Skip to content

longt5

mindnlp.transformers.models.longt5.modeling_longt5

MindSpore LongT5 model

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Attention

Bases: Module

LongT5Attention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
class LongT5Attention(nn.Module):
    """LongT5Attention"""
    def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
        """
        Initializes an instance of the LongT5Attention class.

        Args:
            self: The instance of the LongT5Attention class.
            config (LongT5Config): An instance of LongT5Config containing configuration parameters
                for the attention mechanism.
            has_relative_attention_bias (bool): A boolean flag indicating whether relative attention bias is used.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim

        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
        self.pruned_heads = set()
        self.gradient_checkpointing = False

    def prune_heads(self, heads):
        """
        This method 'prune_heads' is defined within the class 'LongT5Attention' and is responsible for pruning the
        attention heads in the LongT5 model based on the provided 'heads'.

        Args:
            self (LongT5Attention): The instance of the LongT5Attention class.
            heads (List[int]): A list of integers representing the heads to be pruned from the attention mechanism.

        Returns:
            None: This method does not return any value explicitly but modifies the internal state of the
                LongT5Attention instance by pruning the specified attention heads.

        Raises:
            TypeError: If the 'heads' parameter is not a list of integers.
            ValueError: If the 'heads' list is empty, as there are no heads to prune.
            ValueError: If the number of heads to prune exceeds the total number of available heads in the
                LongT5Attention instance.
        """
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
        )
        # Prune linear layers
        self.q = prune_linear_layer(self.q, index)
        self.k = prune_linear_layer(self.k, index)
        self.v = prune_linear_layer(self.v, index)
        self.o = prune_linear_layer(self.o, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.inner_dim = self.key_value_proj_dim * self.n_heads
        self.pruned_heads = self.pruned_heads.union(heads)
    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        """
        This method calculates the relative position bucket for the LongT5Attention class.

        Args:
            relative_position (Tensor): The relative position value to calculate the bucket for.
            bidirectional (bool, optional): Whether the bucket calculation should be bidirectional. Default is True.
            num_buckets (int, optional): The total number of buckets to use for the calculation. Default is 32.
            max_distance (int, optional): The maximum distance value to consider for the calculation. Default is 128.

        Returns:
            Tensor: The calculated relative position bucket value.

        Raises:
            TypeError: If the input parameters are not of the expected types.
            ValueError: If the input parameters do not meet the specified restrictions.
            RuntimeError: If an unexpected error occurs during the calculation.
        """
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).astype(mindspore.int64) * num_buckets
            relative_position = ops.abs(relative_position)
        else:
            relative_position = 0 - \
                ops.minimum(relative_position, ops.zeros(relative_position.shape)).astype(mindspore.int64)
        # now relative_position is in the range [0, inf)
        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact
        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
            ops.log(relative_position.astype(mindspore.float32) / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).astype(mindspore.int64)
        relative_position_if_large = ops.minimum(
            relative_position_if_large, ops.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += ops.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length):
        """Compute binned relative position bias"""
        context_position = ops.arange(query_length, dtype=mindspore.int64)[:, None]
        memory_position = ops.arange(key_length, dtype=mindspore.int64)[None, :]
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # shape (query_length, key_length)
            bidirectional=(not self.is_decoder),
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
        values = values.transpose([2, 0, 1]).expand_dims(0)  # shape (1, num_heads, query_length, key_length)
        return values

    def forward(
        self,
        hidden_states,
        mask=None,
        key_value_states=None,
        position_bias=None,
        past_key_value=None,
        layer_head_mask=None,
        query_length=None,
        use_cache=False,
        output_attentions=False,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
        batch_size, seq_length = hidden_states.shape[:2]

        real_seq_length = seq_length

        if past_key_value is not None:
            assert (
                len(past_key_value) == 2
            ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
            real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length

        key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]

        def shape(states):
            """projection"""
            return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).swapaxes(1, 2)

        def unshape(states):
            """reshape"""
            return states.swapaxes(1, 2).view(batch_size, -1, self.inner_dim)

        def project(hidden_states, proj_layer, key_value_states, past_key_value):
            """projects hidden states correctly to key/query states"""
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(hidden_states))
            elif past_key_value is None:
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))

            if past_key_value is not None:
                if key_value_states is None:
                    # self-attn
                    # (batch_size, n_heads, key_length, dim_per_head)
                    hidden_states = ops.cat([past_key_value, hidden_states], axis=2)
                elif past_key_value.shape[2] != key_value_states.shape[1]:
                    # checking that the `sequence_length` of the `past_key_value` is the same as
                    # the provided `key_value_states` to support prefix tuning
                    # cross-attn
                    # (batch_size, n_heads, seq_length, dim_per_head)
                    hidden_states = shape(proj_layer(key_value_states))
                else:
                    # cross-attn
                    hidden_states = past_key_value
            return hidden_states

        # get query states
        query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)

        # get key/value states
        key_states = project(
            hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
        )
        value_states = project(
            hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
        )

        # compute scores
        scores = ops.matmul(
            query_states, key_states.swapaxes(3, 2)
        )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

        if position_bias is None:
            if not self.has_relative_attention_bias:
                position_bias = ops.zeros(
                    (1, self.n_heads, real_seq_length, key_length), scores.dtype
                )
                if self.gradient_checkpointing and self.training:
                    position_bias.requires_grad = True
            else:
                position_bias = self.compute_bias(real_seq_length, key_length)

            # if key and values are already calculated
            # we want only the last query position bias
            if past_key_value is not None:
                position_bias = position_bias[:, :, -hidden_states.shape[1] :, :]

            if mask is not None:
                position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)

        if self.pruned_heads:
            mask = ops.ones(position_bias.shape[1], mindspore.float32)
            mask[list(self.pruned_heads)] = 0
            position_bias_masked = position_bias[:, mask.bool()]
        else:
            position_bias_masked = position_bias

        scores += position_bias_masked
        attn_weights = ops.softmax(scores.astype(mindspore.float32), axis=-1).astype(
            scores.dtype
        )  # (batch_size, n_heads, seq_length, key_length)
        if self.training:
            attn_weights = ops.dropout(
                attn_weights, p=self.dropout
            )  # (batch_size, n_heads, seq_length, key_length)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        attn_output = unshape(ops.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)

        present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

        if output_attentions:
            outputs = outputs + (attn_weights,)
        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Attention.__init__(config, has_relative_attention_bias=False)

Initializes an instance of the LongT5Attention class.

PARAMETER DESCRIPTION
self

The instance of the LongT5Attention class.

config

An instance of LongT5Config containing configuration parameters for the attention mechanism.

TYPE: LongT5Config

has_relative_attention_bias

A boolean flag indicating whether relative attention bias is used.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
    """
    Initializes an instance of the LongT5Attention class.

    Args:
        self: The instance of the LongT5Attention class.
        config (LongT5Config): An instance of LongT5Config containing configuration parameters
            for the attention mechanism.
        has_relative_attention_bias (bool): A boolean flag indicating whether relative attention bias is used.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.is_decoder = config.is_decoder
    self.has_relative_attention_bias = has_relative_attention_bias
    self.relative_attention_num_buckets = config.relative_attention_num_buckets
    self.relative_attention_max_distance = config.relative_attention_max_distance
    self.d_model = config.d_model
    self.key_value_proj_dim = config.d_kv
    self.n_heads = config.num_heads
    self.dropout = config.dropout_rate
    self.inner_dim = self.n_heads * self.key_value_proj_dim

    # Mesh TensorFlow initialization to avoid scaling before softmax
    self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

    if self.has_relative_attention_bias:
        self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
    self.pruned_heads = set()
    self.gradient_checkpointing = False

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Attention.compute_bias(query_length, key_length)

Compute binned relative position bias

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
def compute_bias(self, query_length, key_length):
    """Compute binned relative position bias"""
    context_position = ops.arange(query_length, dtype=mindspore.int64)[:, None]
    memory_position = ops.arange(key_length, dtype=mindspore.int64)[None, :]
    relative_position = memory_position - context_position  # shape (query_length, key_length)
    relative_position_bucket = self._relative_position_bucket(
        relative_position,  # shape (query_length, key_length)
        bidirectional=(not self.is_decoder),
        num_buckets=self.relative_attention_num_buckets,
        max_distance=self.relative_attention_max_distance,
    )
    values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
    values = values.transpose([2, 0, 1]).expand_dims(0)  # shape (1, num_heads, query_length, key_length)
    return values

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Attention.forward(hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False)

Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
def forward(
    self,
    hidden_states,
    mask=None,
    key_value_states=None,
    position_bias=None,
    past_key_value=None,
    layer_head_mask=None,
    query_length=None,
    use_cache=False,
    output_attentions=False,
):
    """
    Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
    """
    # Input is (batch_size, seq_length, dim)
    # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
    # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
    batch_size, seq_length = hidden_states.shape[:2]

    real_seq_length = seq_length

    if past_key_value is not None:
        assert (
            len(past_key_value) == 2
        ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
        real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length

    key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]

    def shape(states):
        """projection"""
        return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).swapaxes(1, 2)

    def unshape(states):
        """reshape"""
        return states.swapaxes(1, 2).view(batch_size, -1, self.inner_dim)

    def project(hidden_states, proj_layer, key_value_states, past_key_value):
        """projects hidden states correctly to key/query states"""
        if key_value_states is None:
            # self-attn
            # (batch_size, n_heads, seq_length, dim_per_head)
            hidden_states = shape(proj_layer(hidden_states))
        elif past_key_value is None:
            # cross-attn
            # (batch_size, n_heads, seq_length, dim_per_head)
            hidden_states = shape(proj_layer(key_value_states))

        if past_key_value is not None:
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, key_length, dim_per_head)
                hidden_states = ops.cat([past_key_value, hidden_states], axis=2)
            elif past_key_value.shape[2] != key_value_states.shape[1]:
                # checking that the `sequence_length` of the `past_key_value` is the same as
                # the provided `key_value_states` to support prefix tuning
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))
            else:
                # cross-attn
                hidden_states = past_key_value
        return hidden_states

