Skip to content

longformer

mindnlp.transformers.models.longformer.modeling_longformer

MindSpore Longformer model.

mindnlp.transformers.models.longformer.modeling_longformer.LongformerAttention

Bases: Module

LongformerAttention class represents a self-attention mechanism specific to Longformer models. This class extends the nn.Module class and provides methods for initializing, pruning attention heads, and forwarding attention outputs.

ATTRIBUTE DESCRIPTION
config

Configuration parameters for the LongformerAttention.

layer_id

ID of the attention layer.

METHOD DESCRIPTION
__init__

Initializes the LongformerAttention instance with the given configuration and layer ID.

prune_heads

Prunes the specified attention heads from the self-attention mechanism.

forward

Constructs the attention outputs based on the given inputs and optional masks.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
class LongformerAttention(nn.Module):

    """
    LongformerAttention class represents a self-attention mechanism specific to Longformer models.
    This class extends the nn.Module class and provides methods for initializing, pruning attention heads,
    and forwarding attention outputs.

    Attributes:
        config: Configuration parameters for the LongformerAttention.
        layer_id: ID of the attention layer.

    Methods:
        __init__:
            Initializes the LongformerAttention instance with the given configuration and layer ID.

        prune_heads:
            Prunes the specified attention heads from the self-attention mechanism.

        forward:
            Constructs the attention outputs based on the given inputs and optional masks.
    """
    def __init__(self, config, layer_id=0):
        """
        Initializes a LongformerAttention object.

        Args:
            self (LongformerAttention): The LongformerAttention object itself.
            config (object): The configuration object containing settings for the attention layer.
            layer_id (int, optional): The ID of the layer within the LongformerAttention. Defaults to 0.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.self = LongformerSelfAttention(config, layer_id)
        self.output = LongformerSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        """
        Method to prune attention heads in the LongformerAttention class.

        Args:
            self:
                The instance of the LongformerAttention class.

                - Type: LongformerAttention
                - Purpose: Represents the current instance of the LongformerAttention class.
                - Restrictions: None.

            heads:
                The list of attention heads to be pruned.

                - Type: List[int]
                - Purpose: Specifies the indices of attention heads to be pruned.
                - Restrictions: Must be a list of integers representing valid attention head indices.

        Returns:
            None: This method does not return any value.
                It operates by modifying the internal state of the LongformerAttention instance.

        Raises:
            None.
        """
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        """
        Constructs the LongformerAttention.

        Args:
            self (LongformerAttention): An instance of the LongformerAttention class.
            hidden_states (torch.Tensor): The input hidden states of shape (batch_size, sequence_length, hidden_size).
            attention_mask (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating which
                positions should be attended to. Defaults to None.
            layer_head_mask (torch.Tensor, optional): A binary mask of shape (num_hidden_layers, num_attention_heads) indicating
                which layers and heads should be masked. Defaults to None.
            is_index_masked (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating which
                positions should be masked. Defaults to None.
            is_index_global_attn (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating
                which positions should attend to all other positions. Defaults to None.
            is_global_attn (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating which
                positions should attend to all other positions. Defaults to None.
            output_attentions (bool, optional): Whether to output attentions. Defaults to False.

        Returns:
            tuple: A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size) and
                any additional outputs returned by the self attention module.

        Raises:
            None.
        """
        self_outputs = self.self(
            hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )
        attn_output = self.output(self_outputs[0], hidden_states)
        outputs = (attn_output,) + self_outputs[1:]
        return outputs

mindnlp.transformers.models.longformer.modeling_longformer.LongformerAttention.__init__(config, layer_id=0)

Initializes a LongformerAttention object.

PARAMETER DESCRIPTION
self

The LongformerAttention object itself.

TYPE: LongformerAttention

config

The configuration object containing settings for the attention layer.

TYPE: object

layer_id

The ID of the layer within the LongformerAttention. Defaults to 0.

TYPE: int DEFAULT: 0

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
def __init__(self, config, layer_id=0):
    """
    Initializes a LongformerAttention object.

    Args:
        self (LongformerAttention): The LongformerAttention object itself.
        config (object): The configuration object containing settings for the attention layer.
        layer_id (int, optional): The ID of the layer within the LongformerAttention. Defaults to 0.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.self = LongformerSelfAttention(config, layer_id)
    self.output = LongformerSelfOutput(config)
    self.pruned_heads = set()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerAttention.forward(hidden_states, attention_mask=None, layer_head_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=False)

Constructs the LongformerAttention.

PARAMETER DESCRIPTION
self

An instance of the LongformerAttention class.

TYPE: LongformerAttention

hidden_states

The input hidden states of shape (batch_size, sequence_length, hidden_size).

TYPE: Tensor

attention_mask

A binary mask of shape (batch_size, sequence_length) indicating which positions should be attended to. Defaults to None.

TYPE: Tensor DEFAULT: None

layer_head_mask

A binary mask of shape (num_hidden_layers, num_attention_heads) indicating which layers and heads should be masked. Defaults to None.

TYPE: Tensor DEFAULT: None

is_index_masked

A binary mask of shape (batch_size, sequence_length) indicating which positions should be masked. Defaults to None.

TYPE: Tensor DEFAULT: None

is_index_global_attn

A binary mask of shape (batch_size, sequence_length) indicating which positions should attend to all other positions. Defaults to None.

TYPE: Tensor DEFAULT: None

is_global_attn

A binary mask of shape (batch_size, sequence_length) indicating which positions should attend to all other positions. Defaults to None.

TYPE: Tensor DEFAULT: None

output_attentions

Whether to output attentions. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size) and any additional outputs returned by the self attention module.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
def forward(
    self,
    hidden_states,
    attention_mask=None,
    layer_head_mask=None,
    is_index_masked=None,
    is_index_global_attn=None,
    is_global_attn=None,
    output_attentions=False,
):
    """
    Constructs the LongformerAttention.

    Args:
        self (LongformerAttention): An instance of the LongformerAttention class.
        hidden_states (torch.Tensor): The input hidden states of shape (batch_size, sequence_length, hidden_size).
        attention_mask (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating which
            positions should be attended to. Defaults to None.
        layer_head_mask (torch.Tensor, optional): A binary mask of shape (num_hidden_layers, num_attention_heads) indicating
            which layers and heads should be masked. Defaults to None.
        is_index_masked (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating which
            positions should be masked. Defaults to None.
        is_index_global_attn (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating
            which positions should attend to all other positions. Defaults to None.
        is_global_attn (torch.Tensor, optional): A binary mask of shape (batch_size, sequence_length) indicating which
            positions should attend to all other positions. Defaults to None.
        output_attentions (bool, optional): Whether to output attentions. Defaults to False.

    Returns:
        tuple: A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size) and
            any additional outputs returned by the self attention module.

    Raises:
        None.
    """
    self_outputs = self.self(
        hidden_states,
        attention_mask=attention_mask,
        layer_head_mask=layer_head_mask,
        is_index_masked=is_index_masked,
        is_index_global_attn=is_index_global_attn,
        is_global_attn=is_global_attn,
        output_attentions=output_attentions,
    )
    attn_output = self.output(self_outputs[0], hidden_states)
    outputs = (attn_output,) + self_outputs[1:]
    return outputs

mindnlp.transformers.models.longformer.modeling_longformer.LongformerAttention.prune_heads(heads)

Method to prune attention heads in the LongformerAttention class.

PARAMETER DESCRIPTION
self

The instance of the LongformerAttention class.

  • Type: LongformerAttention
  • Purpose: Represents the current instance of the LongformerAttention class.
  • Restrictions: None.

heads

The list of attention heads to be pruned.

  • Type: List[int]
  • Purpose: Specifies the indices of attention heads to be pruned.
  • Restrictions: Must be a list of integers representing valid attention head indices.

RETURNS DESCRIPTION
None

This method does not return any value. It operates by modifying the internal state of the LongformerAttention instance.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
def prune_heads(self, heads):
    """
    Method to prune attention heads in the LongformerAttention class.

    Args:
        self:
            The instance of the LongformerAttention class.

            - Type: LongformerAttention
            - Purpose: Represents the current instance of the LongformerAttention class.
            - Restrictions: None.

        heads:
            The list of attention heads to be pruned.

            - Type: List[int]
            - Purpose: Specifies the indices of attention heads to be pruned.
            - Restrictions: Must be a list of integers representing valid attention head indices.

    Returns:
        None: This method does not return any value.
            It operates by modifying the internal state of the LongformerAttention instance.

    Raises:
        None.
    """
    if len(heads) == 0:
        return
    heads, index = find_pruneable_heads_and_indices(
        heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
    )

    # Prune linear layers
    self.self.query = prune_linear_layer(self.self.query, index)
    self.self.key = prune_linear_layer(self.self.key, index)
    self.self.value = prune_linear_layer(self.self.value, index)
    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

    # Update hyper params and store pruned heads
    self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
    self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
    self.pruned_heads = self.pruned_heads.union(heads)

mindnlp.transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput dataclass

Bases: ModelOutput

Base class for Longformer's outputs, with potential hidden states, local and global attentions.

PARAMETER DESCRIPTION
last_hidden_state

Sequence of hidden-states at the output of the last layer of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
@dataclass
class LongformerBaseModelOutput(ModelOutput):
    """
    Base class for Longformer's outputs, with potential hidden states, local and global attentions.

    Args:
        last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
            attention_window + 1)`, where `x` is the number of tokens with global attention mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first `x` values) and to every token in the attention window (remaining `attention_window
            + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
            remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
            token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
            (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
            If the attention window contains a token with global attention, the attention weight at the corresponding
            index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
            attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
            accessed from `global_attentions`.
        global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """
    last_hidden_state: mindspore.Tensor
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None
    global_attentions: Optional[Tuple[mindspore.Tensor]] = None

mindnlp.transformers.models.longformer.modeling_longformer.LongformerBaseModelOutputWithPooling dataclass

Bases: ModelOutput

Base class for Longformer's outputs that also contains a pooling of the last hidden states.

PARAMETER DESCRIPTION
last_hidden_state

Sequence of hidden-states at the output of the last layer of the model.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`

pooler_output

Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

TYPE: `mindspore.Tensor` of shape `(batch_size, hidden_size)` DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
@dataclass
class LongformerBaseModelOutputWithPooling(ModelOutput):
    """
    Base class for Longformer's outputs that also contains a pooling of the last hidden states.

    Args:
        last_hidden_state (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (`mindspore.Tensor` of shape `(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token) further processed by a
            Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence
            prediction (classification) objective during pretraining.
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
            attention_window + 1)`, where `x` is the number of tokens with global attention mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first `x` values) and to every token in the attention window (remaining `attention_window
            + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
            remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
            token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
            (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
            If the attention window contains a token with global attention, the attention weight at the corresponding
            index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
            attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
            accessed from `global_attentions`.
        global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """
    last_hidden_state: mindspore.Tensor
    pooler_output: mindspore.Tensor = None
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None
    global_attentions: Optional[Tuple[mindspore.Tensor]] = None

mindnlp.transformers.models.longformer.modeling_longformer.LongformerClassificationHead

Bases: Module

Head for sentence-level classification tasks.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
class LongformerClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""
    def __init__(self, config):
        """
        Initialize the LongformerClassificationHead class.

        Args:
            self: The object itself.
            config (object):
                An object containing configuration parameters.

                - hidden_size (int): The size of the hidden layer.
                - hidden_dropout_prob (float): The dropout probability for the hidden layer.
                - num_labels (int): The number of labels for classification.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, hidden_states, **kwargs):
        """Constructs the Longformer classification head.

        Args:
            self (LongformerClassificationHead): The instance of the LongformerClassificationHead class.
            hidden_states (torch.Tensor): The input hidden states. Shape (batch_size, sequence_length, hidden_size).

        Returns:
            torch.Tensor: The output tensor of shape (batch_size, sequence_length, num_labels),
                representing the classification scores for each label.

        Raises:
            None.
        """
        hidden_states = hidden_states[:, 0, :]  # take <s> token (equiv. to [CLS])
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = ops.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        output = self.out_proj(hidden_states)
        return output

mindnlp.transformers.models.longformer.modeling_longformer.LongformerClassificationHead.__init__(config)

Initialize the LongformerClassificationHead class.

PARAMETER DESCRIPTION
self

The object itself.

config

An object containing configuration parameters.

  • hidden_size (int): The size of the hidden layer.
  • hidden_dropout_prob (float): The dropout probability for the hidden layer.
  • num_labels (int): The number of labels for classification.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
def __init__(self, config):
    """
    Initialize the LongformerClassificationHead class.

    Args:
        self: The object itself.
        config (object):
            An object containing configuration parameters.

            - hidden_size (int): The size of the hidden layer.
            - hidden_dropout_prob (float): The dropout probability for the hidden layer.
            - num_labels (int): The number of labels for classification.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

mindnlp.transformers.models.longformer.modeling_longformer.LongformerClassificationHead.forward(hidden_states, **kwargs)

Constructs the Longformer classification head.

PARAMETER DESCRIPTION
self

The instance of the LongformerClassificationHead class.

TYPE: LongformerClassificationHead

hidden_states

The input hidden states. Shape (batch_size, sequence_length, hidden_size).

TYPE: Tensor

RETURNS DESCRIPTION

torch.Tensor: The output tensor of shape (batch_size, sequence_length, num_labels), representing the classification scores for each label.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
def forward(self, hidden_states, **kwargs):
    """Constructs the Longformer classification head.

    Args:
        self (LongformerClassificationHead): The instance of the LongformerClassificationHead class.
        hidden_states (torch.Tensor): The input hidden states. Shape (batch_size, sequence_length, hidden_size).

    Returns:
        torch.Tensor: The output tensor of shape (batch_size, sequence_length, num_labels),
            representing the classification scores for each label.

    Raises:
        None.
    """
    hidden_states = hidden_states[:, 0, :]  # take <s> token (equiv. to [CLS])
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.dense(hidden_states)
    hidden_states = ops.tanh(hidden_states)
    hidden_states = self.dropout(hidden_states)
    output = self.out_proj(hidden_states)
    return output

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEmbeddings

Bases: Module

Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
class LongformerEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """
    def __init__(self, config):
        """
        Initializes an instance of the LongformerEmbeddings class.

        Args:
            self (object): The instance of the class.
            config (object):
                An object containing configuration parameters for the embeddings.

                - vocab_size (int): The size of the vocabulary.
                - hidden_size (int): The size of the hidden layer.
                - pad_token_id (int): The index of the padding token.
                - type_vocab_size (int): The size of the type vocabulary.
                - layer_norm_eps (float): The epsilon value for layer normalization.
                - hidden_dropout_prob (float): The dropout probability for the hidden layer.
                - max_position_embeddings (int): The maximum position for positional embeddings.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of the expected type.
            ValueError: If the vocab_size, hidden_size, pad_token_id, type_vocab_size, layer_norm_eps,
                hidden_dropout_prob, or max_position_embeddings are not within the expected ranges.
        """
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm([config.hidden_size], eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        '''
        Constructs the LongformerEmbeddings.

        Args:
            self (LongformerEmbeddings): The instance of the LongformerEmbeddings class.
            input_ids (Optional[Tensor]): The input tensor of shape (batch_size, sequence_length).
                Each element represents the token id of a word in the input sequence.
                Default: None.
            token_type_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length).
                Each element represents the token type id of a word in the input sequence.
                Default: None.
            position_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length).
                Each element represents the position id of a word in the input sequence.
                Default: None.
            inputs_embeds (Optional[Tensor]): The tensor of shape (batch_size, sequence_length, embedding_size).
                Each element represents the embedding vector of a word in the input sequence.
                Default: None.

