequencies.
TYPE:
|
inv_freq |
The tensor containing the inverse frequencies calculated based on the
TYPE:
|
max_seq_len_cached |
The maximum sequence length for which cosine and sine values are cached.
TYPE:
|
cos_cached |
The cached cosine values for the positional embeddings.
TYPE:
|
sin_cached |
The cached sine values for the positional embeddings.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes a new instance of the |
_set_cos_sin_cache |
Sets up the cosine and sine cache for a given sequence length and data type. |
forward |
forwards the positional embedding for the input tensor |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
Initializes a new instance of the LlamaRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The LlamaRotaryEmbedding object itself.
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value for calculating the inverse frequency. Defaults to 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/llama/modeling_llama.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
mindnlp.transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward(x, seq_len=None)
¶
forwards a subset of the cached cosine and sine values based on the given sequence length.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the LlamaRotaryEmbedding class.
TYPE:
|
x |
The input tensor.
|
seq_len |
The length of the desired subset. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple
|
A tuple containing two tensors. The first tensor represents the subset of cached cosine values, and the second tensor represents the subset of cached sine values. Both tensors are of the same dtype as x. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If seq_len is not an integer or None. |
ValueError
|
If seq_len is less than or equal to 0. |
AttributeError
|
If seq_len exceeds the maximum sequence length that has been cached. |
Note
The returned subset will include elements up to the index 'seq_len - 1' from the cached cosine and sine values. If seq_len is None or not provided, the entire cached cosine and sine values will be returned.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
mindnlp.transformers.models.llama.modeling_llama.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/llama/modeling_llama.py
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
mindnlp.transformers.models.llama.modeling_llama.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/llama/modeling_llama.py
495 496 497 498 499 500 501 502 503 504 |
|
mindnlp.transformers.models.llama.modeling_llama.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/llama/modeling_llama.py
354 355 356 357 358 359 360 361 362 363 |
|
mindnlp.transformers.models.llama.configuration_llama
¶
LLaMA model configuration
mindnlp.transformers.models.llama.configuration_llama.LlamaConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [LlamaModel
]. It is used to instantiate an LLaMA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LLaMA-7B.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, Llama 2 up to 4096, CodeLlama up to 16384.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
rms_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
pad_token_id |
Padding token id.
TYPE:
|
bos_token_id |
Beginning of stream token id.
TYPE:
|
eos_token_id |
End of stream token id.
TYPE:
|
pretraining_tp |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to this document to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to this issue.
TYPE:
|
tie_word_embeddings |
Whether to tie weight embeddings
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
rope_scaling |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
TYPE:
|
attention_bias |
Whether to use a bias in the query, key, value and output projection layers during self-attention.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
Example
>>> from transformers import LlamaModel, LlamaConfig
...
>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()
...
>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/llama/configuration_llama.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
|
mindnlp.transformers.models.llama.configuration_llama.LlamaConfig.__init__(vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, **kwargs)
¶
This method initializes an instance of the LlamaConfig class.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
The size of the vocabulary. Default is 32000.
TYPE:
|
hidden_size |
The size of the hidden layers. Default is 4096.
TYPE:
|
intermediate_size |
The size of the intermediate layers. Default is 11008.
TYPE:
|
num_hidden_layers |
The number of hidden layers. Default is 32.
TYPE:
|
num_attention_heads |
The number of attention heads. Default is 32.
TYPE:
|
num_key_value_heads |
The number of key and value heads. If not provided, it defaults to num_attention_heads.
TYPE:
|
hidden_act |
The activation function for the hidden layers. Default is 'silu'.
TYPE:
|
max_position_embeddings |
The maximum position embeddings. Default is 2048.
TYPE:
|
initializer_range |
The range for weight initialization. Default is 0.02.
TYPE:
|
rms_norm_eps |
The epsilon value for RMS normalization. Default is 1e-06.
TYPE:
|
pretraining_tp |
The pretraining TP value. Default is 1.
TYPE:
|
use_cache |
Indicates whether to use cache. Default is True.
TYPE:
|
pad_token_id |
The ID of the padding token.
TYPE:
|
bos_token_id |
The ID of the beginning of sequence token. Default is 1.
TYPE:
|
eos_token_id |
The ID of the end of sequence token. Default is 2.
TYPE:
|
tie_word_embeddings |
Indicates whether to tie word embeddings. Default is False.
TYPE:
|
rope_theta |
The theta value for ROPE. Default is 10000.0.
TYPE:
|
rope_scaling |
The scaling value for ROPE. If provided, it should be validated.
TYPE:
|
attention_bias |
Indicates whether to use attention bias. Default is False.
TYPE:
|
attention_dropout |
The dropout rate for attention. Default is 0.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If rope_scaling is provided and it does not pass the validation. |
Source code in mindnlp/transformers/models/llama/configuration_llama.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|
mindnlp.transformers.models.llama.tokenization_llama
¶
Tokenization classes for LLaMA.