    # get query states
    query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)

    # get key/value states
    key_states = project(
        hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
    )
    value_states = project(
        hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
    )

    # compute scores
    scores = ops.matmul(
        query_states, key_states.swapaxes(3, 2)
    )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

    if position_bias is None:
        if not self.has_relative_attention_bias:
            position_bias = ops.zeros(
                (1, self.n_heads, real_seq_length, key_length), scores.dtype
            )
            if self.gradient_checkpointing and self.training:
                position_bias.requires_grad = True
        else:
            position_bias = self.compute_bias(real_seq_length, key_length)

        # if key and values are already calculated
        # we want only the last query position bias
        if past_key_value is not None:
            position_bias = position_bias[:, :, -hidden_states.shape[1] :, :]

        if mask is not None:
            position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)

    if self.pruned_heads:
        mask = ops.ones(position_bias.shape[1], mindspore.float32)
        mask[list(self.pruned_heads)] = 0
        position_bias_masked = position_bias[:, mask.bool()]
    else:
        position_bias_masked = position_bias

    scores += position_bias_masked
    attn_weights = ops.softmax(scores.astype(mindspore.float32), axis=-1).astype(
        scores.dtype
    )  # (batch_size, n_heads, seq_length, key_length)
    if self.training:
        attn_weights = ops.dropout(
            attn_weights, p=self.dropout
        )  # (batch_size, n_heads, seq_length, key_length)

    # Mask heads if we want to
    if layer_head_mask is not None:
        attn_weights = attn_weights * layer_head_mask

    attn_output = unshape(ops.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
    attn_output = self.o(attn_output)

    present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
    outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

    if output_attentions:
        outputs = outputs + (attn_weights,)
    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Attention.prune_heads(heads)

This method 'prune_heads' is defined within the class 'LongT5Attention' and is responsible for pruning the attention heads in the LongT5 model based on the provided 'heads'.

PARAMETER DESCRIPTION
self

The instance of the LongT5Attention class.

TYPE: LongT5Attention

heads

A list of integers representing the heads to be pruned from the attention mechanism.

TYPE: List[int]

RETURNS DESCRIPTION
None

This method does not return any value explicitly but modifies the internal state of the LongT5Attention instance by pruning the specified attention heads.

RAISES DESCRIPTION
TypeError

If the 'heads' parameter is not a list of integers.

ValueError

If the 'heads' list is empty, as there are no heads to prune.

ValueError

If the number of heads to prune exceeds the total number of available heads in the LongT5Attention instance.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def prune_heads(self, heads):
    """
    This method 'prune_heads' is defined within the class 'LongT5Attention' and is responsible for pruning the
    attention heads in the LongT5 model based on the provided 'heads'.

    Args:
        self (LongT5Attention): The instance of the LongT5Attention class.
        heads (List[int]): A list of integers representing the heads to be pruned from the attention mechanism.

    Returns:
        None: This method does not return any value explicitly but modifies the internal state of the
            LongT5Attention instance by pruning the specified attention heads.

    Raises:
        TypeError: If the 'heads' parameter is not a list of integers.
        ValueError: If the 'heads' list is empty, as there are no heads to prune.
        ValueError: If the number of heads to prune exceeds the total number of available heads in the
            LongT5Attention instance.
    """
    if len(heads) == 0:
        return
    heads, index = find_pruneable_heads_and_indices(
        heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
    )
    # Prune linear layers
    self.q = prune_linear_layer(self.q, index)
    self.k = prune_linear_layer(self.k, index)
    self.v = prune_linear_layer(self.v, index)
    self.o = prune_linear_layer(self.o, index, dim=1)
    # Update hyper params
    self.n_heads = self.n_heads - len(heads)
    self.inner_dim = self.key_value_proj_dim * self.n_heads
    self.pruned_heads = self.pruned_heads.union(heads)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Block

Bases: Module

LongT5Block

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
class LongT5Block(nn.Module):
    """LongT5Block"""
    def __init__(self, config, has_relative_attention_bias=False):
        """
        Initialize the LongT5Block.

        Args:
            self (object): The instance of the class.
            config (object): The configuration object containing the settings for the LongT5Block.
            has_relative_attention_bias (bool): A boolean indicating whether the attention mechanism
                has relative attention bias.

        Returns:
            None.

        Raises:
            ValueError: If the configuration for the encoder attention mechanism is invalid, a ValueError is raised.
        """
        super().__init__()
        self.is_decoder = config.is_decoder

        if config.is_decoder:
            attention_layer = LongT5LayerSelfAttention
        elif config.encoder_attention_type == "local":
            attention_layer = LongT5LayerLocalSelfAttention
        elif config.encoder_attention_type == "transient-global":
            attention_layer = LongT5LayerTransientGlobalSelfAttention
        else:
            raise ValueError(
                "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
                f"but got {config.encoder_attention_type}."
            )

        self.layer = nn.ModuleList()
        self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias))
        if self.is_decoder:
            self.layer.append(LongT5LayerCrossAttention(config))

        self.layer.append(LongT5LayerFF(config))

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
        # return_dict=True,
    ):
        """
        Constructs a LongT5Block layer.

        Args:
            self: The object instance.
            hidden_states (Tensor): The input hidden states for the layer.
            attention_mask (Tensor, optional): Mask to avoid performing attention on padding tokens.
            position_bias (Tensor, optional): Bias for relative position encoding.
            encoder_hidden_states (Tensor, optional): Hidden states from the encoder for cross-attention.
            encoder_attention_mask (Tensor, optional): Mask for encoder attention.
            encoder_decoder_position_bias (Tensor, optional): Bias for cross-attention position encoding.
            layer_head_mask (Tensor, optional): Mask for specific attention heads in the layer.
            cross_attn_layer_head_mask (Tensor, optional): Mask for specific attention heads in cross-attention.
            past_key_value (Tuple, optional): Tuple containing past key and value states for caching.
            use_cache (bool, optional): Flag to indicate whether to use caching.
            output_attentions (bool, optional): Flag to indicate whether to output attentions.

        Returns:
            tuple:
                Tuple of output tensors including the updated hidden states and additional information
                based on the input parameters.

        Raises:
            ValueError: If the number of past key values does not match the expected number.
            Warning: If past_key_values is passed to the encoder when not intended.
            TypeError: If the input tensors have incompatible data types.
            RuntimeError: If there are issues during the computation process.
        """
        if past_key_value is not None:
            if not self.is_decoder:
                logging.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
                    f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                    f"Got {len(past_key_value)} past key / value states"
                )

            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None

        self_attention_outputs = self.layer[0](
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states, present_key_value_state = self_attention_outputs[:2]
        attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

        # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
        if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
            clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        do_cross_attention = self.is_decoder and encoder_hidden_states is not None
        if do_cross_attention:
            # the actual query length is unknown for cross attention
            # if using past key value states. Need to inject it here
            if present_key_value_state is not None:
                query_length = present_key_value_state[0].shape[2]
            else:
                query_length = None

            cross_attention_outputs = self.layer[1](
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                query_length=query_length,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            hidden_states = cross_attention_outputs[0]

            # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
            if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
                clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
                hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state = present_key_value_state + cross_attention_outputs[1]

            # Keep cross-attention outputs and relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[2:]

        # Apply Feed Forward layer
        hidden_states = self.layer[-1](hidden_states)

        # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
        if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
            clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if use_cache:
            outputs = outputs + (present_key_value_state,) + attention_outputs
        else:
            outputs = outputs + attention_outputs

        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Block.__init__(config, has_relative_attention_bias=False)

Initialize the LongT5Block.

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

config

The configuration object containing the settings for the LongT5Block.

TYPE: object

has_relative_attention_bias

A boolean indicating whether the attention mechanism has relative attention bias.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the configuration for the encoder attention mechanism is invalid, a ValueError is raised.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
def __init__(self, config, has_relative_attention_bias=False):
    """
    Initialize the LongT5Block.

    Args:
        self (object): The instance of the class.
        config (object): The configuration object containing the settings for the LongT5Block.
        has_relative_attention_bias (bool): A boolean indicating whether the attention mechanism
            has relative attention bias.

    Returns:
        None.

    Raises:
        ValueError: If the configuration for the encoder attention mechanism is invalid, a ValueError is raised.
    """
    super().__init__()
    self.is_decoder = config.is_decoder

    if config.is_decoder:
        attention_layer = LongT5LayerSelfAttention
    elif config.encoder_attention_type == "local":
        attention_layer = LongT5LayerLocalSelfAttention
    elif config.encoder_attention_type == "transient-global":
        attention_layer = LongT5LayerTransientGlobalSelfAttention
    else:
        raise ValueError(
            "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
            f"but got {config.encoder_attention_type}."
        )

    self.layer = nn.ModuleList()
    self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias))
    if self.is_decoder:
        self.layer.append(LongT5LayerCrossAttention(config))

    self.layer.append(LongT5LayerFF(config))

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Block.forward(hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False)

Constructs a LongT5Block layer.

PARAMETER DESCRIPTION
self

The object instance.

hidden_states

The input hidden states for the layer.

TYPE: Tensor

attention_mask

Mask to avoid performing attention on padding tokens.

TYPE: Tensor DEFAULT: None

position_bias

Bias for relative position encoding.

TYPE: Tensor DEFAULT: None

encoder_hidden_states

Hidden states from the encoder for cross-attention.

TYPE: Tensor DEFAULT: None

encoder_attention_mask

Mask for encoder attention.

TYPE: Tensor DEFAULT: None

encoder_decoder_position_bias

Bias for cross-attention position encoding.

TYPE: Tensor DEFAULT: None

layer_head_mask

Mask for specific attention heads in the layer.

TYPE: Tensor DEFAULT: None

cross_attn_layer_head_mask

Mask for specific attention heads in cross-attention.

TYPE: Tensor DEFAULT: None

past_key_value

Tuple containing past key and value states for caching.