        Returns:
            Tensor: The output tensor of shape (batch_size, sequence_length, embedding_size).
                Each element represents the embedding vector of a word in the input sequence.
                The embedding vector is obtained by adding the input word embeddings, position embeddings,
                and token type embeddings. The resulting tensor is then passed through LayerNorm and dropout.

        Raises:
            None.
        '''
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.shape
        else:
            input_shape = inputs_embeds.shape[:-1]

        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: mindspore.Tensor inputs_embeds:

        Returns: mindspore.Tensor
        """
        input_shape = inputs_embeds.shape[:-1]
        sequence_length = input_shape[1]

        position_ids = ops.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=mindspore.int64
        )
        return position_ids.unsqueeze(0).broadcast_to(input_shape)

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEmbeddings.__init__(config)

Initializes an instance of the LongformerEmbeddings class.

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

config

An object containing configuration parameters for the embeddings.

  • vocab_size (int): The size of the vocabulary.
  • hidden_size (int): The size of the hidden layer.
  • pad_token_id (int): The index of the padding token.
  • type_vocab_size (int): The size of the type vocabulary.
  • layer_norm_eps (float): The epsilon value for layer normalization.
  • hidden_dropout_prob (float): The dropout probability for the hidden layer.
  • max_position_embeddings (int): The maximum position for positional embeddings.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of the expected type.

ValueError

If the vocab_size, hidden_size, pad_token_id, type_vocab_size, layer_norm_eps, hidden_dropout_prob, or max_position_embeddings are not within the expected ranges.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def __init__(self, config):
    """
    Initializes an instance of the LongformerEmbeddings class.

    Args:
        self (object): The instance of the class.
        config (object):
            An object containing configuration parameters for the embeddings.

            - vocab_size (int): The size of the vocabulary.
            - hidden_size (int): The size of the hidden layer.
            - pad_token_id (int): The index of the padding token.
            - type_vocab_size (int): The size of the type vocabulary.
            - layer_norm_eps (float): The epsilon value for layer normalization.
            - hidden_dropout_prob (float): The dropout probability for the hidden layer.
            - max_position_embeddings (int): The maximum position for positional embeddings.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of the expected type.
        ValueError: If the vocab_size, hidden_size, pad_token_id, type_vocab_size, layer_norm_eps,
            hidden_dropout_prob, or max_position_embeddings are not within the expected ranges.
    """
    super().__init__()
    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
    # any TensorFlow checkpoint file
    self.LayerNorm = nn.LayerNorm([config.hidden_size], eps=config.layer_norm_eps)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

    self.padding_idx = config.pad_token_id
    self.position_embeddings = nn.Embedding(
        config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEmbeddings.create_position_ids_from_inputs_embeds(inputs_embeds)

We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

PARAMETER DESCRIPTION
inputs_embeds

mindspore.Tensor inputs_embeds:

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
    """
    We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

    Args:
        inputs_embeds: mindspore.Tensor inputs_embeds:

    Returns: mindspore.Tensor
    """
    input_shape = inputs_embeds.shape[:-1]
    sequence_length = input_shape[1]

    position_ids = ops.arange(
        self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=mindspore.int64
    )
    return position_ids.unsqueeze(0).broadcast_to(input_shape)

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEmbeddings.forward(input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None)

Constructs the LongformerEmbeddings.

PARAMETER DESCRIPTION
self

The instance of the LongformerEmbeddings class.

TYPE: LongformerEmbeddings

input_ids

The input tensor of shape (batch_size, sequence_length). Each element represents the token id of a word in the input sequence. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The tensor of shape (batch_size, sequence_length). Each element represents the token type id of a word in the input sequence. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The tensor of shape (batch_size, sequence_length). Each element represents the position id of a word in the input sequence. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The tensor of shape (batch_size, sequence_length, embedding_size). Each element represents the embedding vector of a word in the input sequence. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

RETURNS DESCRIPTION
Tensor

The output tensor of shape (batch_size, sequence_length, embedding_size). Each element represents the embedding vector of a word in the input sequence. The embedding vector is obtained by adding the input word embeddings, position embeddings, and token type embeddings. The resulting tensor is then passed through LayerNorm and dropout.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
    '''
    Constructs the LongformerEmbeddings.

    Args:
        self (LongformerEmbeddings): The instance of the LongformerEmbeddings class.
        input_ids (Optional[Tensor]): The input tensor of shape (batch_size, sequence_length).
            Each element represents the token id of a word in the input sequence.
            Default: None.
        token_type_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length).
            Each element represents the token type id of a word in the input sequence.
            Default: None.
        position_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length).
            Each element represents the position id of a word in the input sequence.
            Default: None.
        inputs_embeds (Optional[Tensor]): The tensor of shape (batch_size, sequence_length, embedding_size).
            Each element represents the embedding vector of a word in the input sequence.
            Default: None.

    Returns:
        Tensor: The output tensor of shape (batch_size, sequence_length, embedding_size).
            Each element represents the embedding vector of a word in the input sequence.
            The embedding vector is obtained by adding the input word embeddings, position embeddings,
            and token type embeddings. The resulting tensor is then passed through LayerNorm and dropout.

    Raises:
        None.
    '''
    if position_ids is None:
        if input_ids is not None:
            # Create the position ids from the input token ids. Any padded tokens remain padded.
            position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
        else:
            position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

    if input_ids is not None:
        input_shape = input_ids.shape
    else:
        input_shape = inputs_embeds.shape[:-1]

    if token_type_ids is None:
        token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

    if inputs_embeds is None:
        inputs_embeds = self.word_embeddings(input_ids)
    position_embeddings = self.position_embeddings(position_ids)
    token_type_embeddings = self.token_type_embeddings(token_type_ids)

    embeddings = inputs_embeds + position_embeddings + token_type_embeddings
    embeddings = self.LayerNorm(embeddings)
    embeddings = self.dropout(embeddings)
    return embeddings

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEncoder

Bases: Module

The LongformerEncoder class represents an encoder component of the Longformer model. It is used to process input sequences using a stack of Longformer layers.

This class inherits from nn.Module and initializes with a configuration object config. The config parameter specifies the configuration settings for the LongformerEncoder.

The LongformerEncoder consists of a series of Longformer layers. The number of layers is determined by the config.num_hidden_layers parameter. Each layer is represented by an instance of the LongformerLayer class.

The forward method is responsible for processing the input sequence through the Longformer layers. It takes the following parameters:

  • hidden_states: The input hidden states of the sequence.
  • attention_mask: An optional attention mask to mask certain positions in the input sequence. Positions with a value less than 0 are considered masked.
  • head_mask: An optional head mask to mask certain heads in each layer. The shape of the head mask should match the number of layers in the LongformerEncoder.
  • padding_len: The length of padding added to the input sequence. This is used to truncate the hidden states and attention tensors.
  • output_attentions: A boolean flag indicating whether to output attention tensors.
  • output_hidden_states: A boolean flag indicating whether to output hidden states of each layer.
  • return_dict: A boolean flag indicating whether to return the output as a LongformerBaseModelOutput dictionary.

The forward method processes the input sequence through each layer of the LongformerEncoder. It keeps track of the hidden states and attention tensors if the corresponding flags are set. If a head mask is provided, it is applied to the respective layer. At the end, the method returns a LongformerBaseModelOutput containing the last hidden state, hidden states of all layers, attention tensors, and global attention tensors if applicable.

Note

The LongformerEncoder assumes that the input hidden states and attention mask have compatible shapes.

Please refer to the LongformerBaseModelOutput documentation for details on the structure of the output.

Example
>>> config = LongformerConfig(num_hidden_layers=12)
>>> encoder = LongformerEncoder(config)
>>> input_hidden_states = ...
>>> output = encoder.forward(input_hidden_states)
Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
class LongformerEncoder(nn.Module):

    """
    The `LongformerEncoder` class represents an encoder component of the Longformer model.
    It is used to process input sequences using a stack of Longformer layers.

    This class inherits from `nn.Module` and initializes with a configuration object `config`.
    The `config` parameter specifies the configuration settings for the LongformerEncoder.

    The LongformerEncoder consists of a series of Longformer layers. The number of layers is determined by the
    `config.num_hidden_layers` parameter. Each layer is represented by an instance of the `LongformerLayer` class.

    The `forward` method is responsible for processing the input sequence through the Longformer layers.
    It takes the following parameters:

    - `hidden_states`: The input hidden states of the sequence.
    - `attention_mask`: An optional attention mask to mask certain positions in the input sequence.
    Positions with a value less than 0 are considered masked.
    - `head_mask`: An optional head mask to mask certain heads in each layer.
    The shape of the head mask should match the number of layers in the LongformerEncoder.
    - `padding_len`: The length of padding added to the input sequence.
    This is used to truncate the hidden states and attention tensors.
    - `output_attentions`: A boolean flag indicating whether to output attention tensors.
    - `output_hidden_states`: A boolean flag indicating whether to output hidden states of each layer.
    - `return_dict`: A boolean flag indicating whether to return the output as a LongformerBaseModelOutput dictionary.

    The `forward` method processes the input sequence through each layer of the LongformerEncoder.
    It keeps track of the hidden states and attention tensors if the corresponding flags are set.
    If a head mask is provided, it is applied to the respective layer. At the end, the method returns a
    LongformerBaseModelOutput containing the last hidden state, hidden states of all layers, attention tensors,
    and global attention tensors if applicable.

    Note:
        The LongformerEncoder assumes that the input hidden states and attention mask have compatible shapes.

    Please refer to the LongformerBaseModelOutput documentation for details on the structure of the output.

    Example:
        ```python
        >>> config = LongformerConfig(num_hidden_layers=12)
        >>> encoder = LongformerEncoder(config)
        >>> input_hidden_states = ...
        >>> output = encoder.forward(input_hidden_states)
        ```
    """
    def __init__(self, config):
        """
        Initializes a LongformerEncoder object with the provided configuration.

        Args:
            self (object): The LongformerEncoder instance.
            config (dict): A dictionary containing configuration parameters for the LongformerEncoder.
                The configuration dictionary should include the following keys:

                - num_hidden_layers (int): The number of hidden layers in the encoder.

        Returns:
            None.

        Raises:
            TypeError: If the provided 'config' parameter is not a dictionary.
            ValueError: If the 'num_hidden_layers' key is missing in the configuration dictionary.
            ValueError: If the 'num_hidden_layers' value is not a positive integer.
            Other potential exceptions related to creating LongformerLayer objects within the CellList.
        """
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        padding_len=0,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        """
        This method forwards the LongformerEncoder by processing the provided input parameters.

        Args:
            self: The instance of the LongformerEncoder class.
            hidden_states (torch.Tensor): The input hidden states to be processed.
            attention_mask (torch.Tensor, optional):
                Masking tensor to filter out certain tokens during attention calculation. Default is None.
            head_mask (torch.Tensor, optional):
                Masking tensor to filter out certain heads in the attention mechanism. Default is None.
            padding_len (int, optional): The length of padding to be removed from the final hidden states. Default is 0.
            output_attentions (bool, optional): Flag to indicate whether to output attentions. Default is False.
            output_hidden_states (bool, optional): Flag to indicate whether to output hidden states. Default is False.
            return_dict (bool, optional): Flag to indicate whether to return the results as a dictionary. Default is True.

        Returns:
            None: The method directly modifies the hidden states and produces output through side effects.

        Raises:
            AssertionError: If the head_mask does not have the correct shape for the number of layers
                in the LongformerEncoder.

        """
        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0

        # Record `is_global_attn == True` to enable ONNX export
        is_global_attn = is_index_global_attn.flatten().any().item()

        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None  # All local attentions.
        all_global_attentions = () if (output_attentions and is_global_attn) else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.shape[0] == (
                len(self.layer)
            ), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.shape[0]}."
        for idx, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
                hidden_states,
                attention_mask=attention_mask,
                layer_head_mask=head_mask[idx] if head_mask is not None else None,
                is_index_masked=is_index_masked,
                is_index_global_attn=is_index_global_attn,
                is_global_attn=is_global_attn,
                output_attentions=output_attentions,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
                all_attentions = all_attentions + (layer_outputs[1].swapaxes(1, 2),)

                if is_global_attn:
                    # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
                    all_global_attentions = all_global_attentions + (layer_outputs[2].swapaxes(2, 3),)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        # undo padding if necessary
        # unpad `hidden_states` because the calling function is expecting a length == input_ids.shape[1]
        hidden_states = hidden_states[:, : hidden_states.shape[1] - padding_len]
        if output_hidden_states:
            all_hidden_states = tuple(state[:, : state.shape[1] - padding_len] for state in all_hidden_states)

        if output_attentions:
            all_attentions = tuple(state[:, :, : state.shape[2] - padding_len, :] for state in all_attentions)

        if not return_dict:
            return tuple(
                v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None
            )
        return LongformerBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            global_attentions=all_global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEncoder.__init__(config)

Initializes a LongformerEncoder object with the provided configuration.

PARAMETER DESCRIPTION
self

The LongformerEncoder instance.

TYPE: object

config

A dictionary containing configuration parameters for the LongformerEncoder. The configuration dictionary should include the following keys:

  • num_hidden_layers (int): The number of hidden layers in the encoder.

TYPE: dict

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided 'config' parameter is not a dictionary.

ValueError

If the 'num_hidden_layers' key is missing in the configuration dictionary.

ValueError

If the 'num_hidden_layers' value is not a positive integer.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
def __init__(self, config):
    """
    Initializes a LongformerEncoder object with the provided configuration.

    Args:
        self (object): The LongformerEncoder instance.
        config (dict): A dictionary containing configuration parameters for the LongformerEncoder.
            The configuration dictionary should include the following keys:

            - num_hidden_layers (int): The number of hidden layers in the encoder.

    Returns:
        None.

    Raises:
        TypeError: If the provided 'config' parameter is not a dictionary.
        ValueError: If the 'num_hidden_layers' key is missing in the configuration dictionary.
        ValueError: If the 'num_hidden_layers' value is not a positive integer.
        Other potential exceptions related to creating LongformerLayer objects within the CellList.
    """
    super().__init__()
    self.config = config
    self.layer = nn.ModuleList([LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)])

mindnlp.transformers.models.longformer.modeling_longformer.LongformerEncoder.forward(hidden_states, attention_mask=None, head_mask=None, padding_len=0, output_attentions=False, output_hidden_states=False, return_dict=True)

This method forwards the LongformerEncoder by processing the provided input parameters.

PARAMETER DESCRIPTION
self

The instance of the LongformerEncoder class.

hidden_states

The input hidden states to be processed.

TYPE: Tensor

attention_mask

Masking tensor to filter out certain tokens during attention calculation. Default is None.

TYPE: Tensor DEFAULT: None

head_mask

Masking tensor to filter out certain heads in the attention mechanism. Default is None.

TYPE: Tensor DEFAULT: None

padding_len

The length of padding to be removed from the final hidden states. Default is 0.

TYPE: int DEFAULT: 0

output_attentions

Flag to indicate whether to output attentions. Default is False.

TYPE: bool DEFAULT: False

output_hidden_states

Flag to indicate whether to output hidden states. Default is False.

TYPE: bool DEFAULT: False

return_dict

Flag to indicate whether to return the results as a dictionary. Default is True.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
None

The method directly modifies the hidden states and produces output through side effects.

RAISES DESCRIPTION
AssertionError

If the head_mask does not have the correct shape for the number of layers in the LongformerEncoder.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
def forward(
    self,
    hidden_states,
    attention_mask=None,
    head_mask=None,
    padding_len=0,
    output_attentions=False,
    output_hidden_states=False,
    return_dict=True,
):
    """
    This method forwards the LongformerEncoder by processing the provided input parameters.