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer
¶
Bases: PreTrainedTokenizer
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is no padding token in the original model.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
Path to the vocabulary file.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
TYPE:
|
eos_token |
The end of sequence token.
TYPE:
|
pad_token |
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation.
TYPE:
|
sp_model_kwargs |
Will be passed to the
TYPE:
|
add_bos_token |
Whether or not to add an
TYPE:
|
add_eos_token |
Whether or not to add an
TYPE:
|
clean_up_tokenization_spaces |
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces.
TYPE:
|
use_default_system_prompt |
Whether or not the default system prompt for Llama should be used.
TYPE:
|
spaces_between_special_tokens |
Whether or not to add spaces between special tokens.
TYPE:
|
legacy |
Whether or not the A simple example:
-
legacy=False :
TYPE:
|
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template
property
¶
LLaMA uses [INST] and [/INST] to indicate user messages, and <
The output should look something like:
The reference for this chat template is this code snippet in the original repository.
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.unk_token_length
property
¶
Returns the length of the unknown token in the LlamaTokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the LlamaTokenizer class.
|
RETURNS | DESCRIPTION |
---|---|
int
|
The method returns the length of the unknown token as an integer value. |
This method calculates and returns the length of the unknown token in the LlamaTokenizer. The unknown token is represented as a string and is encoded using the sp_model.encode() method. The length of the encoded unknown token is then determined using the len() function and returned as an integer value. The method does not modify any internal state or variables of the LlamaTokenizer class.
Example
>>> tokenizer = LlamaTokenizer()
>>> unk_token_length = tokenizer.unk_token_length()
>>> print(unk_token_length) # Output: 5
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.vocab_size
property
¶
Returns vocab size
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.__getstate__()
¶
Method to serialize the state of the LlamaTokenizer instance for pickling.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaTokenizer class. Represents the current instance of the tokenizer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not explicitly return a value, but it updates the state of the tokenizer object. The state dictionary contains a copy of the instance's attributes with modifications as needed for serialization. |
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.__init__(vocab_file, unk_token='<unk>', bos_token='<s>', eos_token='</s>', pad_token=None, sp_model_kwargs=None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, use_default_system_prompt=False, spaces_between_special_tokens=False, legacy=None, **kwargs)
¶
Initializes a new instance of the LlamaTokenizer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
vocab_file |
The path to the vocabulary file.
TYPE:
|
unk_token |
The unknown token. Defaults to '
TYPE:
|
bos_token |
The beginning of sentence token. Defaults to '
TYPE:
|
eos_token |
The end of sentence token. Defaults to ''.
TYPE:
|
pad_token |
The padding token. Defaults to None.
TYPE:
|
sp_model_kwargs |
Additional arguments for the sentencepiece model. Defaults to None.
TYPE:
|
add_bos_token |
Whether to add the beginning of sentence token. Defaults to True.
TYPE:
|
add_eos_token |
Whether to add the end of sentence token. Defaults to False.
TYPE:
|
clean_up_tokenization_spaces |
Whether to clean up tokenization spaces. Defaults to False.
TYPE:
|
use_default_system_prompt |
Whether to use the default system prompt. Defaults to False.
TYPE:
|
spaces_between_special_tokens |
Whether to add spaces between special tokens. Defaults to False.
TYPE:
|
legacy |
Whether to use the legacy behavior. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Note
You are using the default legacy behavior of the LlamaTokenizer. This means that the previous behavior
will be used, and nothing changes. If you want to use the new behavior, set legacy=False
.
Only set this if you understand the implications and have thoroughly read the reason for this change
as explained in https://github.com/huggingface/transformers/pull/24565.
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.__setstate__(d)
¶
This method 'setstate' in the class 'LlamaTokenizer' is responsible for restoring the state of the object from a dictionary representation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
d |
A dictionary containing the state information to be restored. It should include the necessary data to reforward the object's state.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method does not explicitly return any value, as it operates by directly updating the object's state. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the provided 'd' parameter is not a dictionary. |
AttributeError
|
If the necessary attributes are not present in the dictionary 'd'. |
ValueError
|
If there are issues with loading or reforwarding the 'sp_model' using the provided data. |
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
This method builds inputs with special tokens for a LlamaTokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the LlamaTokenizer class.
|
token_ids_0 |
A list of token IDs representing the first sequence.
|
token_ids_1 |
A list of token IDs representing the second sequence. Defaults to None if not provided.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
A list of token IDs with special tokens added at the beginning and end of the sequences. |
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
if token_ids_1 is None, only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of ids.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/llama/tokenization_llama.py
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
mindnlp.transformers.models.llama.tokenization_llama.LlamaTokenizer.get_spm_processor(from_slow=False)
¶
Retrieves the SentencePieceProcessor instance for the LlamaTokenizer.