TYPE: Tuple DEFAULT: None

use_cache

Flag to indicate whether to use caching.

TYPE: bool DEFAULT: False

output_attentions

Flag to indicate whether to output attentions.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

Tuple of output tensors including the updated hidden states and additional information based on the input parameters.

RAISES DESCRIPTION
ValueError

If the number of past key values does not match the expected number.

Warning

If past_key_values is passed to the encoder when not intended.

TypeError

If the input tensors have incompatible data types.

RuntimeError

If there are issues during the computation process.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
def forward(
    self,
    hidden_states,
    attention_mask=None,
    position_bias=None,
    encoder_hidden_states=None,
    encoder_attention_mask=None,
    encoder_decoder_position_bias=None,
    layer_head_mask=None,
    cross_attn_layer_head_mask=None,
    past_key_value=None,
    use_cache=False,
    output_attentions=False,
    # return_dict=True,
):
    """
    Constructs a LongT5Block layer.

    Args:
        self: The object instance.
        hidden_states (Tensor): The input hidden states for the layer.
        attention_mask (Tensor, optional): Mask to avoid performing attention on padding tokens.
        position_bias (Tensor, optional): Bias for relative position encoding.
        encoder_hidden_states (Tensor, optional): Hidden states from the encoder for cross-attention.
        encoder_attention_mask (Tensor, optional): Mask for encoder attention.
        encoder_decoder_position_bias (Tensor, optional): Bias for cross-attention position encoding.
        layer_head_mask (Tensor, optional): Mask for specific attention heads in the layer.
        cross_attn_layer_head_mask (Tensor, optional): Mask for specific attention heads in cross-attention.
        past_key_value (Tuple, optional): Tuple containing past key and value states for caching.
        use_cache (bool, optional): Flag to indicate whether to use caching.
        output_attentions (bool, optional): Flag to indicate whether to output attentions.

    Returns:
        tuple:
            Tuple of output tensors including the updated hidden states and additional information
            based on the input parameters.

    Raises:
        ValueError: If the number of past key values does not match the expected number.
        Warning: If past_key_values is passed to the encoder when not intended.
        TypeError: If the input tensors have incompatible data types.
        RuntimeError: If there are issues during the computation process.
    """
    if past_key_value is not None:
        if not self.is_decoder:
            logging.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
        expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

        if len(past_key_value) != expected_num_past_key_values:
            raise ValueError(
                f"There should be {expected_num_past_key_values} past states. "
                f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                f"Got {len(past_key_value)} past key / value states"
            )

        self_attn_past_key_value = past_key_value[:2]
        cross_attn_past_key_value = past_key_value[2:]
    else:
        self_attn_past_key_value, cross_attn_past_key_value = None, None

    self_attention_outputs = self.layer[0](
        hidden_states,
        attention_mask=attention_mask,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        past_key_value=self_attn_past_key_value,
        use_cache=use_cache,
        output_attentions=output_attentions,
    )
    hidden_states, present_key_value_state = self_attention_outputs[:2]
    attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

    # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
    if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
        clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
        hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

    do_cross_attention = self.is_decoder and encoder_hidden_states is not None
    if do_cross_attention:
        # the actual query length is unknown for cross attention
        # if using past key value states. Need to inject it here
        if present_key_value_state is not None:
            query_length = present_key_value_state[0].shape[2]
        else:
            query_length = None

        cross_attention_outputs = self.layer[1](
            hidden_states,
            key_value_states=encoder_hidden_states,
            attention_mask=encoder_attention_mask,
            position_bias=encoder_decoder_position_bias,
            layer_head_mask=cross_attn_layer_head_mask,
            past_key_value=cross_attn_past_key_value,
            query_length=query_length,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states = cross_attention_outputs[0]

        # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
        if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
            clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        # Combine self attn and cross attn key value states
        if present_key_value_state is not None:
            present_key_value_state = present_key_value_state + cross_attention_outputs[1]

        # Keep cross-attention outputs and relative position weights
        attention_outputs = attention_outputs + cross_attention_outputs[2:]

    # Apply Feed Forward layer
    hidden_states = self.layer[-1](hidden_states)

    # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
    if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
        clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
        hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

    outputs = (hidden_states,)

    if use_cache:
        outputs = outputs + (present_key_value_state,) + attention_outputs
    else:
        outputs = outputs + attention_outputs

    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5DenseActDense

Bases: Module

LongT5DenseActDense

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class LongT5DenseActDense(nn.Module):
    """LongT5DenseActDense"""
    def __init__(self, config: LongT5Config):
        """
        This method initializes an instance of the LongT5DenseActDense class.

        Args:
            self: Represents the instance of the class.
            config (LongT5Config): An object of type LongT5Config containing configuration parameters for the
            dense layers. It specifies the dimensions of the input and output tensors, as well as the dropout
            rate and activation function to be used.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of type LongT5Config.
            ValueError: If the config parameter contains invalid configuration values.
            RuntimeError: If there is an issue with initializing the dense layers, dropout, or activation function.
        """
        super().__init__()
        self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(p=config.dropout_rate)
        self.act = ACT2FN[config.dense_act_fn]

    def forward(self, hidden_states):
        """
        This method forwards and processes hidden states in the LongT5DenseActDense class.

        Args:
            self: An instance of the LongT5DenseActDense class, representing the current object.
            hidden_states: A tensor containing the hidden states to be processed.

        Returns:
            hidden_states: A tensor representing the processed hidden states.

        Raises:
            TypeError: If the weight datatype of self.wo is not matching with hidden_states.dtype or mindspore.int8.
        """
        hidden_states = self.wi(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.dropout(hidden_states)
        if self.wo.weight.dtype not in (hidden_states.dtype, mindspore.int8):
            hidden_states = hidden_states.astype(self.wo.weight.dtype)
        hidden_states = self.wo(hidden_states)
        return hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5DenseActDense.__init__(config)

This method initializes an instance of the LongT5DenseActDense class.

PARAMETER DESCRIPTION
self

Represents the instance of the class.

config

An object of type LongT5Config containing configuration parameters for the

TYPE: LongT5Config

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of type LongT5Config.

ValueError

If the config parameter contains invalid configuration values.

RuntimeError

If there is an issue with initializing the dense layers, dropout, or activation function.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def __init__(self, config: LongT5Config):
    """
    This method initializes an instance of the LongT5DenseActDense class.

    Args:
        self: Represents the instance of the class.
        config (LongT5Config): An object of type LongT5Config containing configuration parameters for the
        dense layers. It specifies the dimensions of the input and output tensors, as well as the dropout
        rate and activation function to be used.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of type LongT5Config.
        ValueError: If the config parameter contains invalid configuration values.
        RuntimeError: If there is an issue with initializing the dense layers, dropout, or activation function.
    """
    super().__init__()
    self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
    self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
    self.dropout = nn.Dropout(p=config.dropout_rate)
    self.act = ACT2FN[config.dense_act_fn]

mindnlp.transformers.models.longt5.modeling_longt5.LongT5DenseActDense.forward(hidden_states)

This method forwards and processes hidden states in the LongT5DenseActDense class.

PARAMETER DESCRIPTION
self

An instance of the LongT5DenseActDense class, representing the current object.

hidden_states

A tensor containing the hidden states to be processed.

RETURNS DESCRIPTION
hidden_states

A tensor representing the processed hidden states.

RAISES DESCRIPTION
TypeError

If the weight datatype of self.wo is not matching with hidden_states.dtype or mindspore.int8.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def forward(self, hidden_states):
    """
    This method forwards and processes hidden states in the LongT5DenseActDense class.

    Args:
        self: An instance of the LongT5DenseActDense class, representing the current object.
        hidden_states: A tensor containing the hidden states to be processed.

    Returns:
        hidden_states: A tensor representing the processed hidden states.

    Raises:
        TypeError: If the weight datatype of self.wo is not matching with hidden_states.dtype or mindspore.int8.
    """
    hidden_states = self.wi(hidden_states)
    hidden_states = self.act(hidden_states)
    hidden_states = self.dropout(hidden_states)
    if self.wo.weight.dtype not in (hidden_states.dtype, mindspore.int8):
        hidden_states = hidden_states.astype(self.wo.weight.dtype)
    hidden_states = self.wo(hidden_states)
    return hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5DenseGatedActDense

Bases: Module

LongT5DenseGatedActDense

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
class LongT5DenseGatedActDense(nn.Module):
    """LongT5DenseGatedActDense"""
    def __init__(self, config: LongT5Config):
        """
        Initializes an instance of the LongT5DenseGatedActDense class.

        Args:
            self: The instance of the class.
            config (LongT5Config):
                An object containing configuration parameters for the dense layers.

                - config.d_model (int): The dimensionality of the model.
                - config.d_ff (int): The dimensionality of the feed-forward layer.
                - config.dropout_rate (float): The dropout rate for regularization.
                - config.dense_act_fn (str): The name of the activation function to be used.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(p=config.dropout_rate)
        self.act = ACT2FN[config.dense_act_fn]

    def forward(self, hidden_states):
        """
        Constructs the hidden states of the LongT5DenseGatedActDense model.

        Args:
            self (LongT5DenseGatedActDense): An instance of the LongT5DenseGatedActDense class.
            hidden_states (Tensor): The input hidden states.

        Returns:
            None.

        Raises:
            None.
        """
        hidden_gelu = self.act(self.wi_0(hidden_states))
        hidden_linear = self.wi_1(hidden_states)
        hidden_states = hidden_gelu * hidden_linear
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.wo(hidden_states)
        return hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5DenseGatedActDense.__init__(config)

Initializes an instance of the LongT5DenseGatedActDense class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object containing configuration parameters for the dense layers.

  • config.d_model (int): The dimensionality of the model.
  • config.d_ff (int): The dimensionality of the feed-forward layer.
  • config.dropout_rate (float): The dropout rate for regularization.
  • config.dense_act_fn (str): The name of the activation function to be used.

TYPE: LongT5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def __init__(self, config: LongT5Config):
    """
    Initializes an instance of the LongT5DenseGatedActDense class.