    Args:
        self: The instance of the LongformerEncoder class.
        hidden_states (torch.Tensor): The input hidden states to be processed.
        attention_mask (torch.Tensor, optional):
            Masking tensor to filter out certain tokens during attention calculation. Default is None.
        head_mask (torch.Tensor, optional):
            Masking tensor to filter out certain heads in the attention mechanism. Default is None.
        padding_len (int, optional): The length of padding to be removed from the final hidden states. Default is 0.
        output_attentions (bool, optional): Flag to indicate whether to output attentions. Default is False.
        output_hidden_states (bool, optional): Flag to indicate whether to output hidden states. Default is False.
        return_dict (bool, optional): Flag to indicate whether to return the results as a dictionary. Default is True.

    Returns:
        None: The method directly modifies the hidden states and produces output through side effects.

    Raises:
        AssertionError: If the head_mask does not have the correct shape for the number of layers
            in the LongformerEncoder.

    """
    is_index_masked = attention_mask < 0
    is_index_global_attn = attention_mask > 0

    # Record `is_global_attn == True` to enable ONNX export
    is_global_attn = is_index_global_attn.flatten().any().item()

    all_hidden_states = () if output_hidden_states else None
    all_attentions = () if output_attentions else None  # All local attentions.
    all_global_attentions = () if (output_attentions and is_global_attn) else None

    # check if head_mask has a correct number of layers specified if desired
    if head_mask is not None:
        assert head_mask.shape[0] == (
            len(self.layer)
        ), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.shape[0]}."
    for idx, layer_module in enumerate(self.layer):
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        layer_outputs = layer_module(
            hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=head_mask[idx] if head_mask is not None else None,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )
        hidden_states = layer_outputs[0]

        if output_attentions:
            # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
            all_attentions = all_attentions + (layer_outputs[1].swapaxes(1, 2),)

            if is_global_attn:
                # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
                all_global_attentions = all_global_attentions + (layer_outputs[2].swapaxes(2, 3),)

    # Add last layer
    if output_hidden_states:
        all_hidden_states = all_hidden_states + (hidden_states,)

    # undo padding if necessary
    # unpad `hidden_states` because the calling function is expecting a length == input_ids.shape[1]
    hidden_states = hidden_states[:, : hidden_states.shape[1] - padding_len]
    if output_hidden_states:
        all_hidden_states = tuple(state[:, : state.shape[1] - padding_len] for state in all_hidden_states)

    if output_attentions:
        all_attentions = tuple(state[:, :, : state.shape[2] - padding_len, :] for state in all_attentions)

    if not return_dict:
        return tuple(
            v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None
        )
    return LongformerBaseModelOutput(
        last_hidden_state=hidden_states,
        hidden_states=all_hidden_states,
        attentions=all_attentions,
        global_attentions=all_global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMaskedLM

Bases: LongformerPreTrainedModel

This class represents a Longformer model for masked language modeling tasks. It inherits from the LongformerPreTrainedModel class and includes methods for initializing the model, getting and setting output embeddings, and forwarding the model for masked language modeling tasks. The forward method accepts various input tensors and optional keyword arguments, and returns the LongformerMaskedLMOutput. The method also includes an illustrative example of using the model for mask filling. The class provides detailed explanations for various parameters and return values, and includes usage examples for initializing the tokenizer and model, as well as performing masked language modeling tasks with long input sequences.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
class LongformerForMaskedLM(LongformerPreTrainedModel):

    """
    This class represents a Longformer model for masked language modeling tasks. It inherits from the
    LongformerPreTrainedModel class and includes methods for initializing the model, getting and setting output
    embeddings, and forwarding the model for masked language modeling tasks. The forward method accepts various
    input tensors and optional keyword arguments, and returns the LongformerMaskedLMOutput. The method also includes
    an illustrative example of using the model for mask filling. The class provides detailed explanations for various
    parameters and return values, and includes usage examples for initializing the tokenizer and model, as well as
    performing masked language modeling tasks with long input sequences.
    """
    _tied_weights_keys = ["lm_head.decoder"]

    def __init__(self, config):
        """
        Initializes a new instance of the LongformerForMaskedLM class.

        Args:
            self: The object itself.
            config: An instance of the LongformerConfig class containing the configuration parameters for the Longformer model.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.lm_head = LongformerLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        """
        Returns the output embeddings for the Longformer model.

        Args:
            self (LongformerForMaskedLM): The object instance of the LongformerForMaskedLM class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        """
        This method sets the output embeddings for the LongformerForMaskedLM model.

        Args:
            self (LongformerForMaskedLM): The instance of the LongformerForMaskedLM class.
            new_embeddings (torch.nn.Module): The new embeddings to be set as the output embeddings for the model.
                It should be an instance of torch.nn.Module.

        Returns:
            None.

        Raises:
            None.
        """
        self.lm_head.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LongformerMaskedLMOutput]:
        r"""
        Args:
            labels (`mindspore.int64Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
                config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
                loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
            kwargs (`Dict[str, any]`, optional, defaults to *{}*):
                Used to hide legacy arguments that have been deprecated.

        Returns:
            Union[Tuple, LongformerMaskedLMOutput]

        Example:
            ```python
            >>> from transformers import AutoTokenizer, LongformerForMaskedLM
            ...
            >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
            >>> model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
            ```

            Let's try a very long input.

            ```python
            >>> TXT = (
            ...     "My friends are <mask> but they eat too many carbs."
            ...     + " That's why I decide not to eat with them." * 300
            ... )
            >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
            >>> logits = model(input_ids).logits
            ...
            >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
            >>> probs = logits[0, masked_index].softmax(dim=0)
            >>> values, predictions = probs.topk(5)
            ...
            >>> tokenizer.decode(predictions).split()
            ['healthy', 'skinny', 'thin', 'good', 'vegetarian']
            ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return LongformerMaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMaskedLM.__init__(config)

Initializes a new instance of the LongformerForMaskedLM class.

PARAMETER DESCRIPTION
self

The object itself.

config

An instance of the LongformerConfig class containing the configuration parameters for the Longformer model.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
def __init__(self, config):
    """
    Initializes a new instance of the LongformerForMaskedLM class.

    Args:
        self: The object itself.
        config: An instance of the LongformerConfig class containing the configuration parameters for the Longformer model.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    self.longformer = LongformerModel(config, add_pooling_layer=False)
    self.lm_head = LongformerLMHead(config)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMaskedLM.forward(input_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

TYPE: `mindspore.int64Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

kwargs

Used to hide legacy arguments that have been deprecated.

TYPE: `Dict[str, any]`, optional, defaults to *{}*

RETURNS DESCRIPTION
Union[Tuple, LongformerMaskedLMOutput]

Union[Tuple, LongformerMaskedLMOutput]

Example
>>> from transformers import AutoTokenizer, LongformerForMaskedLM
...
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
>>> model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")

Let's try a very long input.

>>> TXT = (
...     "My friends are <mask> but they eat too many carbs."
...     + " That's why I decide not to eat with them." * 300
... )
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
...
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
...
>>> tokenizer.decode(predictions).split()
['healthy', 'skinny', 'thin', 'good', 'vegetarian']
Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerMaskedLMOutput]:
    r"""
    Args:
        labels (`mindspore.int64Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        kwargs (`Dict[str, any]`, optional, defaults to *{}*):
            Used to hide legacy arguments that have been deprecated.

    Returns:
        Union[Tuple, LongformerMaskedLMOutput]

    Example:
        ```python
        >>> from transformers import AutoTokenizer, LongformerForMaskedLM
        ...
        >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
        >>> model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
        ```

        Let's try a very long input.

        ```python
        >>> TXT = (
        ...     "My friends are <mask> but they eat too many carbs."
        ...     + " That's why I decide not to eat with them." * 300
        ... )
        >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
        >>> logits = model(input_ids).logits
        ...
        >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
        >>> probs = logits[0, masked_index].softmax(dim=0)
        >>> values, predictions = probs.topk(5)
        ...
        >>> tokenizer.decode(predictions).split()
        ['healthy', 'skinny', 'thin', 'good', 'vegetarian']
        ```
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.longformer(
        input_ids,
        attention_mask=attention_mask,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]
    prediction_scores = self.lm_head(sequence_output)

    masked_lm_loss = None
    if labels is not None:
        masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

    if not return_dict:
        output = (prediction_scores,) + outputs[2:]
        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

    return LongformerMaskedLMOutput(
        loss=masked_lm_loss,
        logits=prediction_scores,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        global_attentions=outputs.global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMaskedLM.get_output_embeddings()

Returns the output embeddings for the Longformer model.

PARAMETER DESCRIPTION
self

The object instance of the LongformerForMaskedLM class.

TYPE: LongformerForMaskedLM

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
def get_output_embeddings(self):
    """
    Returns the output embeddings for the Longformer model.

    Args:
        self (LongformerForMaskedLM): The object instance of the LongformerForMaskedLM class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.lm_head.decoder

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMaskedLM.set_output_embeddings(new_embeddings)

This method sets the output embeddings for the LongformerForMaskedLM model.

PARAMETER DESCRIPTION
self

The instance of the LongformerForMaskedLM class.

TYPE: LongformerForMaskedLM

new_embeddings

The new embeddings to be set as the output embeddings for the model. It should be an instance of torch.nn.Module.

TYPE: Module

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
def set_output_embeddings(self, new_embeddings):
    """
    This method sets the output embeddings for the LongformerForMaskedLM model.

    Args:
        self (LongformerForMaskedLM): The instance of the LongformerForMaskedLM class.
        new_embeddings (torch.nn.Module): The new embeddings to be set as the output embeddings for the model.
            It should be an instance of torch.nn.Module.

    Returns:
        None.

    Raises:
        None.
    """
    self.lm_head.decoder = new_embeddings

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMultipleChoice

Bases: LongformerPreTrainedModel

This class represents a Longformer model for multiple choice tasks. It is a subclass of LongformerPreTrainedModel.

The LongformerForMultipleChoice class includes methods to initialize the model, forward the model, and compute the multiple choice classification loss. It also provides a method to retrieve the model output.

ATTRIBUTE DESCRIPTION
longformer

The Longformer model used for encoding the input.

TYPE: LongformerModel

dropout

The dropout layer applied to the encoded output.

TYPE: Dropout

classifier

The dense layer used for classification.

TYPE: Dense

METHOD DESCRIPTION
__init__

Initializes the LongformerForMultipleChoice model with the given configuration.

forward

Constructs the LongformerForMultipleChoice model with the given inputs and returns the model output.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
class LongformerForMultipleChoice(LongformerPreTrainedModel):

    """
    This class represents a Longformer model for multiple choice tasks. It is a subclass of LongformerPreTrainedModel.

    The LongformerForMultipleChoice class includes methods to initialize the model, forward the model,
    and compute the multiple choice classification loss. It also provides a method to retrieve the model output.

    Attributes:
        longformer (LongformerModel): The Longformer model used for encoding the input.
        dropout (Dropout): The dropout layer applied to the encoded output.
        classifier (Dense): The dense layer used for classification.

    Methods:
        __init__: Initializes the LongformerForMultipleChoice model with the given configuration.
        forward: Constructs the LongformerForMultipleChoice model with the given inputs and returns the model output.
    """
    def __init__(self, config):
        """
        Initializes a new instance of the LongformerForMultipleChoice class.

        Args:
            self: The instance of the class.
            config (LongformerConfig): The configuration object containing various settings for the Longformer model.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of type LongformerConfig.
            ValueError: If the config parameter is missing required settings or contains invalid values.
            RuntimeError: If there are any issues during the initialization process.
        """
        super().__init__(config)

        self.longformer = LongformerModel(config)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LongformerMultipleChoiceModelOutput]:
        r"""
        Args:
            labels (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
                num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
                `input_ids` above)
        """
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # set global attention on question tokens
        if global_attention_mask is None and input_ids is not None:
            logger.info("Initializing global attention on multiple choice...")
            # put global attention on all tokens after `config.sep_token_id`
            global_attention_mask = ops.stack(
                [
                    _compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False)
                    for i in range(num_choices)
                ],
                axis=1,
            )

        flat_input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
        flat_position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
        flat_global_attention_mask = (
            global_attention_mask.view(-1, global_attention_mask.shape[-1])
            if global_attention_mask is not None
            else None
        )
        flat_inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1])
            if inputs_embeds is not None
            else None
        )

        outputs = self.longformer(
            flat_input_ids,
            position_ids=flat_position_ids,
            token_type_ids=flat_token_type_ids,
            attention_mask=flat_attention_mask,
            global_attention_mask=flat_global_attention_mask,
            head_mask=head_mask,
            inputs_embeds=flat_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return LongformerMultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMultipleChoice.__init__(config)

Initializes a new instance of the LongformerForMultipleChoice class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing various settings for the Longformer model.

TYPE: LongformerConfig

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of type LongformerConfig.

ValueError

If the config parameter is missing required settings or contains invalid values.

RuntimeError

If there are any issues during the initialization process.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
def __init__(self, config):
    """
    Initializes a new instance of the LongformerForMultipleChoice class.

    Args:
        self: The instance of the class.
        config (LongformerConfig): The configuration object containing various settings for the Longformer model.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of type LongformerConfig.
        ValueError: If the config parameter is missing required settings or contains invalid values.
        RuntimeError: If there are any issues during the initialization process.
    """
    super().__init__(config)

    self.longformer = LongformerModel(config)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, 1)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForMultipleChoice.forward(input_ids=None, token_type_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, labels=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

TYPE: `mindspore.int64Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerMultipleChoiceModelOutput]:
    r"""
    Args:
        labels (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
    """
    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # set global attention on question tokens
    if global_attention_mask is None and input_ids is not None:
        logger.info("Initializing global attention on multiple choice...")
        # put global attention on all tokens after `config.sep_token_id`
        global_attention_mask = ops.stack(
            [
                _compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False)
                for i in range(num_choices)
            ],
            axis=1,
        )

    flat_input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
    flat_position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
    flat_token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
    flat_attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
    flat_global_attention_mask = (
        global_attention_mask.view(-1, global_attention_mask.shape[-1])
        if global_attention_mask is not None
        else None
    )
    flat_inputs_embeds = (
        inputs_embeds.view(-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1])
        if inputs_embeds is not None
        else None
    )

    outputs = self.longformer(
        flat_input_ids,
        position_ids=flat_position_ids,
        token_type_ids=flat_token_type_ids,
        attention_mask=flat_attention_mask,
        global_attention_mask=flat_global_attention_mask,
        head_mask=head_mask,
        inputs_embeds=flat_inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    pooled_output = outputs[1]

    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)
    reshaped_logits = logits.view(-1, num_choices)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(reshaped_logits, labels)

    if not return_dict:
        output = (reshaped_logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return LongformerMultipleChoiceModelOutput(
        loss=loss,
        logits=reshaped_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        global_attentions=outputs.global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForQuestionAnswering

Bases: LongformerPreTrainedModel

This class represents a Longformer model for question answering tasks. It inherits from the LongformerPreTrainedModel class.

The LongformerForQuestionAnswering class contains methods for forwarding and running the model. The forwardor initializes the model with the given configuration. The model architecture consists of a LongformerModel and a linear layer for question answering.

The forward method is used to perform question answering on the input data. It takes several input tensors including input_ids, attention_mask, global_attention_mask, head_mask, token_type_ids, position_ids, and inputs_embeds. It also takes start_positions and end_positions as optional labels for the start and end positions of the answer span. The method returns a tuple of outputs including start_logits and end_logits which represent the predicted probabilities for the start and end positions of the answer span.

If start_positions and end_positions are provided, the method also computes the token classification loss based on the predicted logits and the provided labels. The loss is averaged over the batch.