    Args:
        self: The instance of the class.
        config (LongT5Config):
            An object containing configuration parameters for the dense layers.

            - config.d_model (int): The dimensionality of the model.
            - config.d_ff (int): The dimensionality of the feed-forward layer.
            - config.dropout_rate (float): The dropout rate for regularization.
            - config.dense_act_fn (str): The name of the activation function to be used.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
    self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
    self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
    self.dropout = nn.Dropout(p=config.dropout_rate)
    self.act = ACT2FN[config.dense_act_fn]

mindnlp.transformers.models.longt5.modeling_longt5.LongT5DenseGatedActDense.forward(hidden_states)

Constructs the hidden states of the LongT5DenseGatedActDense model.

PARAMETER DESCRIPTION
self

An instance of the LongT5DenseGatedActDense class.

TYPE: LongT5DenseGatedActDense

hidden_states

The input hidden states.

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def forward(self, hidden_states):
    """
    Constructs the hidden states of the LongT5DenseGatedActDense model.

    Args:
        self (LongT5DenseGatedActDense): An instance of the LongT5DenseGatedActDense class.
        hidden_states (Tensor): The input hidden states.

    Returns:
        None.

    Raises:
        None.
    """
    hidden_gelu = self.act(self.wi_0(hidden_states))
    hidden_linear = self.wi_1(hidden_states)
    hidden_states = hidden_gelu * hidden_linear
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.wo(hidden_states)
    return hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5EncoderModel

Bases: LongT5PreTrainedModel

LongT5EncoderModel

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
class LongT5EncoderModel(LongT5PreTrainedModel):
    """LongT5EncoderModel"""
    _tied_weights_keys = ["encoder.embed_tokens.weight"]
    _keys_to_ignore_on_load_unexpected = [r"decoder"]

    def __init__(self, config: LongT5Config):
        """
        Initializes a new instance of the LongT5EncoderModel class.

        Args:
            self: The object instance.
            config (LongT5Config):
                The configuration object for the model.

                - The 'config' parameter is of type LongT5Config, which holds various configuration settings for the model.
                - It is used to initialize the base class with the provided configuration.
                - This parameter is required and must be provided.

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = LongT5Stack(encoder_config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Retrieves the input embeddings for the LongT5EncoderModel.

        Args:
            self: An instance of the LongT5EncoderModel class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """
        Set the input embeddings for the LongT5EncoderModel.

        Args:
            self (LongT5EncoderModel): The instance of the LongT5EncoderModel class.
            new_embeddings (object): New input embeddings to be set for the model.

        Returns:
            None.

        Raises:
            None.
        """
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        Ties the word embeddings weights with the shared layer weights if specified in the configuration.

        Args:
            self (LongT5EncoderModel): The instance of the LongT5EncoderModel class.

        Returns:
            None.

        Raises:
            None.
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)

    def get_encoder(self):
        """get encoder"""
        return self.encoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)

    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        head_mask = None,
        inputs_embeds = None,
        output_attentions = None,
        output_hidden_states = None,
        return_dict = None,
    ):
        """
        This method forwards the LongT5EncoderModel by passing the input parameters to the encoder.

        Args:
            self: The instance of the LongT5EncoderModel class.
            input_ids (Optional[Tensor]): The input token IDs for the encoder. Default is None.
            attention_mask (Optional[Tensor]): The attention mask tensor for the encoder. Default is None.
            head_mask (Optional[Tensor]): The head mask tensor for the encoder. Default is None.
            inputs_embeds (Optional[Tensor]): The input embeddings for the encoder. Default is None.
            output_attentions (Optional[bool]): Whether to output attentions. Default is None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
            return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

        Returns:
            None.

        Raises:
            None
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return encoder_outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5EncoderModel.__init__(config)

Initializes a new instance of the LongT5EncoderModel class.

PARAMETER DESCRIPTION
self

The object instance.

config

The configuration object for the model.

  • The 'config' parameter is of type LongT5Config, which holds various configuration settings for the model.
  • It is used to initialize the base class with the provided configuration.
  • This parameter is required and must be provided.

TYPE: LongT5Config

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
def __init__(self, config: LongT5Config):
    """
    Initializes a new instance of the LongT5EncoderModel class.

    Args:
        self: The object instance.
        config (LongT5Config):
            The configuration object for the model.

            - The 'config' parameter is of type LongT5Config, which holds various configuration settings for the model.
            - It is used to initialize the base class with the provided configuration.
            - This parameter is required and must be provided.

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = LongT5Stack(encoder_config)
    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longt5.modeling_longt5.LongT5EncoderModel.forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

This method forwards the LongT5EncoderModel by passing the input parameters to the encoder.

PARAMETER DESCRIPTION
self

The instance of the LongT5EncoderModel class.

input_ids

The input token IDs for the encoder. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask tensor for the encoder. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The head mask tensor for the encoder. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The input embeddings for the encoder. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
def forward(
    self,
    input_ids = None,
    attention_mask = None,
    head_mask = None,
    inputs_embeds = None,
    output_attentions = None,
    output_hidden_states = None,
    return_dict = None,
):
    """
    This method forwards the LongT5EncoderModel by passing the input parameters to the encoder.

    Args:
        self: The instance of the LongT5EncoderModel class.
        input_ids (Optional[Tensor]): The input token IDs for the encoder. Default is None.
        attention_mask (Optional[Tensor]): The attention mask tensor for the encoder. Default is None.
        head_mask (Optional[Tensor]): The head mask tensor for the encoder. Default is None.
        inputs_embeds (Optional[Tensor]): The input embeddings for the encoder. Default is None.
        output_attentions (Optional[bool]): Whether to output attentions. Default is None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
        return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

    Returns:
        None.

    Raises:
        None
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    encoder_outputs = self.encoder(
        input_ids=input_ids,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        head_mask=head_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    return encoder_outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5EncoderModel.get_encoder()

get encoder

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2674
2675
2676
def get_encoder(self):
    """get encoder"""
    return self.encoder

mindnlp.transformers.models.longt5.modeling_longt5.LongT5EncoderModel.get_input_embeddings()

Retrieves the input embeddings for the LongT5EncoderModel.

PARAMETER DESCRIPTION
self

An instance of the LongT5EncoderModel class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
def get_input_embeddings(self):
    """
    Retrieves the input embeddings for the LongT5EncoderModel.

    Args:
        self: An instance of the LongT5EncoderModel class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.shared

mindnlp.transformers.models.longt5.modeling_longt5.LongT5EncoderModel.set_input_embeddings(new_embeddings)

Set the input embeddings for the LongT5EncoderModel.

PARAMETER DESCRIPTION
self

The instance of the LongT5EncoderModel class.

TYPE: LongT5EncoderModel

new_embeddings

New input embeddings to be set for the model.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
def set_input_embeddings(self, new_embeddings):
    """
    Set the input embeddings for the LongT5EncoderModel.

    Args:
        self (LongT5EncoderModel): The instance of the LongT5EncoderModel class.
        new_embeddings (object): New input embeddings to be set for the model.

    Returns:
        None.

    Raises:
        None.
    """
    self.shared = new_embeddings
    self.encoder.set_input_embeddings(new_embeddings)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration

Bases: LongT5PreTrainedModel

LongT5ForConditionalGeneration

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
class LongT5ForConditionalGeneration(LongT5PreTrainedModel):
    """LongT5ForConditionalGeneration"""
    _keys_to_ignore_on_load_unexpected = [
        r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
    ]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]

    def __init__(self, config: LongT5Config):
        """
        Args:
            self: The instance of the LongT5ForConditionalGeneration class.
            config (LongT5Config): An instance of LongT5Config class containing the configuration parameters
                for the LongT5 model. It specifies the model dimensions, vocabulary size, and other relevant settings.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = LongT5Stack(encoder_config, self.shared)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = LongT5Stack(decoder_config, self.shared)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

    def get_input_embeddings(self):
        """
        Method to retrieve the input embeddings from the LongT5ForConditionalGeneration model.

        Args:
            self:
                An instance of the LongT5ForConditionalGeneration class.

                - Type: LongT5ForConditionalGeneration
                - Purpose: Represents the current instance of the LongT5ForConditionalGeneration class.
                - Restrictions: None

        Returns:
            None: The method returns None as it retrieves the input embeddings from the model.

        Raises:
            None.
        """
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """set input embeddings"""
        self.shared = new_embeddings
        # self.encoder.set_input_embeddings(new_embeddings)
        # self.decoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        This method ties the weights of the encoder and decoder embeddings if the configuration specifies
        to tie the word embeddings.

        Args:
            self (LongT5ForConditionalGeneration): The instance of the LongT5ForConditionalGeneration class.

        Returns:
            None.

        Raises:
            None.
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

    def set_output_embeddings(self, new_embeddings):
        """set output embeddings"""
        self.lm_head = new_embeddings

    def get_output_embeddings(self):
        """get output embeddings"""
        return self.lm_head

    def get_encoder(self):
        """get encoder"""
        return self.encoder

    def get_decoder(self):
        """get decoder"""
        return self.decoder

    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        decoder_input_ids = None,
        decoder_attention_mask = None,
        head_mask = None,
        decoder_head_mask = None,
        cross_attn_head_mask = None,
        encoder_outputs = None,
        past_key_values = None,
        inputs_embeds = None,
        decoder_inputs_embeds = None,
        labels = None,
        use_cache = None,
        output_attentions = None,
        output_hidden_states = None,
        return_dict = None,
    ):
        """
        This method forwards a LongT5 model for conditional generation.

        Args:
            self: The instance of the class.
            input_ids (torch.Tensor, optional): The input token IDs for the encoder. Default is None.
            attention_mask (torch.Tensor, optional): The attention mask for the encoder input. Default is None.
            decoder_input_ids (torch.Tensor, optional): The input token IDs for the decoder. Default is None.
            decoder_attention_mask (torch.Tensor, optional): The attention mask for the decoder input. Default is None.
            head_mask (torch.Tensor, optional): The head mask for the encoder. Default is None.
            decoder_head_mask (torch.Tensor, optional): The head mask for the decoder. Default is None.
            cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask. Default is None.
            encoder_outputs (torch.Tensor, optional): The encoder outputs. Default is None.
            past_key_values (torch.Tensor, optional): The past key values for the decoder. Default is None.
            inputs_embeds (torch.Tensor, optional): The input embeddings for the encoder. Default is None.
            decoder_inputs_embeds (torch.Tensor, optional): The input embeddings for the decoder. Default is None.
            labels (torch.Tensor, optional): The target labels for prediction. Default is None.
            use_cache (bool, optional): Whether to use cache for decoding. Default is None.
            output_attentions (bool, optional): Whether to output attentions. Default is None.
            output_hidden_states (bool, optional): Whether to output hidden states. Default is None.
            return_dict (bool, optional): Whether to return a dictionary as output. Default is None.

        Returns:
            None

        Raises:
            NotImplementedError: If the method encounters an operation that is not implemented.
            ValueError: If incorrect arguments are provided or if the input dimensions are not valid.
            RuntimeError: If there is an issue during model execution.
        """
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            # Convert encoder inputs in embeddings if needed
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        hidden_states = encoder_outputs[0]
        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            # get decoder inputs from shifting lm labels to the right
            decoder_input_ids = self._shift_right(labels)
        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            sequence_output = sequence_output * (self.model_dim**-0.5)

        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1), ignore_index=-100)
            # TODO(thom): Add z_loss

        if not return_dict:
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        """prepare inputs for generation"""
        # cut decoder_input_ids if past is used
        # cut decoder_input_ids if past_key_values is used
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        return {
            "decoder_input_ids": input_ids,
            "past_key_values": past_key_values,
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: mindspore.Tensor):
        """prepare decoder input ids from labels"""
        return self._shift_right(labels)

    def _reorder_cache(self, past_key_values, beam_idx):
        '''
        This method '_reorder_cache' is defined within the class 'LongT5ForConditionalGeneration' and
        is responsible for reordering the cache for the T5 model during decoding.

        Args:
            self: The instance of the class.
            past_key_values (tuple): A tuple containing the past key and value states for each layer in the decoder.
                The past key and value states are used to speed up decoding.
                If None, a warning is logged suggesting to set 'use_cache=True' to enhance decoding speed.
            beam_idx (tensor): The indices of the selected beams to be used for reordering the past key and value states.

        Returns:
            tuple: The reordered past key and value states for the decoder.
                If the 'past_key_values' parameter is None, it returns None.

        Raises:
            AssertionError: If the shape or length of the reordered layer past states does not match the
                original layer past states.
        '''
        # if decoder past is not included in output
        # speedy decoding is disabled and no need to reorder
        if past_key_values is None:
            logging.warning("You might want to consider setting `use_cache=True` to speed up decoding")
            return past_key_values

        reordered_decoder_past = ()
        for layer_past_states in past_key_values:
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                reordered_layer_past_states = reordered_layer_past_states + (
                    layer_past_state.index_select(0, beam_idx),
                )

            assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
            assert len(reordered_layer_past_states) == len(layer_past_states)

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
        return reordered_decoder_past

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.__init__(config)

PARAMETER DESCRIPTION
self

The instance of the LongT5ForConditionalGeneration class.

config

An instance of LongT5Config class containing the configuration parameters for the LongT5 model. It specifies the model dimensions, vocabulary size, and other relevant settings.

TYPE: LongT5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
def __init__(self, config: LongT5Config):
    """
    Args:
        self: The instance of the LongT5ForConditionalGeneration class.
        config (LongT5Config): An instance of LongT5Config class containing the configuration parameters
            for the LongT5 model. It specifies the model dimensions, vocabulary size, and other relevant settings.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.model_dim = config.d_model

    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.is_decoder = False
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = LongT5Stack(encoder_config, self.shared)

    decoder_config = copy.deepcopy(config)
    decoder_config.is_decoder = True
    decoder_config.is_encoder_decoder = False
    decoder_config.num_layers = config.num_decoder_layers
    self.decoder = LongT5Stack(decoder_config, self.shared)

    self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

This method forwards a LongT5 model for conditional generation.

PARAMETER DESCRIPTION
self

The instance of the class.

input_ids

The input token IDs for the encoder. Default is None.

TYPE: Tensor DEFAULT: None

attention_mask

The attention mask for the encoder input. Default is None.

TYPE: Tensor DEFAULT: None

decoder_input_ids

The input token IDs for the decoder. Default is None.

TYPE: Tensor DEFAULT: None

decoder_attention_mask

The attention mask for the decoder input. Default is None.

TYPE: Tensor DEFAULT: None

head_mask

The head mask for the encoder. Default is None.

TYPE: Tensor DEFAULT: None

decoder_head_mask

The head mask for the decoder. Default is None.

TYPE: Tensor DEFAULT: None

cross_attn_head_mask

The cross-attention head mask. Default is None.

TYPE: Tensor DEFAULT: None

encoder_outputs

The encoder outputs. Default is None.

TYPE: Tensor DEFAULT: None

past_key_values

The past key values for the decoder. Default is None.

TYPE: Tensor DEFAULT: None

inputs_embeds

The input embeddings for the encoder. Default is None.

TYPE: Tensor DEFAULT: None

decoder_inputs_embeds

The input embeddings for the decoder. Default is None.

TYPE: Tensor DEFAULT: None

labels

The target labels for prediction. Default is None.

TYPE: Tensor DEFAULT: None

use_cache

Whether to use cache for decoding. Default is None.

TYPE: bool DEFAULT: None

output_attentions

Whether to output attentions. Default is None.

TYPE: bool DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: bool DEFAULT: None

return_dict

Whether to return a dictionary as output. Default is None.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION

None

RAISES DESCRIPTION
NotImplementedError

If the method encounters an operation that is not implemented.

ValueError

If incorrect arguments are provided or if the input dimensions are not valid.

RuntimeError

If there is an issue during model execution.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
def forward(
    self,
    input_ids = None,
    attention_mask = None,
    decoder_input_ids = None,
    decoder_attention_mask = None,
    head_mask = None,
    decoder_head_mask = None,
    cross_attn_head_mask = None,
    encoder_outputs = None,
    past_key_values = None,
    inputs_embeds = None,
    decoder_inputs_embeds = None,
    labels = None,
    use_cache = None,
    output_attentions = None,
    output_hidden_states = None,
    return_dict = None,
):
    """
    This method forwards a LongT5 model for conditional generation.

    Args:
        self: The instance of the class.
        input_ids (torch.Tensor, optional): The input token IDs for the encoder. Default is None.
        attention_mask (torch.Tensor, optional): The attention mask for the encoder input. Default is None.
        decoder_input_ids (torch.Tensor, optional): The input token IDs for the decoder. Default is None.
        decoder_attention_mask (torch.Tensor, optional): The attention mask for the decoder input. Default is None.
        head_mask (torch.Tensor, optional): The head mask for the encoder. Default is None.
        decoder_head_mask (torch.Tensor, optional): The head mask for the decoder. Default is None.
        cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask. Default is None.
        encoder_outputs (torch.Tensor, optional): The encoder outputs. Default is None.
        past_key_values (torch.Tensor, optional): The past key values for the decoder. Default is None.
        inputs_embeds (torch.Tensor, optional): The input embeddings for the encoder. Default is None.
        decoder_inputs_embeds (torch.Tensor, optional): The input embeddings for the decoder. Default is None.
        labels (torch.Tensor, optional): The target labels for prediction. Default is None.
        use_cache (bool, optional): Whether to use cache for decoding. Default is None.
        output_attentions (bool, optional): Whether to output attentions. Default is None.
        output_hidden_states (bool, optional): Whether to output hidden states. Default is None.
        return_dict (bool, optional): Whether to return a dictionary as output. Default is None.

    Returns:
        None

    Raises:
        NotImplementedError: If the method encounters an operation that is not implemented.
        ValueError: If incorrect arguments are provided or if the input dimensions are not valid.
        RuntimeError: If there is an issue during model execution.
    """
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
    if head_mask is not None and decoder_head_mask is None:
        if self.config.num_layers == self.config.num_decoder_layers:
            decoder_head_mask = head_mask

    # Encode if needed (training, first prediction pass)
    if encoder_outputs is None:
        # Convert encoder inputs in embeddings if needed
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    hidden_states = encoder_outputs[0]
    if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
        # get decoder inputs from shifting lm labels to the right
        decoder_input_ids = self._shift_right(labels)
    # Decode
    decoder_outputs = self.decoder(
        input_ids=decoder_input_ids,
        attention_mask=decoder_attention_mask,
        inputs_embeds=decoder_inputs_embeds,
        past_key_values=past_key_values,
        encoder_hidden_states=hidden_states,
        encoder_attention_mask=attention_mask,
        head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = decoder_outputs[0]

    if self.config.tie_word_embeddings:
        # Rescale output before projecting on vocab
        sequence_output = sequence_output * (self.model_dim**-0.5)

    lm_logits = self.lm_head(sequence_output)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1), ignore_index=-100)
        # TODO(thom): Add z_loss

    if not return_dict:
        output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
        return ((loss,) + output) if loss is not None else output

    return Seq2SeqLMOutput(
        loss=loss,
        logits=lm_logits,
        past_key_values=decoder_outputs.past_key_values,
        decoder_hidden_states=decoder_outputs.hidden_states,
        decoder_attentions=decoder_outputs.attentions,
        cross_attentions=decoder_outputs.cross_attentions,
        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
        encoder_hidden_states=encoder_outputs.hidden_states,
        encoder_attentions=encoder_outputs.attentions,
    )

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.get_decoder()

get decoder

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2383
2384
2385
def get_decoder(self):
    """get decoder"""
    return self.decoder

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.get_encoder()

get encoder

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2379
2380
2381
def get_encoder(self):
    """get encoder"""
    return self.encoder

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.get_input_embeddings()

Method to retrieve the input embeddings from the LongT5ForConditionalGeneration model.