Note

The method automatically sets the global attention on question tokens. If global_attention_mask is not provided, it is automatically generated based on the input_ids and the sep_token_id from the model configuration.

The LongformerForQuestionAnswering class also provides an example usage of the model for question answering tasks using the forward method. The example demonstrates how to use the model to predict the answer span given a question and a passage.

Please refer to the example code for more details on how to use the LongformerForQuestionAnswering class for question answering tasks.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
class LongformerForQuestionAnswering(LongformerPreTrainedModel):

    """
    This class represents a Longformer model for question answering tasks.
    It inherits from the LongformerPreTrainedModel class.

    The LongformerForQuestionAnswering class contains methods for forwarding and running the model.
    The forwardor initializes the model with the given configuration. The model architecture consists of a
    LongformerModel and a linear layer for question answering.

    The forward method is used to perform question answering on the input data. It takes several input tensors
    including input_ids, attention_mask, global_attention_mask, head_mask, token_type_ids, position_ids,
    and inputs_embeds. It also takes start_positions and end_positions as optional labels for the start and end
    positions of the answer span. The method returns a tuple of outputs including start_logits and end_logits which
    represent the predicted probabilities for the start and end positions of the answer span.

    If start_positions and end_positions are provided, the method also computes the token classification loss
    based on the predicted logits and the provided labels. The loss is averaged over the batch.

    Note:
        The method automatically sets the global attention on question tokens. If global_attention_mask is not provided,
        it is automatically generated based on the input_ids and the sep_token_id from the model configuration.

    The LongformerForQuestionAnswering class also provides an example usage of the model for question answering tasks
    using the forward method. The example demonstrates how to use the model to predict the answer span given a question
    and a passage.

    Please refer to the example code for more details on how to use the LongformerForQuestionAnswering class for
    question answering tasks.
    """
    def __init__(self, config):
        """
        Initializes a new instance of the LongformerForQuestionAnswering class.

        Args:
            self: The object itself.
            config: An instance of a configuration class representing the model configuration.
                It should contain the following attributes:

                - num_labels (int): The number of labels for the question answering task.

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]:
        r"""
        Args:
            start_positions (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the start of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
            end_positions (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the end of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.

        Returns:
            Union[Tuple, LongformerQuestionAnsweringModelOutput]

        Example:
            ```python
            >>> from transformers import AutoTokenizer, LongformerForQuestionAnswering
            ...
            ...
            >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
            >>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
            ...
            >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
            >>> encoding = tokenizer(question, text, return_tensors="pt")
            >>> input_ids = encoding["input_ids"]
            ...
            >>> # default is local attention everywhere
            >>> # the forward method will automatically set global attention on question tokens
            >>> attention_mask = encoding["attention_mask"]
            ...
            >>> outputs = model(input_ids, attention_mask=attention_mask)
            >>> start_logits = outputs.start_logits
            >>> end_logits = outputs.end_logits
            >>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
            ...
            >>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1]
            >>> answer = tokenizer.decode(
            ...     tokenizer.convert_tokens_to_ids(answer_tokens)
            ... )  # remove space prepending space token
            ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if global_attention_mask is None:
            if input_ids is None:
                logger.warning(
                    "It is not possible to automatically generate the `global_attention_mask` because input_ids is"
                    " None. Please make sure that it is correctly set."
                )
            else:
                # set global attention on question tokens automatically
                global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id)

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return LongformerQuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForQuestionAnswering.__init__(config)

Initializes a new instance of the LongformerForQuestionAnswering class.

PARAMETER DESCRIPTION
self

The object itself.

config

An instance of a configuration class representing the model configuration. It should contain the following attributes:

  • num_labels (int): The number of labels for the question answering task.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
def __init__(self, config):
    """
    Initializes a new instance of the LongformerForQuestionAnswering class.

    Args:
        self: The object itself.
        config: An instance of a configuration class representing the model configuration.
            It should contain the following attributes:

            - num_labels (int): The number of labels for the question answering task.

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.longformer = LongformerModel(config, add_pooling_layer=False)
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForQuestionAnswering.forward(input_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
start_positions

Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.int64Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

end_positions

Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.int64Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, LongformerQuestionAnsweringModelOutput]

Union[Tuple, LongformerQuestionAnsweringModelOutput]

Example
>>> from transformers import AutoTokenizer, LongformerForQuestionAnswering
...
...
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
>>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
...
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> encoding = tokenizer(question, text, return_tensors="pt")
>>> input_ids = encoding["input_ids"]
...
>>> # default is local attention everywhere
>>> # the forward method will automatically set global attention on question tokens
>>> attention_mask = encoding["attention_mask"]
...
>>> outputs = model(input_ids, attention_mask=attention_mask)
>>> start_logits = outputs.start_logits
>>> end_logits = outputs.end_logits
>>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
...
>>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1]
>>> answer = tokenizer.decode(
...     tokenizer.convert_tokens_to_ids(answer_tokens)
... )  # remove space prepending space token
Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]:
    r"""
    Args:
        start_positions (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.

    Returns:
        Union[Tuple, LongformerQuestionAnsweringModelOutput]

    Example:
        ```python
        >>> from transformers import AutoTokenizer, LongformerForQuestionAnswering
        ...
        ...
        >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
        >>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
        ...
        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        >>> encoding = tokenizer(question, text, return_tensors="pt")
        >>> input_ids = encoding["input_ids"]
        ...
        >>> # default is local attention everywhere
        >>> # the forward method will automatically set global attention on question tokens
        >>> attention_mask = encoding["attention_mask"]
        ...
        >>> outputs = model(input_ids, attention_mask=attention_mask)
        >>> start_logits = outputs.start_logits
        >>> end_logits = outputs.end_logits
        >>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
        ...
        >>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1]
        >>> answer = tokenizer.decode(
        ...     tokenizer.convert_tokens_to_ids(answer_tokens)
        ... )  # remove space prepending space token
        ```
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if global_attention_mask is None:
        if input_ids is None:
            logger.warning(
                "It is not possible to automatically generate the `global_attention_mask` because input_ids is"
                " None. Please make sure that it is correctly set."
            )
        else:
            # set global attention on question tokens automatically
            global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id)

    outputs = self.longformer(
        input_ids,
        attention_mask=attention_mask,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + outputs[2:]
        return ((total_loss,) + output) if total_loss is not None else output

    return LongformerQuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        global_attentions=outputs.global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForSequenceClassification

Bases: LongformerPreTrainedModel

This class represents a Longformer model for sequence classification tasks. It extends the functionality of the LongformerPreTrainedModel class by adding specific methods for sequence classification.

The class includes an initialization method (init) that sets up the model with the provided configuration. It also provides a forward method for processing input data and generating classification outputs. The forward method supports various parameters for fine-tuning the model and computing classification losses.

When using this class, users can pass input data such as input_ids, attention_mask, global_attention_mask, and other optional tensors to perform sequence classification. The class handles different types of classification tasks based on the configuration provided, such as regression, single-label classification, or multi-label classification.

Additionally, the LongformerForSequenceClassification class offers flexibility in returning output in different formats, including returning a tuple of loss and outputs or a LongformerSequenceClassifierOutput object containing detailed classification results.

Overall, the LongformerForSequenceClassification class provides a comprehensive solution for leveraging Longformer models in sequence classification tasks within the specified framework.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
class LongformerForSequenceClassification(LongformerPreTrainedModel):

    """
    This class represents a Longformer model for sequence classification tasks. It extends the functionality of the
    LongformerPreTrainedModel class by adding specific methods for sequence classification.

    The class includes an initialization method (__init__) that sets up the model with the provided configuration.
    It also provides a forward method for processing input data and generating classification outputs.
    The forward method supports various parameters for fine-tuning the model and computing classification losses.

    When using this class, users can pass input data such as input_ids, attention_mask, global_attention_mask, and
    other optional tensors to perform sequence classification. The class handles different types of classification
    tasks based on the configuration provided, such as regression, single-label classification, or multi-label
    classification.

    Additionally, the LongformerForSequenceClassification class offers flexibility in returning output in different
    formats, including returning a tuple of loss and outputs or a LongformerSequenceClassifierOutput object containing
    detailed classification results.

    Overall, the LongformerForSequenceClassification class provides a comprehensive solution for leveraging Longformer
    models in sequence classification tasks within the specified framework.
    """
    def __init__(self, config):
        """
        Initializes a LongformerForSequenceClassification instance.

        Args:
            self (LongformerForSequenceClassification): The instance of the LongformerForSequenceClassification class.
            config: A configuration object containing settings for the Longformer model.
                This parameter is required to instantiate the LongformerForSequenceClassification.
                It should include the number of labels for classification and other necessary configuration settings.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.classifier = LongformerClassificationHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LongformerSequenceClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if global_attention_mask is None:
            logger.info("Initializing global attention on CLS token...")
            global_attention_mask = ops.zeros_like(input_ids)
            # global attention on cls token
            global_attention_mask[:, 0] = 1

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy_with_logits(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return LongformerSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForSequenceClassification.__init__(config)

Initializes a LongformerForSequenceClassification instance.

PARAMETER DESCRIPTION
self

The instance of the LongformerForSequenceClassification class.

TYPE: LongformerForSequenceClassification

config

A configuration object containing settings for the Longformer model. This parameter is required to instantiate the LongformerForSequenceClassification. It should include the number of labels for classification and other necessary configuration settings.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
def __init__(self, config):
    """
    Initializes a LongformerForSequenceClassification instance.

    Args:
        self (LongformerForSequenceClassification): The instance of the LongformerForSequenceClassification class.
        config: A configuration object containing settings for the Longformer model.
            This parameter is required to instantiate the LongformerForSequenceClassification.
            It should include the number of labels for classification and other necessary configuration settings.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.num_labels = config.num_labels
    self.config = config

    self.longformer = LongformerModel(config, add_pooling_layer=False)
    self.classifier = LongformerClassificationHead(config)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForSequenceClassification.forward(input_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.int64Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerSequenceClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.int64Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if global_attention_mask is None:
        logger.info("Initializing global attention on CLS token...")
        global_attention_mask = ops.zeros_like(input_ids)
        # global attention on cls token
        global_attention_mask[:, 0] = 1

    outputs = self.longformer(
        input_ids,
        attention_mask=attention_mask,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy_with_logits(logits, labels)

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return LongformerSequenceClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        global_attentions=outputs.global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForTokenClassification

Bases: LongformerPreTrainedModel

This class represents a Longformer model for token classification tasks. It is designed for token classification tasks where the goal is to assign labels to individual tokens in a sequence. The class inherits from LongformerPreTrainedModel and includes methods for model initialization and forward pass to generate token classification outputs.

The class's forwardor initializes the LongformerForTokenClassification model with the provided configuration. It sets up the necessary components such as the LongformerModel, dropout layer, and classifier for token classification.

The 'forward' method takes input tensors such as input_ids, attention_mask, token_type_ids, etc., and returns token classification outputs. It utilizes the Longformer model to generate sequence outputs, applies dropout, and passes the output through a classifier to obtain logits. If labels are provided, it computes the cross-entropy loss. The method returns a Tuple containing loss and token classification outputs, based on the return_dict parameter.

Note that labels should be indices in the range [0, ..., config.num_labels - 1]. The LongformerForTokenClassification class provides functionality for handling token classification tasks efficiently and can be used in various natural language processing applications.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
class LongformerForTokenClassification(LongformerPreTrainedModel):

    """
    This class represents a Longformer model for token classification tasks. It is designed for token classification
    tasks where the goal is to assign labels to individual tokens in a sequence. The class inherits from
    LongformerPreTrainedModel and includes methods for model initialization and forward pass to generate token
    classification outputs.

    The class's forwardor initializes the LongformerForTokenClassification model with the provided configuration.
    It sets up the necessary components such as the LongformerModel, dropout layer, and classifier for token
    classification.

    The 'forward' method takes input tensors such as input_ids, attention_mask, token_type_ids, etc.,
    and returns token classification outputs. It utilizes the Longformer model to generate sequence outputs,
    applies dropout, and passes the output through a classifier to obtain logits. If labels are provided,
    it computes the cross-entropy loss. The method returns a Tuple containing loss and token classification
    outputs, based on the return_dict parameter.

    Note that labels should be indices in the range [0, ..., config.num_labels - 1]. The
    LongformerForTokenClassification class provides functionality for handling token classification tasks efficiently
    and can be used in various natural language processing applications.
    """
    def __init__(self, config):
        """
        Initializes a LongformerForTokenClassification object.

        Args:
            self (LongformerForTokenClassification): The current instance of the LongformerForTokenClassification class.
            config (LongformerConfig): The configuration for the Longformer model.
                It contains the following attributes:

                - num_labels (int): The number of classification labels.
                - hidden_dropout_prob (float): The dropout probability for the hidden layers.

        Returns:
            None.

        Raises:
            ValueError: If the configuration is invalid or missing required attributes.
            TypeError: If the configuration is not of type LongformerConfig.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LongformerTokenClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.int64Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            head_mask=head_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return LongformerTokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            global_attentions=outputs.global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForTokenClassification.__init__(config)

Initializes a LongformerForTokenClassification object.

PARAMETER DESCRIPTION
self

The current instance of the LongformerForTokenClassification class.

TYPE: LongformerForTokenClassification

config

The configuration for the Longformer model. It contains the following attributes:

  • num_labels (int): The number of classification labels.
  • hidden_dropout_prob (float): The dropout probability for the hidden layers.

TYPE: LongformerConfig

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the configuration is invalid or missing required attributes.

TypeError

If the configuration is not of type LongformerConfig.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
def __init__(self, config):
    """
    Initializes a LongformerForTokenClassification object.

    Args:
        self (LongformerForTokenClassification): The current instance of the LongformerForTokenClassification class.
        config (LongformerConfig): The configuration for the Longformer model.
            It contains the following attributes:

            - num_labels (int): The number of classification labels.
            - hidden_dropout_prob (float): The dropout probability for the hidden layers.

    Returns:
        None.

    Raises:
        ValueError: If the configuration is invalid or missing required attributes.
        TypeError: If the configuration is not of type LongformerConfig.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.longformer = LongformerModel(config, add_pooling_layer=False)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerForTokenClassification.forward(input_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

TYPE: `mindspore.int64Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerTokenClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.int64Tensor` of shape `(batch_size, sequence_length)`, *optional*):
        Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.longformer(
        input_ids,
        attention_mask=attention_mask,
        global_attention_mask=global_attention_mask,
        head_mask=head_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    sequence_output = self.dropout(sequence_output)
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return LongformerTokenClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        global_attentions=outputs.global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerIntermediate

Bases: Module

This class represents an intermediate layer of the Longformer model. It inherits from the nn.Module class.

ATTRIBUTE DESCRIPTION
dense

A dense neural network layer that maps the input tensor to the hidden size specified in the configuration.

TYPE: Linear

intermediate_act_fn

The activation function applied to the intermediate hidden states.

TYPE: function

METHOD DESCRIPTION
__init__

Initializes the LongformerIntermediate instance.

forward

Constructs the intermediate layer of the Longformer model.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
class LongformerIntermediate(nn.Module):

    """
    This class represents an intermediate layer of the Longformer model. It inherits from the nn.Module class.

    Attributes:
        dense (nn.Linear): A dense neural network layer that maps the input tensor to the hidden size specified in the configuration.
        intermediate_act_fn (function): The activation function applied to the intermediate hidden states.

    Methods:
        __init__: Initializes the LongformerIntermediate instance.
        forward: Constructs the intermediate layer of the Longformer model.

    """
    def __init__(self, config):
        """
        Initializes an instance of the LongformerIntermediate class.

        Args:
            self: The instance of the class.
            config: An object of type 'Config' containing the configuration parameters for the LongformerIntermediate.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
        """
        Method 'forward' in the class 'LongformerIntermediate'.

        Args:
            self: Instance of the class LongformerIntermediate.
                This parameter is required to access the instance attributes and methods.

            hidden_states: mindspore.Tensor
                A tensor containing the hidden states data to be processed.
                Type: mindspore.Tensor
                Purpose: Input tensor for the intermediate layer processing.
                Restrictions: Should be a valid tensor compatible with the operations within the method.

        Returns:
            mindspore.Tensor
                Returns the processed hidden_states tensor after passing through intermediate layers.
                Type: mindspore.Tensor
                Purpose: Processed tensor after applying dense and intermediate activation function.

        Raises:
            None
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states

mindnlp.transformers.models.longformer.modeling_longformer.LongformerIntermediate.__init__(config)

Initializes an instance of the LongformerIntermediate class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object of type 'Config' containing the configuration parameters for the LongformerIntermediate.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
def __init__(self, config):
    """
    Initializes an instance of the LongformerIntermediate class.

    Args:
        self: The instance of the class.
        config: An object of type 'Config' containing the configuration parameters for the LongformerIntermediate.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
    if isinstance(config.hidden_act, str):
        self.intermediate_act_fn = ACT2FN[config.hidden_act]
    else:
        self.intermediate_act_fn = config.hidden_act

mindnlp.transformers.models.longformer.modeling_longformer.LongformerIntermediate.forward(hidden_states)

Method 'forward' in the class 'LongformerIntermediate'.

PARAMETER DESCRIPTION
self

Instance of the class LongformerIntermediate. This parameter is required to access the instance attributes and methods.

hidden_states

mindspore.Tensor A tensor containing the hidden states data to be processed. Type: mindspore.Tensor Purpose: Input tensor for the intermediate layer processing. Restrictions: Should be a valid tensor compatible with the operations within the method.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor Returns the processed hidden_states tensor after passing through intermediate layers. Type: mindspore.Tensor Purpose: Processed tensor after applying dense and intermediate activation function.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
    """
    Method 'forward' in the class 'LongformerIntermediate'.

    Args:
        self: Instance of the class LongformerIntermediate.
            This parameter is required to access the instance attributes and methods.

        hidden_states: mindspore.Tensor
            A tensor containing the hidden states data to be processed.
            Type: mindspore.Tensor
            Purpose: Input tensor for the intermediate layer processing.
            Restrictions: Should be a valid tensor compatible with the operations within the method.

    Returns:
        mindspore.Tensor
            Returns the processed hidden_states tensor after passing through intermediate layers.
            Type: mindspore.Tensor
            Purpose: Processed tensor after applying dense and intermediate activation function.

    Raises:
        None
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.intermediate_act_fn(hidden_states)
    return hidden_states

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLMHead

Bases: Module

Longformer Head for masked language modeling.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
class LongformerLMHead(nn.Module):
    """Longformer Head for masked language modeling."""
    def __init__(self, config):
        """
        Initializes the LongformerLMHead instance.

        Args:
            self: The LongformerLMHead instance to be initialized.
            config:
                An instance of the configuration class containing the following attributes:

                - hidden_size (int): The size of the hidden layers.
                - vocab_size (int): The size of the vocabulary.
                - layer_norm_eps (float): The epsilon value for layer normalization.

        Returns:
            None.

        Raises:
            AttributeError: If the 'config' parameter is missing any required attributes.
            TypeError: If the 'hidden_size', 'vocab_size', or 'layer_norm_eps' attributes
                in the 'config' parameter are of incorrect types.
            ValueError: If the 'hidden_size', 'vocab_size', or 'layer_norm_eps' attributes
                in the 'config' parameter have invalid values.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm([config.hidden_size], eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
        self.bias = Parameter(ops.zeros(config.vocab_size), 'bias')
        self.decoder.bias = self.bias

    def forward(self, features, **kwargs):
        """
        Construct method in the LongformerLMHead class.

        Args:
            self (LongformerLMHead): The instance of the LongformerLMHead class.
            features (tensor): The input features to be processed.

        Returns:
            tensor: The processed output tensor.

        Raises:
            None.
        """
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
        x = self.decoder(x)

        return x

    def _tie_weights(self):
        """
        Method _tie_weights in the class LongformerLMHead.

        Args:
            self: LongformerLMHead - The instance of the LongformerLMHead class.
                This parameter is required for the method to access and modify the instance's attributes.

        Returns:
            None: This method does not return any value. It modifies the bias attribute of the instance in place.

        Raises:
            None.
        """
        self.bias = self.decoder.bias

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLMHead.__init__(config)

Initializes the LongformerLMHead instance.

PARAMETER DESCRIPTION
self

The LongformerLMHead instance to be initialized.

config

An instance of the configuration class containing the following attributes:

  • hidden_size (int): The size of the hidden layers.
  • vocab_size (int): The size of the vocabulary.
  • layer_norm_eps (float): The epsilon value for layer normalization.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
AttributeError

If the 'config' parameter is missing any required attributes.

TypeError

If the 'hidden_size', 'vocab_size', or 'layer_norm_eps' attributes in the 'config' parameter are of incorrect types.

ValueError

If the 'hidden_size', 'vocab_size', or 'layer_norm_eps' attributes in the 'config' parameter have invalid values.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
def __init__(self, config):
    """
    Initializes the LongformerLMHead instance.

    Args:
        self: The LongformerLMHead instance to be initialized.
        config:
            An instance of the configuration class containing the following attributes:

            - hidden_size (int): The size of the hidden layers.
            - vocab_size (int): The size of the vocabulary.
            - layer_norm_eps (float): The epsilon value for layer normalization.

    Returns:
        None.

    Raises:
        AttributeError: If the 'config' parameter is missing any required attributes.
        TypeError: If the 'hidden_size', 'vocab_size', or 'layer_norm_eps' attributes
            in the 'config' parameter are of incorrect types.
        ValueError: If the 'hidden_size', 'vocab_size', or 'layer_norm_eps' attributes
            in the 'config' parameter have invalid values.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
    self.layer_norm = nn.LayerNorm([config.hidden_size], eps=config.layer_norm_eps)

    self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
    self.bias = Parameter(ops.zeros(config.vocab_size), 'bias')
    self.decoder.bias = self.bias

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLMHead.forward(features, **kwargs)

Construct method in the LongformerLMHead class.

PARAMETER DESCRIPTION
self

The instance of the LongformerLMHead class.

TYPE: LongformerLMHead

features

The input features to be processed.

TYPE: tensor

RETURNS DESCRIPTION
tensor

The processed output tensor.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
def forward(self, features, **kwargs):
    """
    Construct method in the LongformerLMHead class.

    Args:
        self (LongformerLMHead): The instance of the LongformerLMHead class.
        features (tensor): The input features to be processed.

    Returns:
        tensor: The processed output tensor.

    Raises:
        None.
    """
    x = self.dense(features)
    x = gelu(x)
    x = self.layer_norm(x)

    # project back to size of vocabulary with bias
    x = self.decoder(x)

    return x

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLayer

Bases: Module

A class representing a Longformer layer.

This class inherits from the nn.Module class and implements a single layer of the Longformer model. The Longformer layer consists of three main components: attention, intermediate, and output. It also provides methods for forwarding the layer and performing feed-forward chunking.

ATTRIBUTE DESCRIPTION
attention

The attention module of the layer.

TYPE: LongformerAttention

intermediate

The intermediate module of the layer.

TYPE: LongformerIntermediate

output

The output module of the layer.

TYPE: LongformerOutput

chunk_size_feed_forward

The chunk size used for feed-forward chunking.

TYPE: int

seq_len_dim

The dimension of the sequence length.

TYPE: int

METHOD DESCRIPTION
__init__

Initializes a new instance of LongformerLayer.

forward

Constructs the LongformerLayer given the input hidden states and optional masks.

ff_chunk

Performs feed-forward chunking on the given attention output.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
class LongformerLayer(nn.Module):

    """A class representing a Longformer layer.

    This class inherits from the nn.Module class and implements a single layer of the Longformer model.
    The Longformer layer consists of three main components: attention, intermediate, and output. It also
    provides methods for forwarding the layer and performing feed-forward chunking.

    Attributes:
        attention (LongformerAttention): The attention module of the layer.
        intermediate (LongformerIntermediate): The intermediate module of the layer.
        output (LongformerOutput): The output module of the layer.
        chunk_size_feed_forward (int): The chunk size used for feed-forward chunking.
        seq_len_dim (int): The dimension of the sequence length.

    Methods:
        __init__: Initializes a new instance of LongformerLayer.
        forward: Constructs the LongformerLayer
            given the input hidden states and optional masks.
        ff_chunk: Performs feed-forward chunking on the given attention output.

    """
    def __init__(self, config, layer_id=0):
        """
        Initializes a LongformerLayer instance.

        Args:
            self: The LongformerLayer object.
            config: An instance of the LongformerConfig class, containing the configuration parameters for the layer.
            layer_id (optional): An integer representing the layer ID (default: 0).

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.attention = LongformerAttention(config, layer_id)
        self.intermediate = LongformerIntermediate(config)
        self.output = LongformerOutput(config)
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        """
        This method forwards the Longformer layer.

        Args:
            self (object): The LongformerLayer instance.
            hidden_states (tensor): The input hidden states for the layer.
            attention_mask (tensor, optional): A mask indicating which elements should be attended to and which should not.
                Default is None.
            layer_head_mask (tensor, optional): A mask for each layer indicating which heads should be used in the layer.
                Default is None.
            is_index_masked (bool, optional): A flag indicating whether the index is masked. Default is None.
            is_index_global_attn (bool, optional): A flag indicating whether the index has global attention.
                Default is None.
            is_global_attn (bool, optional): A flag indicating whether global attention is used. Default is None.
            output_attentions (bool): A flag indicating whether to output attentions. Default is False.

        Returns:
            tuple: A tuple containing the layer output and any additional outputs.

        Raises:
            None
        """
        self_attn_outputs = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
            output_attentions=output_attentions,
        )
        attn_output = self_attn_outputs[0]
        outputs = self_attn_outputs[1:]

        layer_output = apply_chunking_to_forward(
            self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output
        )
        outputs = (layer_output,) + outputs
        return outputs

    def ff_chunk(self, attn_output):
        """
        Method ff_chunk in the class LongformerLayer.

        Args:
            self (object):
                The instance of the LongformerLayer class.

                - Purpose: Represents the current instance of the LongformerLayer class.
                - Restrictions: Must be an instance of the LongformerLayer class.

            attn_output (object):
                The attention output received by the method.

                - Purpose: Represents the output of attention mechanism.
                - Restrictions: Must be a valid input for further processing.

        Returns:
            None.

        Raises:
            None.
        """
        intermediate_output = self.intermediate(attn_output)
        layer_output = self.output(intermediate_output, attn_output)
        return layer_output

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLayer.__init__(config, layer_id=0)

Initializes a LongformerLayer instance.

PARAMETER DESCRIPTION
self

The LongformerLayer object.

config

An instance of the LongformerConfig class, containing the configuration parameters for the layer.

layer_id

An integer representing the layer ID (default: 0).

TYPE: optional DEFAULT: 0

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
def __init__(self, config, layer_id=0):
    """
    Initializes a LongformerLayer instance.

    Args:
        self: The LongformerLayer object.
        config: An instance of the LongformerConfig class, containing the configuration parameters for the layer.
        layer_id (optional): An integer representing the layer ID (default: 0).

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.attention = LongformerAttention(config, layer_id)
    self.intermediate = LongformerIntermediate(config)
    self.output = LongformerOutput(config)
    self.chunk_size_feed_forward = config.chunk_size_feed_forward
    self.seq_len_dim = 1

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLayer.ff_chunk(attn_output)

Method ff_chunk in the class LongformerLayer.

PARAMETER DESCRIPTION
self

The instance of the LongformerLayer class.

  • Purpose: Represents the current instance of the LongformerLayer class.
  • Restrictions: Must be an instance of the LongformerLayer class.

TYPE: object

attn_output

The attention output received by the method.

  • Purpose: Represents the output of attention mechanism.
  • Restrictions: Must be a valid input for further processing.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
def ff_chunk(self, attn_output):
    """
    Method ff_chunk in the class LongformerLayer.

    Args:
        self (object):
            The instance of the LongformerLayer class.

            - Purpose: Represents the current instance of the LongformerLayer class.
            - Restrictions: Must be an instance of the LongformerLayer class.

        attn_output (object):
            The attention output received by the method.

            - Purpose: Represents the output of attention mechanism.
            - Restrictions: Must be a valid input for further processing.

    Returns:
        None.

    Raises:
        None.
    """
    intermediate_output = self.intermediate(attn_output)
    layer_output = self.output(intermediate_output, attn_output)
    return layer_output

mindnlp.transformers.models.longformer.modeling_longformer.LongformerLayer.forward(hidden_states, attention_mask=None, layer_head_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=False)

This method forwards the Longformer layer.

PARAMETER DESCRIPTION
self

The LongformerLayer instance.

TYPE: object

hidden_states

The input hidden states for the layer.

TYPE: tensor

attention_mask

A mask indicating which elements should be attended to and which should not. Default is None.

TYPE: tensor DEFAULT: None

layer_head_mask

A mask for each layer indicating which heads should be used in the layer. Default is None.

TYPE: tensor DEFAULT: None

is_index_masked

A flag indicating whether the index is masked. Default is None.

TYPE: bool DEFAULT: None

is_index_global_attn

A flag indicating whether the index has global attention. Default is None.

TYPE: bool DEFAULT: None

is_global_attn

A flag indicating whether global attention is used. Default is None.

TYPE: bool DEFAULT: None

output_attentions

A flag indicating whether to output attentions. Default is False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

A tuple containing the layer output and any additional outputs.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
def forward(
    self,
    hidden_states,
    attention_mask=None,
    layer_head_mask=None,
    is_index_masked=None,
    is_index_global_attn=None,
    is_global_attn=None,
    output_attentions=False,
):
    """
    This method forwards the Longformer layer.

    Args:
        self (object): The LongformerLayer instance.
        hidden_states (tensor): The input hidden states for the layer.
        attention_mask (tensor, optional): A mask indicating which elements should be attended to and which should not.
            Default is None.
        layer_head_mask (tensor, optional): A mask for each layer indicating which heads should be used in the layer.
            Default is None.
        is_index_masked (bool, optional): A flag indicating whether the index is masked. Default is None.
        is_index_global_attn (bool, optional): A flag indicating whether the index has global attention.
            Default is None.
        is_global_attn (bool, optional): A flag indicating whether global attention is used. Default is None.
        output_attentions (bool): A flag indicating whether to output attentions. Default is False.

    Returns:
        tuple: A tuple containing the layer output and any additional outputs.

    Raises:
        None
    """
    self_attn_outputs = self.attention(
        hidden_states,
        attention_mask=attention_mask,
        layer_head_mask=layer_head_mask,
        is_index_masked=is_index_masked,
        is_index_global_attn=is_index_global_attn,
        is_global_attn=is_global_attn,
        output_attentions=output_attentions,
    )
    attn_output = self_attn_outputs[0]
    outputs = self_attn_outputs[1:]

    layer_output = apply_chunking_to_forward(
        self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output
    )
    outputs = (layer_output,) + outputs
    return outputs

mindnlp.transformers.models.longformer.modeling_longformer.LongformerMaskedLMOutput dataclass

Bases: ModelOutput

Base class for masked language models outputs.

PARAMETER DESCRIPTION
loss

Masked language modeling (MLM) loss.

TYPE: `mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided DEFAULT: None

logits

Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)` DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
@dataclass
class LongformerMaskedLMOutput(ModelOutput):
    """
    Base class for masked language models outputs.