PARAMETER DESCRIPTION
self

An instance of the LongT5ForConditionalGeneration class.

  • Type: LongT5ForConditionalGeneration
  • Purpose: Represents the current instance of the LongT5ForConditionalGeneration class.
  • Restrictions: None

RETURNS DESCRIPTION
None

The method returns None as it retrieves the input embeddings from the model.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
def get_input_embeddings(self):
    """
    Method to retrieve the input embeddings from the LongT5ForConditionalGeneration model.

    Args:
        self:
            An instance of the LongT5ForConditionalGeneration class.

            - Type: LongT5ForConditionalGeneration
            - Purpose: Represents the current instance of the LongT5ForConditionalGeneration class.
            - Restrictions: None

    Returns:
        None: The method returns None as it retrieves the input embeddings from the model.

    Raises:
        None.
    """
    return self.shared

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.get_output_embeddings()

get output embeddings

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2375
2376
2377
def get_output_embeddings(self):
    """get output embeddings"""
    return self.lm_head

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.prepare_decoder_input_ids_from_labels(labels)

prepare decoder input ids from labels

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2544
2545
2546
def prepare_decoder_input_ids_from_labels(self, labels: mindspore.Tensor):
    """prepare decoder input ids from labels"""
    return self._shift_right(labels)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs)

prepare inputs for generation

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
def prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    cross_attn_head_mask=None,
    use_cache=None,
    encoder_outputs=None,
    **kwargs,
):
    """prepare inputs for generation"""
    # cut decoder_input_ids if past is used
    # cut decoder_input_ids if past_key_values is used
    if past_key_values is not None:
        past_length = past_key_values[0][0].shape[2]

        # Some generation methods already pass only the last input ID
        if input_ids.shape[1] > past_length:
            remove_prefix_length = past_length
        else:
            # Default to old behavior: keep only final ID
            remove_prefix_length = input_ids.shape[1] - 1

        input_ids = input_ids[:, remove_prefix_length:]

    return {
        "decoder_input_ids": input_ids,
        "past_key_values": past_key_values,
        "encoder_outputs": encoder_outputs,
        "attention_mask": attention_mask,
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
        "use_cache": use_cache,
    }

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.set_input_embeddings(new_embeddings)

set input embeddings

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2347
2348
2349
def set_input_embeddings(self, new_embeddings):
    """set input embeddings"""
    self.shared = new_embeddings

mindnlp.transformers.models.longt5.modeling_longt5.LongT5ForConditionalGeneration.set_output_embeddings(new_embeddings)

set output embeddings

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2371
2372
2373
def set_output_embeddings(self, new_embeddings):
    """set output embeddings"""
    self.lm_head = new_embeddings

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerCrossAttention

Bases: Module

LongT5LayerCrossAttention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
class LongT5LayerCrossAttention(nn.Module):
    """LongT5LayerCrossAttention"""
    def __init__(self, config):
        """
        Initialize the LongT5LayerCrossAttention class.

        Args:
            self: An instance of the LongT5LayerCrossAttention class.
            config:
                A dictionary containing configuration settings for the LongT5LayerCrossAttention.

                - Type: dict
                - Purpose: Contains the configuration settings for the LongT5LayerCrossAttention.
                - Restrictions: Must be a valid dictionary with required configuration parameters.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False)
        self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(
        self,
        hidden_states,
        key_value_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        query_length=None,
        output_attentions=False,
    ):
        """
        Constructs the cross-attention layer for the LongT5 model.

        Args:
            self (LongT5LayerCrossAttention): An instance of the LongT5LayerCrossAttention class.
            hidden_states (torch.Tensor): The input hidden states of the layer.
                Shape: (batch_size, sequence_length, hidden_size).
            key_value_states (torch.Tensor): The key-value states for attention.
                Shape: (batch_size, sequence_length, hidden_size).
            attention_mask (torch.Tensor, optional): The attention mask tensor.
                Shape: (batch_size, sequence_length).
            position_bias (torch.Tensor, optional): The position bias tensor.
                Shape: (batch_size, num_heads, sequence_length, sequence_length).
            layer_head_mask (torch.Tensor, optional): The layer head mask tensor.
                Shape: (batch_size, num_heads, sequence_length, sequence_length).
            past_key_value (tuple, optional): The past key-value states for attention.
                Tuple containing two tensors: (past_key_states, past_value_states).
            use_cache (bool, optional): Whether to use cache for the attention outputs.
            query_length (int, optional): The length of the query.
            output_attentions (bool, optional): Whether to output the attention outputs.

        Returns:
            tuple:
                A tuple containing the following elements:

                - layer_output (torch.Tensor): The output hidden states of the layer.
                Shape: (batch_size, sequence_length, hidden_size).
                - attention_probs (torch.Tensor, optional): The attention probabilities.
                Shape: (batch_size, num_heads, sequence_length, sequence_length).
                This is only returned when output_attentions=True.
                - cross_attentions (torch.Tensor, optional): The cross-attention probabilities.
                Shape: (batch_size, num_heads, sequence_length, sequence_length).
                This is only returned when output_attentions=True.

        Raises:
            None.
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.EncDecAttention(
            normed_hidden_states,
            mask=attention_mask,
            key_value_states=key_value_states,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            query_length=query_length,
            output_attentions=output_attentions,
        )
        layer_output = hidden_states + self.dropout(attention_output[0])
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerCrossAttention.__init__(config)

Initialize the LongT5LayerCrossAttention class.

PARAMETER DESCRIPTION
self

An instance of the LongT5LayerCrossAttention class.

config

A dictionary containing configuration settings for the LongT5LayerCrossAttention.

  • Type: dict
  • Purpose: Contains the configuration settings for the LongT5LayerCrossAttention.
  • Restrictions: Must be a valid dictionary with required configuration parameters.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
def __init__(self, config):
    """
    Initialize the LongT5LayerCrossAttention class.

    Args:
        self: An instance of the LongT5LayerCrossAttention class.
        config:
            A dictionary containing configuration settings for the LongT5LayerCrossAttention.

            - Type: dict
            - Purpose: Contains the configuration settings for the LongT5LayerCrossAttention.
            - Restrictions: Must be a valid dictionary with required configuration parameters.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False)
    self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerCrossAttention.forward(hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False)

Constructs the cross-attention layer for the LongT5 model.

PARAMETER DESCRIPTION
self

An instance of the LongT5LayerCrossAttention class.

TYPE: LongT5LayerCrossAttention

hidden_states

The input hidden states of the layer. Shape: (batch_size, sequence_length, hidden_size).

TYPE: Tensor

key_value_states

The key-value states for attention. Shape: (batch_size, sequence_length, hidden_size).

TYPE: Tensor

attention_mask

The attention mask tensor. Shape: (batch_size, sequence_length).

TYPE: Tensor DEFAULT: None

position_bias

The position bias tensor. Shape: (batch_size, num_heads, sequence_length, sequence_length).

TYPE: Tensor DEFAULT: None

layer_head_mask

The layer head mask tensor. Shape: (batch_size, num_heads, sequence_length, sequence_length).

TYPE: Tensor DEFAULT: None

past_key_value

The past key-value states for attention. Tuple containing two tensors: (past_key_states, past_value_states).

TYPE: tuple DEFAULT: None

use_cache

Whether to use cache for the attention outputs.

TYPE: bool DEFAULT: False

query_length

The length of the query.

TYPE: int DEFAULT: None

output_attentions

Whether to output the attention outputs.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

A tuple containing the following elements:

  • layer_output (torch.Tensor): The output hidden states of the layer. Shape: (batch_size, sequence_length, hidden_size).
  • attention_probs (torch.Tensor, optional): The attention probabilities. Shape: (batch_size, num_heads, sequence_length, sequence_length). This is only returned when output_attentions=True.
  • cross_attentions (torch.Tensor, optional): The cross-attention probabilities. Shape: (batch_size, num_heads, sequence_length, sequence_length). This is only returned when output_attentions=True.
Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
def forward(
    self,
    hidden_states,
    key_value_states,
    attention_mask=None,
    position_bias=None,
    layer_head_mask=None,
    past_key_value=None,
    use_cache=False,
    query_length=None,
    output_attentions=False,
):
    """
    Constructs the cross-attention layer for the LongT5 model.

    Args:
        self (LongT5LayerCrossAttention): An instance of the LongT5LayerCrossAttention class.
        hidden_states (torch.Tensor): The input hidden states of the layer.
            Shape: (batch_size, sequence_length, hidden_size).
        key_value_states (torch.Tensor): The key-value states for attention.
            Shape: (batch_size, sequence_length, hidden_size).
        attention_mask (torch.Tensor, optional): The attention mask tensor.
            Shape: (batch_size, sequence_length).
        position_bias (torch.Tensor, optional): The position bias tensor.
            Shape: (batch_size, num_heads, sequence_length, sequence_length).
        layer_head_mask (torch.Tensor, optional): The layer head mask tensor.
            Shape: (batch_size, num_heads, sequence_length, sequence_length).
        past_key_value (tuple, optional): The past key-value states for attention.
            Tuple containing two tensors: (past_key_states, past_value_states).
        use_cache (bool, optional): Whether to use cache for the attention outputs.
        query_length (int, optional): The length of the query.
        output_attentions (bool, optional): Whether to output the attention outputs.

    Returns:
        tuple:
            A tuple containing the following elements:

            - layer_output (torch.Tensor): The output hidden states of the layer.
            Shape: (batch_size, sequence_length, hidden_size).
            - attention_probs (torch.Tensor, optional): The attention probabilities.
            Shape: (batch_size, num_heads, sequence_length, sequence_length).
            This is only returned when output_attentions=True.
            - cross_attentions (torch.Tensor, optional): The cross-attention probabilities.
            Shape: (batch_size, num_heads, sequence_length, sequence_length).
            This is only returned when output_attentions=True.

    Raises:
        None.
    """
    normed_hidden_states = self.layer_norm(hidden_states)
    attention_output = self.EncDecAttention(
        normed_hidden_states,
        mask=attention_mask,
        key_value_states=key_value_states,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        past_key_value=past_key_value,
        use_cache=use_cache,
        query_length=query_length,
        output_attentions=output_attentions,
    )
    layer_output = hidden_states + self.dropout(attention_output[0])
    outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerFF

Bases: Module

LongT5LayerFF

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
class LongT5LayerFF(nn.Module):
    """LongT5LayerFF"""
    def __init__(self, config: LongT5Config):
        """
        Initializes the LongT5LayerFF class.

        Args:
            self (object): The instance of the LongT5LayerFF class.
            config (LongT5Config): An instance of LongT5Config containing configuration settings for the LongT5LayerFF.
                This parameter is used to configure the behavior of the LongT5LayerFF.
                It is expected to be an instance of the LongT5Config class.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        if config.is_gated_act:
            self.DenseReluDense = LongT5DenseGatedActDense(config)
        else:
            self.DenseReluDense = LongT5DenseActDense(config)

        self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(self, hidden_states):
        """
        Method to forward the forward pass through the LongT5LayerFF feed-forward layer.

        Args:
            self (LongT5LayerFF): The instance of the LongT5LayerFF class.
            hidden_states (tensor): The input hidden states to be processed by the feed-forward layer.

        Returns:
            None: This method modifies the hidden_states in-place.

        Raises:
            TypeError: If the input hidden_states are not of type tensor.
            ValueError: If the input hidden_states are empty or have incompatible dimensions.
        """
        forwarded_states = self.layer_norm(hidden_states)
        forwarded_states = self.DenseReluDense(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerFF.__init__(config)

Initializes the LongT5LayerFF class.

PARAMETER DESCRIPTION
self

The instance of the LongT5LayerFF class.

TYPE: object

config

An instance of LongT5Config containing configuration settings for the LongT5LayerFF. This parameter is used to configure the behavior of the LongT5LayerFF. It is expected to be an instance of the LongT5Config class.

TYPE: LongT5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def __init__(self, config: LongT5Config):
    """
    Initializes the LongT5LayerFF class.

    Args:
        self (object): The instance of the LongT5LayerFF class.
        config (LongT5Config): An instance of LongT5Config containing configuration settings for the LongT5LayerFF.
            This parameter is used to configure the behavior of the LongT5LayerFF.
            It is expected to be an instance of the LongT5Config class.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    if config.is_gated_act:
        self.DenseReluDense = LongT5DenseGatedActDense(config)
    else:
        self.DenseReluDense = LongT5DenseActDense(config)

    self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerFF.forward(hidden_states)

Method to forward the forward pass through the LongT5LayerFF feed-forward layer.

PARAMETER DESCRIPTION
self

The instance of the LongT5LayerFF class.

TYPE: LongT5LayerFF

hidden_states

The input hidden states to be processed by the feed-forward layer.

TYPE: tensor

RETURNS DESCRIPTION
None

This method modifies the hidden_states in-place.

RAISES DESCRIPTION
TypeError

If the input hidden_states are not of type tensor.

ValueError

If the input hidden_states are empty or have incompatible dimensions.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def forward(self, hidden_states):
    """
    Method to forward the forward pass through the LongT5LayerFF feed-forward layer.

    Args:
        self (LongT5LayerFF): The instance of the LongT5LayerFF class.
        hidden_states (tensor): The input hidden states to be processed by the feed-forward layer.

    Returns:
        None: This method modifies the hidden_states in-place.

    Raises:
        TypeError: If the input hidden_states are not of type tensor.
        ValueError: If the input hidden_states are empty or have incompatible dimensions.
    """
    forwarded_states = self.layer_norm(hidden_states)
    forwarded_states = self.DenseReluDense(forwarded_states)
    hidden_states = hidden_states + self.dropout(forwarded_states)
    return hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerLocalSelfAttention

Bases: Module

LongT5LayerSelfAttention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
class LongT5LayerLocalSelfAttention(nn.Module):
    """LongT5LayerSelfAttention"""
    def __init__(self, config, has_relative_attention_bias=False):
        """
        Args:
            self (object): The instance of the class.
            config (object): An object containing configuration parameters for the attention mechanism.
            has_relative_attention_bias (bool, optional): A flag indicating whether the attention mechanism 
                has relative attention bias. Defaults to False.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
        self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        output_attentions=False,
    ):
        """
        This method forwards the LongT5LayerLocalSelfAttention and performs the local self-attention operation.

        Args:
            self: The instance of the LongT5LayerLocalSelfAttention class.
            hidden_states (tensor): The input hidden states. It is of type tensor and represents the input sequence
                of hidden states.
            attention_mask (tensor, optional): An optional mask tensor. It is of type tensor and is used to mask the
                attention scores. Default is None.
            position_bias (tensor, optional): An optional tensor for positional bias.
                It is of type tensor and provides positional information to the attention mechanism. Default is None.
            layer_head_mask (tensor, optional): An optional mask tensor.
                It is of type tensor and is applied to the attention scores for specific layers and heads.
                Default is None.
            output_attentions (bool, optional): A flag to indicate whether to output attentions.
                It is of type bool and determines whether to include attention outputs in the return value.
                Default is False.

        Returns:
            tuple:
                A tuple containing the following elements:

                - hidden_states (tensor): The updated hidden states after the local self-attention operation.
                - additional_outputs (tuple): Additional outputs including attention scores if 'output_attentions' is True.

        Raises:
            None
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.LocalSelfAttention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerLocalSelfAttention.__init__(config, has_relative_attention_bias=False)

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

config

An object containing configuration parameters for the attention mechanism.

TYPE: object

has_relative_attention_bias

A flag indicating whether the attention mechanism has relative attention bias. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
def __init__(self, config, has_relative_attention_bias=False):
    """
    Args:
        self (object): The instance of the class.
        config (object): An object containing configuration parameters for the attention mechanism.
        has_relative_attention_bias (bool, optional): A flag indicating whether the attention mechanism 
            has relative attention bias. Defaults to False.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
    self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerLocalSelfAttention.forward(hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False)

This method forwards the LongT5LayerLocalSelfAttention and performs the local self-attention operation.

PARAMETER DESCRIPTION
self

The instance of the LongT5LayerLocalSelfAttention class.

hidden_states

The input hidden states. It is of type tensor and represents the input sequence of hidden states.

TYPE: tensor

attention_mask

An optional mask tensor. It is of type tensor and is used to mask the attention scores. Default is None.

TYPE: tensor DEFAULT: None

position_bias

An optional tensor for positional bias. It is of type tensor and provides positional information to the attention mechanism. Default is None.

TYPE: tensor DEFAULT: None

layer_head_mask

An optional mask tensor. It is of type tensor and is applied to the attention scores for specific layers and heads. Default is None.

TYPE: tensor DEFAULT: None

output_attentions

A flag to indicate whether to output attentions. It is of type bool and determines whether to include attention outputs in the return value. Default is False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

A tuple containing the following elements:

  • hidden_states (tensor): The updated hidden states after the local self-attention operation.
  • additional_outputs (tuple): Additional outputs including attention scores if 'output_attentions' is True.
Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
def forward(
    self,
    hidden_states,
    attention_mask=None,
    position_bias=None,
    layer_head_mask=None,
    output_attentions=False,
):
    """
    This method forwards the LongT5LayerLocalSelfAttention and performs the local self-attention operation.

    Args:
        self: The instance of the LongT5LayerLocalSelfAttention class.
        hidden_states (tensor): The input hidden states. It is of type tensor and represents the input sequence
            of hidden states.
        attention_mask (tensor, optional): An optional mask tensor. It is of type tensor and is used to mask the
            attention scores. Default is None.
        position_bias (tensor, optional): An optional tensor for positional bias.
            It is of type tensor and provides positional information to the attention mechanism. Default is None.
        layer_head_mask (tensor, optional): An optional mask tensor.
            It is of type tensor and is applied to the attention scores for specific layers and heads.
            Default is None.
        output_attentions (bool, optional): A flag to indicate whether to output attentions.
            It is of type bool and determines whether to include attention outputs in the return value.
            Default is False.

    Returns:
        tuple:
            A tuple containing the following elements:

            - hidden_states (tensor): The updated hidden states after the local self-attention operation.
            - additional_outputs (tuple): Additional outputs including attention scores if 'output_attentions' is True.

    Raises:
        None
    """
    normed_hidden_states = self.layer_norm(hidden_states)
    attention_output = self.LocalSelfAttention(
        normed_hidden_states,
        mask=attention_mask,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        output_attentions=output_attentions,
    )
    hidden_states = hidden_states + self.dropout(attention_output[0])
    outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerNorm

Bases: Module

LongT5LayerNorm

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
class LongT5LayerNorm(nn.Module):
    """LongT5LayerNorm"""
    def __init__(self, hidden_size, eps=1e-6):
        """
        Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
        """
        super().__init__()
        self.weight = Parameter(ops.ones(hidden_size, mindspore.float32))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        """
        Constructs the LongT5LayerNorm for normalization of hidden states.

        Args:
            self (LongT5LayerNorm): An instance of the LongT5LayerNorm class.
            hidden_states (numpy.ndarray): A numpy array containing hidden states to be normalized.
                The array should have a dtype of mindspore.float32.

        Returns:
            None.

        Raises:
            None.
        """
        variance = hidden_states.astype(mindspore.float32).pow(2).mean(-1, keep_dims=True)
        hidden_states = hidden_states / ops.sqrt(variance + self.variance_epsilon)
        # convert into half-precision if necessary
        if self.weight.dtype in [mindspore.float16]:
            hidden_states = hidden_states.astype(self.weight.dtype)

        return self.weight * hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerNorm.__init__(hidden_size, eps=1e-06)

Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
216
217
218
219
220
221
222
def __init__(self, hidden_size, eps=1e-6):
    """
    Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
    """
    super().__init__()
    self.weight = Parameter(ops.ones(hidden_size, mindspore.float32))
    self.variance_epsilon = eps

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerNorm.forward(hidden_states)

Constructs the LongT5LayerNorm for normalization of hidden states.