    Args:
        loss (`mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Masked language modeling (MLM) loss.
        logits (`mindspore.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
            attention_window + 1)`, where `x` is the number of tokens with global attention mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first `x` values) and to every token in the attention window (remaining `attention_window
            + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
            remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
            token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
            (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
            If the attention window contains a token with global attention, the attention weight at the corresponding
            index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
            attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
            accessed from `global_attentions`.
        global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """
    loss: Optional[mindspore.Tensor] = None
    logits: mindspore.Tensor = None
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None
    global_attentions: Optional[Tuple[mindspore.Tensor]] = None

mindnlp.transformers.models.longformer.modeling_longformer.LongformerModel

Bases: LongformerPreTrainedModel

This class copied code from [RobertaModel] and overwrote standard self-attention with longformer self-attention to provide the ability to process long sequences following the self-attention approach described in Longformer: the Long-Document Transformer by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long documents without the O(n^2) increase in memory and compute.

The self-attention module LongformerSelfAttention implemented here supports the combination of local and global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA kernel to be memory and compute efficient.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
class LongformerModel(LongformerPreTrainedModel):
    """
    This class copied code from [`RobertaModel`] and overwrote standard self-attention with longformer self-attention
    to provide the ability to process long sequences following the self-attention approach described in [Longformer:
    the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and Arman Cohan.
    Longformer self-attention combines a local (sliding window) and global attention to extend to long documents
    without the O(n^2) increase in memory and compute.

    The self-attention module `LongformerSelfAttention` implemented here supports the combination of local and global
    attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated
    attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future
    release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA
    kernel to be memory and compute efficient.

    """
    def __init__(self, config, add_pooling_layer=True):
        """
        Initializes a new instance of the LongformerModel class.

        Args:
            self: The current instance of the class.
            config (object): The configuration object containing various parameters for the model.
                It is an instance of the Config class.
                The object is used to set up the model's configuration.
            add_pooling_layer (bool): Determines whether to add a pooling layer to the model.
                Defaults to True.
                If set to False, no pooling layer will be added.

        Returns:
            None.

        Raises:
            AssertionError:
                Raised if the attention_window parameter in the config is not valid.

                - If attention_window is an integer, it must be an even value and positive.
                - If attention_window is a list, its length must be equal to num_hidden_layers.

        """
        super().__init__(config)
        self.config = config

        if isinstance(config.attention_window, int):
            assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
            assert config.attention_window > 0, "`config.attention_window` has to be positive"
            config.attention_window = [config.attention_window] * config.num_hidden_layers  # one value per layer
        else:
            assert len(config.attention_window) == config.num_hidden_layers, (
                "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
                f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
            )

        self.embeddings = LongformerEmbeddings(config)
        self.encoder = LongformerEncoder(config)
        self.pooler = LongformerPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Returns the input embeddings of the LongformerModel.

        Args:
            self (LongformerModel): An instance of the LongformerModel class.

        Returns:
            None.

        Raises:
            None.

        This method retrieves the input embeddings used by the LongformerModel.
        The input embeddings are derived from the word embeddings of the model.
        """
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        """
        Set input embeddings for the LongformerModel.

        Args:
            self (LongformerModel): The instance of the LongformerModel class.
            value (object): The input embeddings to be set. It can be of any type.

        Returns:
            None.

        Raises:
            The method does not raise any exceptions.
        """
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def _pad_to_window_size(
        self,
        input_ids: mindspore.Tensor,
        attention_mask: mindspore.Tensor,
        token_type_ids: mindspore.Tensor,
        position_ids: mindspore.Tensor,
        inputs_embeds: mindspore.Tensor,
        pad_token_id: int,
    ):
        """A helper function to pad tokens and mask to work with implementation of Longformer self-attention."""
        # padding
        attention_window = (
            self.config.attention_window
            if isinstance(self.config.attention_window, int)
            else max(self.config.attention_window)
        )

        assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
        input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
        batch_size, seq_len = input_shape[:2]

        padding_len = (attention_window - seq_len % attention_window) % attention_window

        # this path should be recorded in the ONNX export, it is fine with padding_len == 0 as well
        if padding_len > 0:
            logger.info(
                f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
                f"`config.attention_window`: {attention_window}"
            )
            if input_ids is not None:
                input_ids = ops.pad(input_ids, (0, padding_len), value=pad_token_id)
            if position_ids is not None:
                # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings
                position_ids = ops.pad(position_ids, (0, padding_len), value=pad_token_id)
            if inputs_embeds is not None:
                input_ids_padding = ops.full(
                    (batch_size, padding_len),
                    self.config.pad_token_id,
                    dtype=mindspore.int64,
                )
                inputs_embeds_padding = self.embeddings(input_ids_padding)
                inputs_embeds = ops.cat([inputs_embeds, inputs_embeds_padding], axis=-2)

            attention_mask = ops.pad(
                attention_mask, (0, padding_len), value=0
            )  # no attention on the padding tokens
            token_type_ids = ops.pad(token_type_ids, (0, padding_len), value=0)  # pad with token_type_id = 0

        return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds

    def _merge_to_attention_mask(self, attention_mask: mindspore.Tensor, global_attention_mask: mindspore.Tensor):
        """
        Merges attention_mask and global_attention_mask to create a unified attention mask.

        Args:
            self (LongformerModel): An instance of the LongformerModel class.
            attention_mask (mindspore.Tensor): The attention mask tensor. It is a binary tensor of shape
                (batch_size, sequence_length) where 0 indicates masking and 1 indicates non-masking. If None, the
                global_attention_mask is used.
            global_attention_mask (mindspore.Tensor): The global attention mask tensor. It is a binary tensor of shape
                (batch_size, sequence_length) where 0 indicates masking and 1 indicates non-masking.

        Returns:
            mindspore.Tensor: The merged attention mask tensor. It is a binary tensor of shape
                (batch_size, sequence_length) where 0 indicates masking and 1 indicates non-masking.

        Raises:
            None: This method does not raise any exceptions.
        """
        # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
        # (global_attention_mask + 1) => 1 for local attention, 2 for global attention
        # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
        if attention_mask is not None:
            attention_mask = attention_mask * (global_attention_mask + 1)
        else:
            # simply use `global_attention_mask` as `attention_mask`
            # if no `attention_mask` is given
            attention_mask = global_attention_mask + 1
        return attention_mask

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        global_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LongformerBaseModelOutputWithPooling]:
        r"""

        Returns:
            Union[Tuple, LongformerBaseModelOutputWithPooling]

        Example:
            ```python
            >>> from transformers import LongformerModel, AutoTokenizer
            ...
            >>> model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
            >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
            ...
            >>> SAMPLE_TEXT = " ".join(["Hello world! "] * 1000)  # long input document
            >>> input_ids = mindspore.Tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1
            ...
            >>> attention_mask = torch.ones(
            ...     input_ids.shape, dtype=mindspore.int64
            ... )  # initialize to local attention
            >>> global_attention_mask = torch.zeros(
            ...     input_ids.shape, dtype=mindspore.int64
            ... )  # initialize to global attention to be deactivated for all tokens
            >>> global_attention_mask[
            ...     :,
            ...     [
            ...         1,
            ...         4,
            ...         21,
            ...     ],
            ... ] = 1  # Set global attention to random tokens for the sake of this example
            >>> # Usually, set global attention based on the task. For example,
            >>> # classification: the <s> token
            >>> # QA: question tokens
            >>> # LM: potentially on the beginning of sentences and paragraphs
            >>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)
            >>> sequence_output = outputs.last_hidden_state
            >>> pooled_output = outputs.pooler_output
            ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if attention_mask is None:
            attention_mask = ops.ones(input_shape)
        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        # merge `global_attention_mask` and `attention_mask`
        if global_attention_mask is not None:
            attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)

        padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            pad_token_id=self.config.pad_token_id,
        )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)[
            :, 0, 0, :
        ]

        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            padding_len=padding_len,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return LongformerBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            global_attentions=encoder_outputs.global_attentions,
        )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerModel.__init__(config, add_pooling_layer=True)

Initializes a new instance of the LongformerModel class.

PARAMETER DESCRIPTION
self

The current instance of the class.

config

The configuration object containing various parameters for the model. It is an instance of the Config class. The object is used to set up the model's configuration.

TYPE: object

add_pooling_layer

Determines whether to add a pooling layer to the model. Defaults to True. If set to False, no pooling layer will be added.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
AssertionError

Raised if the attention_window parameter in the config is not valid.

  • If attention_window is an integer, it must be an even value and positive.
  • If attention_window is a list, its length must be equal to num_hidden_layers.
Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
def __init__(self, config, add_pooling_layer=True):
    """
    Initializes a new instance of the LongformerModel class.

    Args:
        self: The current instance of the class.
        config (object): The configuration object containing various parameters for the model.
            It is an instance of the Config class.
            The object is used to set up the model's configuration.
        add_pooling_layer (bool): Determines whether to add a pooling layer to the model.
            Defaults to True.
            If set to False, no pooling layer will be added.

    Returns:
        None.

    Raises:
        AssertionError:
            Raised if the attention_window parameter in the config is not valid.

            - If attention_window is an integer, it must be an even value and positive.
            - If attention_window is a list, its length must be equal to num_hidden_layers.

    """
    super().__init__(config)
    self.config = config

    if isinstance(config.attention_window, int):
        assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
        assert config.attention_window > 0, "`config.attention_window` has to be positive"
        config.attention_window = [config.attention_window] * config.num_hidden_layers  # one value per layer
    else:
        assert len(config.attention_window) == config.num_hidden_layers, (
            "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
            f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
        )

    self.embeddings = LongformerEmbeddings(config)
    self.encoder = LongformerEncoder(config)
    self.pooler = LongformerPooler(config) if add_pooling_layer else None

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerModel.forward(input_ids=None, attention_mask=None, global_attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

RETURNS DESCRIPTION
Union[Tuple, LongformerBaseModelOutputWithPooling]

Union[Tuple, LongformerBaseModelOutputWithPooling]

Example
>>> from transformers import LongformerModel, AutoTokenizer
...
>>> model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
...
>>> SAMPLE_TEXT = " ".join(["Hello world! "] * 1000)  # long input document
>>> input_ids = mindspore.Tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1
...
>>> attention_mask = torch.ones(
...     input_ids.shape, dtype=mindspore.int64
... )  # initialize to local attention
>>> global_attention_mask = torch.zeros(
...     input_ids.shape, dtype=mindspore.int64
... )  # initialize to global attention to be deactivated for all tokens
>>> global_attention_mask[
...     :,
...     [
...         1,
...         4,
...         21,
...     ],
... ] = 1  # Set global attention to random tokens for the sake of this example
>>> # Usually, set global attention based on the task. For example,
>>> # classification: the <s> token
>>> # QA: question tokens
>>> # LM: potentially on the beginning of sentences and paragraphs
>>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)
>>> sequence_output = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output
Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    global_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerBaseModelOutputWithPooling]:
    r"""

    Returns:
        Union[Tuple, LongformerBaseModelOutputWithPooling]

    Example:
        ```python
        >>> from transformers import LongformerModel, AutoTokenizer
        ...
        >>> model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
        >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
        ...
        >>> SAMPLE_TEXT = " ".join(["Hello world! "] * 1000)  # long input document
        >>> input_ids = mindspore.Tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1
        ...
        >>> attention_mask = torch.ones(
        ...     input_ids.shape, dtype=mindspore.int64
        ... )  # initialize to local attention
        >>> global_attention_mask = torch.zeros(
        ...     input_ids.shape, dtype=mindspore.int64
        ... )  # initialize to global attention to be deactivated for all tokens
        >>> global_attention_mask[
        ...     :,
        ...     [
        ...         1,
        ...         4,
        ...         21,
        ...     ],
        ... ] = 1  # Set global attention to random tokens for the sake of this example
        >>> # Usually, set global attention based on the task. For example,
        >>> # classification: the <s> token
        >>> # QA: question tokens
        >>> # LM: potentially on the beginning of sentences and paragraphs
        >>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)
        >>> sequence_output = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output
        ```
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
    if input_ids is not None:
        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
        input_shape = input_ids.shape
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    if attention_mask is None:
        attention_mask = ops.ones(input_shape)
    if token_type_ids is None:
        token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

    # merge `global_attention_mask` and `attention_mask`
    if global_attention_mask is not None:
        attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)

    padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
        pad_token_id=self.config.pad_token_id,
    )

    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
    # ourselves in which case we just need to make it broadcastable to all heads.
    extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)[
        :, 0, 0, :
    ]

    embedding_output = self.embeddings(
        input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
    )

    encoder_outputs = self.encoder(
        embedding_output,
        attention_mask=extended_attention_mask,
        head_mask=head_mask,
        padding_len=padding_len,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = encoder_outputs[0]
    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

    if not return_dict:
        return (sequence_output, pooled_output) + encoder_outputs[1:]

    return LongformerBaseModelOutputWithPooling(
        last_hidden_state=sequence_output,
        pooler_output=pooled_output,
        hidden_states=encoder_outputs.hidden_states,
        attentions=encoder_outputs.attentions,
        global_attentions=encoder_outputs.global_attentions,
    )

mindnlp.transformers.models.longformer.modeling_longformer.LongformerModel.get_input_embeddings()

Returns the input embeddings of the LongformerModel.

PARAMETER DESCRIPTION
self

An instance of the LongformerModel class.

TYPE: LongformerModel

RETURNS DESCRIPTION

None.

This method retrieves the input embeddings used by the LongformerModel. The input embeddings are derived from the word embeddings of the model.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
def get_input_embeddings(self):
    """
    Returns the input embeddings of the LongformerModel.

    Args:
        self (LongformerModel): An instance of the LongformerModel class.

    Returns:
        None.

    Raises:
        None.

    This method retrieves the input embeddings used by the LongformerModel.
    The input embeddings are derived from the word embeddings of the model.
    """
    return self.embeddings.word_embeddings

mindnlp.transformers.models.longformer.modeling_longformer.LongformerModel.set_input_embeddings(value)

Set input embeddings for the LongformerModel.

PARAMETER DESCRIPTION
self

The instance of the LongformerModel class.

TYPE: LongformerModel

value

The input embeddings to be set. It can be of any type.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
def set_input_embeddings(self, value):
    """
    Set input embeddings for the LongformerModel.

    Args:
        self (LongformerModel): The instance of the LongformerModel class.
        value (object): The input embeddings to be set. It can be of any type.

    Returns:
        None.

    Raises:
        The method does not raise any exceptions.
    """
    self.embeddings.word_embeddings = value

mindnlp.transformers.models.longformer.modeling_longformer.LongformerMultipleChoiceModelOutput dataclass

Bases: ModelOutput

Base class for outputs of multiple choice Longformer models.

PARAMETER DESCRIPTION
loss

Classification loss.

TYPE: `mindspore.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided DEFAULT: None

logits

num_choices is the second dimension of the input tensors. (see input_ids above).

Classification scores (before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, num_choices)` DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
@dataclass
class LongformerMultipleChoiceModelOutput(ModelOutput):
    """
    Base class for outputs of multiple choice Longformer models.

    Args:
        loss (`mindspore.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
            Classification loss.
        logits (`mindspore.Tensor` of shape `(batch_size, num_choices)`):
            *num_choices* is the second dimension of the input tensors. (see *input_ids* above).

            Classification scores (before SoftMax).
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
            attention_window + 1)`, where `x` is the number of tokens with global attention mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first `x` values) and to every token in the attention window (remaining `attention_window
            + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
            remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
            token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
            (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
            If the attention window contains a token with global attention, the attention weight at the corresponding
            index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
            attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
            accessed from `global_attentions`.
        global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """
    loss: Optional[mindspore.Tensor] = None
    logits: mindspore.Tensor = None
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None
    global_attentions: Optional[Tuple[mindspore.Tensor]] = None

mindnlp.transformers.models.longformer.modeling_longformer.LongformerOutput

Bases: Module

Represents the output of the Longformer model, which includes dense, layer normalization, and dropout operations.

This class inherits from nn.Module and is used to define the output layer for the Longformer model. It includes methods to initialize the class and forward the output based on the given input tensors.

The init method initializes the LongformerOutput class with the provided configuration. It sets up the dense layer, layer normalization, and dropout operations based on the configuration parameters.

The forward method takes hidden_states and input_tensor as input tensors and performs the dense, dropout, and layer normalization operations to forward the output tensor.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
class LongformerOutput(nn.Module):

    """
    Represents the output of the Longformer model, which includes dense, layer normalization, and dropout operations.

    This class inherits from nn.Module and is used to define the output layer for the Longformer model.
    It includes methods to initialize the class and forward the output based on the given input tensors.

    The __init__ method initializes the LongformerOutput class with the provided configuration.
    It sets up the dense layer, layer normalization, and dropout operations based on the configuration parameters.

    The forward method takes hidden_states and input_tensor as input tensors and performs the dense, dropout,
    and layer normalization operations to forward the output tensor.

    """
    def __init__(self, config):
        """
        Initializes a LongformerOutput instance.

        Args:
            self: The instance itself.
            config:
                An object containing the configuration parameters for the LongformerOutput.

                - Type: object
                - Purpose: It holds the configuration parameters for the LongformerOutput.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm([config.hidden_size], eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

    def forward(self, hidden_states: mindspore.Tensor, input_tensor: mindspore.Tensor) -> mindspore.Tensor:
        """
        Construct method in the LongformerOutput class.

        This method performs the forwardion process and returns the resulting tensor.

        Args:
            self: Instance of the LongformerOutput class.
            hidden_states (mindspore.Tensor): The input tensor representing the hidden states.
                It is expected to be of type mindspore.Tensor and contains the hidden states data.
            input_tensor (mindspore.Tensor): The input tensor representing the input data.
                It is expected to be of type mindspore.Tensor and contains the input data.

        Returns:
            mindspore.Tensor: The resulting tensor after the forwardion process.
                It is of type mindspore.Tensor and represents the output of the forwardion process.

        Raises:
            None
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

mindnlp.transformers.models.longformer.modeling_longformer.LongformerOutput.__init__(config)

Initializes a LongformerOutput instance.

PARAMETER DESCRIPTION
self

The instance itself.

config

An object containing the configuration parameters for the LongformerOutput.

  • Type: object
  • Purpose: It holds the configuration parameters for the LongformerOutput.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
def __init__(self, config):
    """
    Initializes a LongformerOutput instance.

    Args:
        self: The instance itself.
        config:
            An object containing the configuration parameters for the LongformerOutput.

            - Type: object
            - Purpose: It holds the configuration parameters for the LongformerOutput.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
    self.LayerNorm = nn.LayerNorm([config.hidden_size], eps=config.layer_norm_eps)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

mindnlp.transformers.models.longformer.modeling_longformer.LongformerOutput.forward(hidden_states, input_tensor)

Construct method in the LongformerOutput class.

This method performs the forwardion process and returns the resulting tensor.

PARAMETER DESCRIPTION
self

Instance of the LongformerOutput class.

hidden_states

The input tensor representing the hidden states. It is expected to be of type mindspore.Tensor and contains the hidden states data.

TYPE: Tensor

input_tensor

The input tensor representing the input data. It is expected to be of type mindspore.Tensor and contains the input data.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The resulting tensor after the forwardion process. It is of type mindspore.Tensor and represents the output of the forwardion process.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
def forward(self, hidden_states: mindspore.Tensor, input_tensor: mindspore.Tensor) -> mindspore.Tensor:
    """
    Construct method in the LongformerOutput class.

    This method performs the forwardion process and returns the resulting tensor.

    Args:
        self: Instance of the LongformerOutput class.
        hidden_states (mindspore.Tensor): The input tensor representing the hidden states.
            It is expected to be of type mindspore.Tensor and contains the hidden states data.
        input_tensor (mindspore.Tensor): The input tensor representing the input data.
            It is expected to be of type mindspore.Tensor and contains the input data.

    Returns:
        mindspore.Tensor: The resulting tensor after the forwardion process.
            It is of type mindspore.Tensor and represents the output of the forwardion process.

    Raises:
        None
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.LayerNorm(hidden_states + input_tensor)
    return hidden_states

mindnlp.transformers.models.longformer.modeling_longformer.LongformerPooler

Bases: Module

This class represents a LongformerPooler, which is a neural network module for pooling hidden states of a Longformer model. It inherits from the nn.Module class.

ATTRIBUTE DESCRIPTION
dense

A fully connected layer used for transforming the input hidden states.

TYPE: Linear

activation

An activation function applied after the transformation.

TYPE: Tanh

METHOD DESCRIPTION
__init__

Initializes a new instance of the LongformerPooler class.

forward

Constructs the pooled output tensor based on the given hidden states.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
class LongformerPooler(nn.Module):

    """
    This class represents a LongformerPooler, which is a neural network module for pooling hidden states of a Longformer model.
    It inherits from the nn.Module class.

    Attributes:
        dense (nn.Linear): A fully connected layer used for transforming the input hidden states.
        activation (nn.Tanh): An activation function applied after the transformation.

    Methods:
        __init__:
            Initializes a new instance of the LongformerPooler class.

        forward:
            Constructs the pooled output tensor based on the given hidden states.

    """
    def __init__(self, config):
        """
        Initializes an instance of the LongformerPooler class.

        Args:
            self: The LongformerPooler instance being initialized.
            config: An instance of the configuration class containing the pooler's configuration parameters.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
        """
        Constructs a pooled output tensor from the given hidden states.

        Args:
            self (LongformerPooler): An instance of the LongformerPooler class.
            hidden_states (mindspore.Tensor): A tensor of shape (batch_size, sequence_length, hidden_size)
                containing the hidden states of the input tokens.

        Returns:
            mindspore.Tensor: A tensor of shape (batch_size, hidden_size) representing the pooled output.
                The pooled output tensor is obtained by applying a dense layer and an activation function to the
                first token's hidden state, which is sliced from the hidden_states tensor.

        Raises:
            None.

        Note:
            - The hidden_states tensor should have a shape (batch_size, sequence_length, hidden_size),
            where batch_size represents the number of input samples, sequence_length represents the number of tokens
            in each sample, and hidden_size represents the size of the hidden state vector.
            - The first token's hidden state is obtained by slicing the hidden_states tensor using the syntax
            hidden_states[:, 0].
            - The pooled output tensor is obtained by passing the first token's hidden state through a dense layer
            and applying an activation function to it. The dense layer and activation function are defined within the
            LongformerPooler class.
        """
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

mindnlp.transformers.models.longformer.modeling_longformer.LongformerPooler.__init__(config)

Initializes an instance of the LongformerPooler class.

PARAMETER DESCRIPTION
self

The LongformerPooler instance being initialized.

config

An instance of the configuration class containing the pooler's configuration parameters.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
def __init__(self, config):
    """
    Initializes an instance of the LongformerPooler class.

    Args:
        self: The LongformerPooler instance being initialized.
        config: An instance of the configuration class containing the pooler's configuration parameters.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
    self.activation = nn.Tanh()

mindnlp.transformers.models.longformer.modeling_longformer.LongformerPooler.forward(hidden_states)

Constructs a pooled output tensor from the given hidden states.

PARAMETER DESCRIPTION
self

An instance of the LongformerPooler class.

TYPE: LongformerPooler

hidden_states

A tensor of shape (batch_size, sequence_length, hidden_size) containing the hidden states of the input tokens.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: A tensor of shape (batch_size, hidden_size) representing the pooled output. The pooled output tensor is obtained by applying a dense layer and an activation function to the first token's hidden state, which is sliced from the hidden_states tensor.

Note
  • The hidden_states tensor should have a shape (batch_size, sequence_length, hidden_size), where batch_size represents the number of input samples, sequence_length represents the number of tokens in each sample, and hidden_size represents the size of the hidden state vector.
  • The first token's hidden state is obtained by slicing the hidden_states tensor using the syntax hidden_states[:, 0].
  • The pooled output tensor is obtained by passing the first token's hidden state through a dense layer and applying an activation function to it. The dense layer and activation function are defined within the LongformerPooler class.
Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
    """
    Constructs a pooled output tensor from the given hidden states.

    Args:
        self (LongformerPooler): An instance of the LongformerPooler class.
        hidden_states (mindspore.Tensor): A tensor of shape (batch_size, sequence_length, hidden_size)
            containing the hidden states of the input tokens.

    Returns:
        mindspore.Tensor: A tensor of shape (batch_size, hidden_size) representing the pooled output.
            The pooled output tensor is obtained by applying a dense layer and an activation function to the
            first token's hidden state, which is sliced from the hidden_states tensor.

    Raises:
        None.

    Note:
        - The hidden_states tensor should have a shape (batch_size, sequence_length, hidden_size),
        where batch_size represents the number of input samples, sequence_length represents the number of tokens
        in each sample, and hidden_size represents the size of the hidden state vector.
        - The first token's hidden state is obtained by slicing the hidden_states tensor using the syntax
        hidden_states[:, 0].
        - The pooled output tensor is obtained by passing the first token's hidden state through a dense layer
        and applying an activation function to it. The dense layer and activation function are defined within the
        LongformerPooler class.
    """
    # We "pool" the model by simply taking the hidden state corresponding
    # to the first token.
    first_token_tensor = hidden_states[:, 0]
    pooled_output = self.dense(first_token_tensor)
    pooled_output = self.activation(pooled_output)
    return pooled_output

mindnlp.transformers.models.longformer.modeling_longformer.LongformerPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
class LongformerPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = LongformerConfig
    base_model_prefix = "longformer"
    _no_split_modules = ["LongformerSelfAttention"]

    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, self.config.initializer_range, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0

            cell.weight.set_data(Tensor(weight, cell.weight.dtype))
        elif isinstance(cell, nn.LayerNorm):
            cell.weight.set_data(initializer('ones', cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))

mindnlp.transformers.models.longformer.modeling_longformer.LongformerQuestionAnsweringModelOutput dataclass

Bases: ModelOutput

Base class for outputs of question answering Longformer models.

PARAMETER DESCRIPTION
loss

Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

TYPE: `mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided DEFAULT: None

start_logits

Span-start scores (before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)` DEFAULT: None

end_logits

Span-end scores (before SoftMax).

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)` DEFAULT: None

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
@dataclass
class LongformerQuestionAnsweringModelOutput(ModelOutput):
    """
    Base class for outputs of question answering Longformer models.

    Args:
        loss (`mindspore.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_logits (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
            Span-start scores (before SoftMax).
        end_logits (`mindspore.Tensor` of shape `(batch_size, sequence_length)`):
            Span-end scores (before SoftMax).
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
            attention_window + 1)`, where `x` is the number of tokens with global attention mask.

            Local attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token in the sequence to every token with
            global attention (first `x` values) and to every token in the attention window (remaining `attention_window
            + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
            remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
            token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
            (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
            If the attention window contains a token with global attention, the attention weight at the corresponding
            index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
            attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
            accessed from `global_attentions`.
        global_attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
            where `x` is the number of tokens with global attention mask.

            Global attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads. Those are the attention weights from every token with global attention to every token
            in the sequence.
    """
    loss: Optional[mindspore.Tensor] = None
    start_logits: mindspore.Tensor = None
    end_logits: mindspore.Tensor = None
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None
    global_attentions: Optional[Tuple[mindspore.Tensor]] = None

mindnlp.transformers.models.longformer.modeling_longformer.LongformerSelfAttention

Bases: Module

This class represents the self-attention mechanism used in Longformer models. It handles the computation of attention scores and outputs for both local and global attention patterns, with support for sliding window attention. Inherits from nn.Module.

The class includes methods for initializing the self-attention layer, forwarding the attention mechanism, padding and processing hidden states, and computing attention outputs based on global indices. It also provides functions for matrix multiplication with sliding window attention patterns and handling global attention indices.

The LongformerSelfAttention class is designed to work seamlessly within Longformer models, ensuring efficient and accurate attention computations for both local and global contexts.

For detailed information on each method and its functionality, refer to the specific method documentation within the class implementation.

Source code in mindnlp/transformers/models/longformer/modeling_longformer.py
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
class LongformerSelfAttention(nn.Module):

    """
    This class represents the self-attention mechanism used in Longformer models.
    It handles the computation of attention scores and outputs for both local and global attention patterns,
    with support for sliding window attention. Inherits from nn.Module.

    The class includes methods for initializing the self-attention layer, forwarding the attention mechanism,
    padding and processing hidden states, and computing attention outputs based on global indices. It also provides
    functions for matrix multiplication with sliding window attention patterns and handling global attention indices.

    The LongformerSelfAttention class is designed to work seamlessly within Longformer models, ensuring efficient
     and accurate attention computations for both local and global contexts.

    For detailed information on each method and its functionality, refer to the specific method documentation within
    the class implementation.
    """
    def __init__(self, config, layer_id):
        """
        Initializes the LongformerSelfAttention class.

        Args:
            self: The instance of the class.
            config: An object containing the configuration parameters for the LongformerSelfAttention layer,
                including hidden_size, num_attention_heads, attention_probs_dropout_prob, and attention_window.

                - Type: object.
                - Restrictions: Must contain the specified configuration parameters.
            layer_id:
                The ID of the layer.

                - Type: int.
                - Purpose: Identifies the specific layer within the LongformerSelfAttention.
                - Restrictions: Must be a valid layer ID.

        Returns:
            None.

        Raises:
            ValueError: If the hidden size is not a multiple of the number of attention heads.
            AssertionError: If the attention_window value is not an even number or if it is not positive.
        """
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        # separate projection layers for tokens with global attention
        self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        attention_window = config.attention_window[self.layer_id]
        assert (
            attention_window % 2 == 0
        ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
        assert (
            attention_window > 0
        ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"

        self.one_sided_attn_window_size = attention_window // 2

        self.config = config

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        is_index_masked=None,
        is_index_global_attn=None,
        is_global_attn=None,
        output_attentions=False,
    ):
        """
        [`LongformerSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
        *attention_window* happens in [`LongformerModel.forward`] to avoid redoing the padding on each layer.

        The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to:

        - -10000: no attention
        - 0: local attention
        - +10000: global attention
        """
        hidden_states = hidden_states.swapaxes(0, 1)

        # project hidden states
        query_vectors = self.query(hidden_states)
        key_vectors = self.key(hidden_states)
        value_vectors = self.value(hidden_states)

        seq_len, batch_size, embed_dim = hidden_states.shape
        assert (
            embed_dim == self.embed_dim
        ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"

        # normalize query
        query_vectors /= math.sqrt(self.head_dim)

        query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)
        key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)

        attn_scores = self._sliding_chunks_query_key_matmul(
            query_vectors, key_vectors, self.one_sided_attn_window_size
        )

        # values to pad for attention probs
        remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None]

        # cast to fp32/fp16 then replace 1's with -inf
        float_mask = remove_from_windowed_attention_mask.astype(query_vectors.dtype).masked_fill(
            remove_from_windowed_attention_mask, float(np.finfo(mindspore.dtype_to_nptype(query_vectors.dtype)).min)
        )
        # diagonal mask with zeros everywhere and -inf inplace of padding
        diagonal_mask = self._sliding_chunks_query_key_matmul(
            float_mask.new_ones(size=float_mask.shape), float_mask, self.one_sided_attn_window_size
        )

        # pad local attention probs
        attn_scores += diagonal_mask

        assert list(attn_scores.shape) == [
            batch_size,
            seq_len,
            self.num_heads,
            self.one_sided_attn_window_size * 2 + 1,
        ], (
            f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
            f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.shape}"
        )

        # compute local attention probs from global attention keys and contact over window dim
        if is_global_attn:
            # compute global attn indices required through out forward fn
            (
                max_num_global_attn_indices,
                is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero,
            ) = self._get_global_attn_indices(is_index_global_attn)
            # calculate global attn probs from global key
            global_key_attn_scores = self._concat_with_global_key_attn_probs(
                query_vectors=query_vectors,
                key_vectors=key_vectors,
                max_num_global_attn_indices=max_num_global_attn_indices,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
            )
            # concat to local_attn_probs
            # (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
            attn_scores = ops.cat((global_key_attn_scores, attn_scores), axis=-1)

            # free memory
            del global_key_attn_scores

        attn_probs = ops.softmax(
            attn_scores, axis=-1, dtype=mindspore.float32
        )  # use fp32 for numerical stability

        if layer_head_mask is not None:
            assert layer_head_mask.shape == (
                self.num_heads,
            ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.shape}"
            attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs

        # softmax sometimes inserts NaN if all positions are masked, replace them with 0
        attn_probs = attn_probs.masked_fill(is_index_masked[:, :, None, None], 0.0)
        attn_probs = attn_probs.astype(attn_scores.dtype)

        # free memory
        del attn_scores

        # apply dropout
        attn_probs = ops.dropout(attn_probs, p=self.dropout, training=self.training)

        value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).swapaxes(0, 1)

        # compute local attention output with global attention value and add
        if is_global_attn:
            # compute sum of global and local attn
            attn_output = self._compute_attn_output_with_global_indices(
                value_vectors=value_vectors,
                attn_probs=attn_probs,
                max_num_global_attn_indices=max_num_global_attn_indices,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
            )
        else:
            # compute local attn only
            attn_output = self._sliding_chunks_matmul_attn_probs_value(
                attn_probs, value_vectors, self.one_sided_attn_window_size
            )

        assert attn_output.shape == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
        attn_output = attn_output.swapaxes(0, 1).reshape(seq_len, batch_size, embed_dim)

        # compute value for global attention and overwrite to attention output
        # TODO: remove the redundant computation
        if is_global_attn:
            global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
                hidden_states=hidden_states,
                max_num_global_attn_indices=max_num_global_attn_indices,
                layer_head_mask=layer_head_mask,
                is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
                is_index_global_attn_nonzero=is_index_global_attn_nonzero,
                is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
                is_index_masked=is_index_masked,
            )

            # get only non zero global attn output
            nonzero_global_attn_output = global_attn_output[
                is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
            ]

            # overwrite values with global attention
            attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
                len(is_local_index_global_attn_nonzero[0]), -1
            )
            # The attention weights for tokens with global attention are
            # just filler values, they were never used to compute the output.
            # Fill with 0 now, the correct values are in 'global_attn_probs'.
            attn_probs[is_index_global_attn_nonzero] = 0

        outputs = (attn_output.swapaxes(0, 1),)

        if output_attentions:
            outputs += (attn_probs,)

        return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs

    @staticmethod
    def _pad_and_swapaxes_last_two_dims(hidden_states_padded, padding):
        """pads rows and then flips rows and columns"""
        hidden_states_padded = ops.pad(
            hidden_states_padded, padding
        )  # padding value is not important because it will be overwritten
        hidden_states_padded = hidden_states_padded.view(
            *hidden_states_padded.shape[:-2], hidden_states_padded.shape[-1], hidden_states_padded.shape[-2]
        )
        return hidden_states_padded

    @staticmethod
    def _pad_and_diagonalize(chunked_hidden_states):
        """
        shift every row 1 step right, converting columns into diagonals.

        Example:
            ```python
            >>> chunked_hidden_states: [
            ...    0.4983,
            ...     2.6918,
            ...     -0.0071,
            ...     1.0492,
            ...     -1.8348,
            ...     0.7672,
            ...     0.2986,
            ...     0.0285,
            ...     -0.7584,
            ...     0.4206,
            ...     -0.0405,
            ...     0.1599,
            ...     2.0514,
            ...     -1.1600,
            ...     0.5372,
            ...     0.2629,
            >>> ]
            >>> window_overlap = num_rows = 4
            ```
             (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
               0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206,
               -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
        """
        total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.shape
        chunked_hidden_states = ops.pad(
            chunked_hidden_states, (0, window_overlap + 1)
        )  # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
        chunked_hidden_states = chunked_hidden_states.view(
            total_num_heads, num_chunks, -1
        )  # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap
        chunked_hidden_states = chunked_hidden_states[
            :, :, :-window_overlap
        ]  # total_num_heads x num_chunks x window_overlap*window_overlap
        chunked_hidden_states = chunked_hidden_states.view(
            total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim
        )
        chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
        return chunked_hidden_states

    @staticmethod
    def _chunk(hidden_states, window_overlap, onnx_export: bool = False):
        """convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
        if not onnx_export:
            # non-overlapping chunks of size = 2w
            hidden_states = hidden_states.view(
                hidden_states.shape[0],
                scalar_div(hidden_states.shape[1], (window_overlap * 2), rounding_mode="trunc"),
                window_overlap * 2,
                hidden_states.shape[2],
            )
            # use `as_strided` to make the chunks overlap with an overlap size = window_overlap
            chunk_size = list(hidden_states.shape)
            chunk_size[1] = chunk_size[1] * 2 - 1

            chunk_stride = list(hidden_states.stride())
            chunk_stride[1] = chunk_stride[1] // 2
            return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)

        # When exporting to ONNX, use this separate logic
        # have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export

        # TODO replace this with
        # > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).swapaxes(2, 3)
        # once `unfold` is supported
        # the case hidden_states.shape[1] == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow

        chunk_size = [
            hidden_states.shape[0],
            scalar_div(hidden_states.shape[1], window_overlap, rounding_mode="trunc") - 1,
            window_overlap * 2,
            hidden_states.shape[2],
        ]

        overlapping_chunks = mindspore.zeros(chunk_size)
        for chunk in range(chunk_size[1]):
            overlapping_chunks[:, chunk, :, :] = hidden_states[
                :, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, :
            ]
        return overlapping_chunks

    @staticmethod
    def _mask_invalid_locations(input_tensor, affected_seq_len) -> mindspore.Tensor:
        """
        The '_mask_invalid_locations' method in the class 'LongformerSelfAttention' applies masks to invalidate certain
        locations in the input tensor.

        Args:
            input_tensor (mindspore.Tensor): The input tensor to which the masks will be applied.
                It should be a 4-dimensional tensor representing the input data.
            affected_seq_len (int): The length of the sequence affected by the masks.
                It specifies the number of elements in the sequence to which the masks will be applied.

        Returns:
            mindspore.Tensor: Returns a tensor of the same shape as the input tensor with masks applied to
                invalidate certain locations.

        Raises:
            ValueError: If the affected_seq_len is not a positive integer.
            TypeError: If the input_tensor is not of type mindspore.Tensor.
            RuntimeError: If there is a runtime issue during the mask application process.
        """
        beginning_mask_2d = input_tensor.new_ones((affected_seq_len, affected_seq_len + 1)).tril().flip(dims=[0])
        beginning_mask = beginning_mask_2d[None, :, None, :]
        ending_mask = beginning_mask.flip(dims=(1, 3))
        beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1]
        beginning_mask = beginning_mask.broadcast_to(beginning_input.shape)
        input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = ops.full_like(
            beginning_input, -float("inf")
        ).where(beginning_mask.bool(), beginning_input)
        ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :]
        ending_mask = ending_mask.broadcast_to(ending_input.shape)
        input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = ops.full_like(
            ending_input, -float("inf")
        ).where(ending_mask.bool(), ending_input)

    def _sliding_chunks_query_key_matmul(self, query: mindspore.Tensor, key: mindspore.Tensor, window_overlap: int):
        """
        Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
        implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an
        overlap of size window_overlap
        """
        batch_size, seq_len, num_heads, head_dim = query.shape
        assert (
            seq_len % (window_overlap * 2) == 0
        ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
        assert query.shape == key.shape

        chunks_count = scalar_div(seq_len, window_overlap, rounding_mode="trunc") - 1

        # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
        query = query.swapaxes(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
        key = key.swapaxes(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)

        query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False))
        key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False))

        # matrix multiplication
        # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
        # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
        # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
        diagonal_chunked_attention_scores = ops.einsum("bcxd,bcyd->bcxy", (query, key))  # multiply

        # convert diagonals into columns
        diagonal_chunked_attention_scores = self._pad_and_swapaxes_last_two_dims(
            diagonal_chunked_attention_scores, padding=(0, 0, 0, 1)
        )

        # allocate space for the overall attention matrix where the chunks are combined. The last dimension
        # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
        # window_overlap previous words). The following column is attention score from each word to itself, then
        # followed by window_overlap columns for the upper triangle.

        diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros(
            (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1)
        )

        # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
        # - copying the main diagonal and the upper triangle
        diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[
            :, :, :window_overlap, : window_overlap + 1
        ]
        diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[
            :, -1, window_overlap:, : window_overlap + 1
        ]
        # - copying the lower triangle
        diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[
            :, :, -(window_overlap + 1) : -1, window_overlap + 1 :
        ]

        diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[
            :, 0, : window_overlap - 1, 1 - window_overlap :
        ]

        # separate batch_size and num_heads dimensions again
        diagonal_attention_scores = diagonal_attention_scores.view(
            batch_size, num_heads, seq_len, 2 * window_overlap + 1
        ).swapaxes(2, 1)

        self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
        return diagonal_attention_scores

    def _sliding_chunks_matmul_attn_probs_value(
        self, attn_probs: mindspore.Tensor, value: mindspore.Tensor, window_overlap: int
    ):
        """
        Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
        same shape as `attn_probs`
        """
        batch_size, seq_len, num_heads, head_dim = value.shape

        assert seq_len % (window_overlap * 2) == 0
        assert attn_probs.shape[:3] == value.shape[:3]
        assert attn_probs.shape[3] == 2 * window_overlap + 1
        chunks_count = scalar_div(seq_len, window_overlap, rounding_mode="trunc") - 1
        # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap

        chunked_attn_probs = attn_probs.swapaxes(1, 2).reshape(
            batch_size * num_heads,
            scalar_div(seq_len, window_overlap, rounding_mode="trunc"),
            window_overlap,
            2 * window_overlap + 1,
        )

        # group batch_size and num_heads dimensions into one
        value = value.swapaxes(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)

        # pad seq_len with w at the beginning of the sequence and another window overlap at the end
        padded_value = ops.pad(value, (0, 0, window_overlap, window_overlap), value=-1)

        # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
        chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim)
        chunked_value_stride = padded_value.stride()
        chunked_value_stride = (
            chunked_value_stride[0],
            window_overlap * chunked_value_stride[1],
            chunked_value_stride[1],
            chunked_value_stride[2],
        )
        chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride)

        chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)

        context = ops.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value))
        return context.view(batch_size, num_heads, seq_len, head_dim).swapaxes(1, 2)

    @staticmethod
    def _get_global_attn_indices(is_index_global_attn):
        """compute global attn indices required throughout forward pass"""
        # helper variable
        num_global_attn_indices = is_index_global_attn.long().sum(axis=1)

        # max number of global attn indices in batch
        max_num_global_attn_indices = num_global_attn_indices.max().item()

        # indices of global attn
        is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True)
        # helper variable
        is_local_index_global_attn = ops.arange(max_num_global_attn_indices) < num_global_attn_indices.unsqueeze(dim=-1)

        # location of the non-padding values within global attention indices
        is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True)

        # location of the padding values within global attention indices
        is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True)
        return (
            max_num_global_attn_indices,
            is_index_global_attn_nonzero,
            is_local_index_global_attn_nonzero,
            is_local_index_no_global_attn_nonzero,
        )

    def _concat_with_global_key_attn_probs(
        self,
        key_vectors,
        query_vectors,
        max_num_global_attn_indices,
        is_index_global_attn_nonzero,
        is_local_index_global_attn_nonzero,
        is_local_index_no_global_attn_nonzero,
    ):
        """
        This method concatenates the global key attention probabilities with query vectors.

        Args:
            self: The object instance of the LongformerSelfAttention class.
            key_vectors (Tensor): The key vectors used for computing attention probabilities.
            query_vectors (Tensor): The query vectors used for computing attention probabilities.
            max_num_global_attn_indices (int): The maximum number of global attention indices.
            is_index_global_attn_nonzero (Tensor): Tensor indicating non-zero global attention indices.
            is_local_index_global_attn_nonzero (Tensor): Tensor indicating non-zero local attention indices
                for global attention.
            is_local_index_no_global_attn_nonzero (Tuple): Tuple containing two Tensors indicating non-zero local
                attention indices where global attention is not present.

        Returns:
            Tensor: The attention probabilities computed from global key vectors concatenated with query vectors.

        Raises:
            ValueError: If the shape of the parameters is not compatible with the operations.
            TypeError: If the data types of the input parameters are not supported.
            RuntimeError: If there is an issue during the computation of attention probabilities.
        """
        batch_size = key_vectors.shape[0]

        # create only global key vectors
        key_vectors_only_global = key_vectors.new_zeros(
            (batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim)
        )
        key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero]

        # (batch_size, seq_len, num_heads, max_num_global_attn_indices)
        attn_probs_from_global_key = ops.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global))

        # need to swapaxes since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
        attn_probs_from_global_key = attn_probs_from_global_key.swapaxes(1, 3)
        if 0 not in is_local_index_no_global_attn_nonzero[0].shape:
            attn_probs_from_global_key[
                is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
            ] = float(np.finfo(mindspore.dtype_to_nptype(attn_probs_from_global_key.dtype)).min)
        attn_probs_from_global_key = attn_probs_from_global_key.swapaxes(1, 3)

        return attn_probs_from_global_key

    def _compute_attn_output_with_global_indices(
        self,
        value_vectors,
        attn_probs,
        max_num_global_attn_indices,
        is_index_global_attn_nonzero,
        is_local_index_global_attn_nonzero,
    ):
        """
        Compute the attention output with global indices.

        Args:
            self (LongformerSelfAttention): An instance of the LongformerSelfAttention class.
            value_vectors (torch.Tensor): The value vectors with shape (batch_size, sequence_length, num_heads, head_dim).
            attn_probs (torch.Tensor): The attention probabilities with shape (batch_size, sequence_length, sequence_length).
            max_num_global_attn_indices (int): The maximum number of global attention indices.
            is_index_global_attn_nonzero (torch.Tensor): A boolean tensor with shape (batch_size, sequence_length)
                indicating whether each index has a global attention or not.
            is_local_index_global_attn_nonzero (torch.Tensor): A boolean tensor with shape (batch_size, sequence_length)
                indicating whether each local index with global attention has a nonzero value.

        Returns:
            None: This method modifies the attention output in-place.

        Raises:
            None.
        """
        batch_size = attn_probs.shape[0]

        # cut local attn probs to global only
        attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices)
        # get value vectors for global only
        value_vectors_only_global = value_vectors.new_zeros(
            (batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim)
        )
        value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero]

        # use `matmul` because `einsum` crashes sometimes with fp16
        # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
        # compute attn output only global
        attn_output_only_global = ops.matmul(
            attn_probs_only_global.swapaxes(1, 2).copy(), value_vectors_only_global.swapaxes(1, 2).copy<