PARAMETER DESCRIPTION
self

An instance of the LongT5LayerNorm class.

TYPE: LongT5LayerNorm

hidden_states

A numpy array containing hidden states to be normalized. The array should have a dtype of mindspore.float32.

TYPE: ndarray

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def forward(self, hidden_states):
    """
    Constructs the LongT5LayerNorm for normalization of hidden states.

    Args:
        self (LongT5LayerNorm): An instance of the LongT5LayerNorm class.
        hidden_states (numpy.ndarray): A numpy array containing hidden states to be normalized.
            The array should have a dtype of mindspore.float32.

    Returns:
        None.

    Raises:
        None.
    """
    variance = hidden_states.astype(mindspore.float32).pow(2).mean(-1, keep_dims=True)
    hidden_states = hidden_states / ops.sqrt(variance + self.variance_epsilon)
    # convert into half-precision if necessary
    if self.weight.dtype in [mindspore.float16]:
        hidden_states = hidden_states.astype(self.weight.dtype)

    return self.weight * hidden_states

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerSelfAttention

Bases: Module

LongT5LayerSelfAttention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
class LongT5LayerSelfAttention(nn.Module):
    """LongT5LayerSelfAttention"""
    def __init__(self, config, has_relative_attention_bias=False):
        """
        Initializes a LongT5LayerSelfAttention object.

        Args:
            self: The object itself.
            config (object): An instance of configuration for the LongT5LayerSelfAttention.
            has_relative_attention_bias (bool, optional): Indicates whether relative attention bias is applied.
                Default is False.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
        self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
    ):
        """
        Method 'forward' in the class 'LongT5LayerSelfAttention'.

        This method forwards the output hidden states by applying self-attention mechanism.

        Args:
            self: Instance of the class.
            hidden_states (Tensor): Input hidden states.
            attention_mask (Tensor, optional): Mask for attention scores, default is None.
            position_bias (Tensor, optional): Bias for relative position encoding, default is None.
            layer_head_mask (Tensor, optional): Mask for specific layers and heads, default is None.
            past_key_value (Tuple, optional): Tuple containing past key and value tensors, default is None.
            use_cache (bool, optional): Flag to use cache for faster decoding, default is False.
            output_attentions (bool, optional): Flag to output attention scores, default is False.

        Returns:
            Tuple: A tuple containing updated hidden states and attention outputs.

        Raises:
            ValueError: If any of the input tensors have incompatible shapes.
            TypeError: If any input parameter is not of the expected type.
            RuntimeError: If cache is not initialized properly or if there is an issue with the attention mechanism.
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.SelfAttention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerSelfAttention.__init__(config, has_relative_attention_bias=False)

Initializes a LongT5LayerSelfAttention object.

PARAMETER DESCRIPTION
self

The object itself.

config

An instance of configuration for the LongT5LayerSelfAttention.

TYPE: object

has_relative_attention_bias

Indicates whether relative attention bias is applied. Default is False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
def __init__(self, config, has_relative_attention_bias=False):
    """
    Initializes a LongT5LayerSelfAttention object.

    Args:
        self: The object itself.
        config (object): An instance of configuration for the LongT5LayerSelfAttention.
        has_relative_attention_bias (bool, optional): Indicates whether relative attention bias is applied.
            Default is False.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
    self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerSelfAttention.forward(hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False)

Method 'forward' in the class 'LongT5LayerSelfAttention'.

This method forwards the output hidden states by applying self-attention mechanism.

PARAMETER DESCRIPTION
self

Instance of the class.

hidden_states

Input hidden states.

TYPE: Tensor

attention_mask

Mask for attention scores, default is None.

TYPE: Tensor DEFAULT: None

position_bias

Bias for relative position encoding, default is None.

TYPE: Tensor DEFAULT: None

layer_head_mask

Mask for specific layers and heads, default is None.

TYPE: Tensor DEFAULT: None

past_key_value

Tuple containing past key and value tensors, default is None.

TYPE: Tuple DEFAULT: None

use_cache

Flag to use cache for faster decoding, default is False.

TYPE: bool DEFAULT: False

output_attentions

Flag to output attention scores, default is False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
Tuple

A tuple containing updated hidden states and attention outputs.

RAISES DESCRIPTION
ValueError

If any of the input tensors have incompatible shapes.

TypeError

If any input parameter is not of the expected type.

RuntimeError

If cache is not initialized properly or if there is an issue with the attention mechanism.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
def forward(
    self,
    hidden_states,
    attention_mask=None,
    position_bias=None,
    layer_head_mask=None,
    past_key_value=None,
    use_cache=False,
    output_attentions=False,
):
    """
    Method 'forward' in the class 'LongT5LayerSelfAttention'.

    This method forwards the output hidden states by applying self-attention mechanism.

    Args:
        self: Instance of the class.
        hidden_states (Tensor): Input hidden states.
        attention_mask (Tensor, optional): Mask for attention scores, default is None.
        position_bias (Tensor, optional): Bias for relative position encoding, default is None.
        layer_head_mask (Tensor, optional): Mask for specific layers and heads, default is None.
        past_key_value (Tuple, optional): Tuple containing past key and value tensors, default is None.
        use_cache (bool, optional): Flag to use cache for faster decoding, default is False.
        output_attentions (bool, optional): Flag to output attention scores, default is False.

    Returns:
        Tuple: A tuple containing updated hidden states and attention outputs.

    Raises:
        ValueError: If any of the input tensors have incompatible shapes.
        TypeError: If any input parameter is not of the expected type.
        RuntimeError: If cache is not initialized properly or if there is an issue with the attention mechanism.
    """
    normed_hidden_states = self.layer_norm(hidden_states)
    attention_output = self.SelfAttention(
        normed_hidden_states,
        mask=attention_mask,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        past_key_value=past_key_value,
        use_cache=use_cache,
        output_attentions=output_attentions,
    )
    hidden_states = hidden_states + self.dropout(attention_output[0])
    outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerTransientGlobalSelfAttention

Bases: Module

LongT5LayerSelfAttention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
class LongT5LayerTransientGlobalSelfAttention(nn.Module):
    """LongT5LayerSelfAttention"""
    def __init__(self, config, has_relative_attention_bias=False):
        """
        Initializes the LongT5LayerTransientGlobalSelfAttention instance.

        Args:
            self: The instance itself.
            config: An object containing configuration settings for the LongT5LayerTransientGlobalSelfAttention.
            has_relative_attention_bias (bool, optional): Specifies whether the attention has relative bias.
                Defaults to False.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
            config, has_relative_attention_bias=has_relative_attention_bias
        )
        self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        output_attentions=False,
    ):
        """
        Method 'forward' in the class 'LongT5LayerTransientGlobalSelfAttention'.
        This method forwards the output of the layer by applying transient global self-attention mechanism.

        Args:
            self: Reference to the instance of the class.
            hidden_states (tensor): The input hidden states to be processed.
            attention_mask (tensor, optional): Masking tensor indicating which positions should be attended to.
            position_bias (tensor, optional): Tensor providing positional biases for the attention mechanism.
            layer_head_mask (tensor, optional): Masking tensor for individual attention heads within the layer.
            output_attentions (bool, optional): Flag to indicate whether to output attention scores.

        Returns:
            tuple:
                A tuple containing the following elements:

                - hidden_states (tensor): The updated hidden states after applying attention mechanism.
                - additional_outputs (tuple): Any additional outputs returned by the attention mechanism.

        Raises:
            None
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.TransientGlobalSelfAttention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerTransientGlobalSelfAttention.__init__(config, has_relative_attention_bias=False)

Initializes the LongT5LayerTransientGlobalSelfAttention instance.

PARAMETER DESCRIPTION
self

The instance itself.

config

An object containing configuration settings for the LongT5LayerTransientGlobalSelfAttention.

has_relative_attention_bias

Specifies whether the attention has relative bias. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
def __init__(self, config, has_relative_attention_bias=False):
    """
    Initializes the LongT5LayerTransientGlobalSelfAttention instance.

    Args:
        self: The instance itself.
        config: An object containing configuration settings for the LongT5LayerTransientGlobalSelfAttention.
        has_relative_attention_bias (bool, optional): Specifies whether the attention has relative bias.
            Defaults to False.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
        config, has_relative_attention_bias=has_relative_attention_bias
    )
    self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LayerTransientGlobalSelfAttention.forward(hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False)

Method 'forward' in the class 'LongT5LayerTransientGlobalSelfAttention'. This method forwards the output of the layer by applying transient global self-attention mechanism.

PARAMETER DESCRIPTION
self

Reference to the instance of the class.

hidden_states

The input hidden states to be processed.

TYPE: tensor

attention_mask

Masking tensor indicating which positions should be attended to.

TYPE: tensor DEFAULT: None

position_bias

Tensor providing positional biases for the attention mechanism.

TYPE: tensor DEFAULT: None

layer_head_mask

Masking tensor for individual attention heads within the layer.

TYPE: tensor DEFAULT: None

output_attentions

Flag to indicate whether to output attention scores.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

A tuple containing the following elements:

  • hidden_states (tensor): The updated hidden states after applying attention mechanism.
  • additional_outputs (tuple): Any additional outputs returned by the attention mechanism.
Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
def forward(
    self,
    hidden_states,
    attention_mask=None,
    position_bias=None,
    layer_head_mask=None,
    output_attentions=False,
):
    """
    Method 'forward' in the class 'LongT5LayerTransientGlobalSelfAttention'.
    This method forwards the output of the layer by applying transient global self-attention mechanism.

    Args:
        self: Reference to the instance of the class.
        hidden_states (tensor): The input hidden states to be processed.
        attention_mask (tensor, optional): Masking tensor indicating which positions should be attended to.
        position_bias (tensor, optional): Tensor providing positional biases for the attention mechanism.
        layer_head_mask (tensor, optional): Masking tensor for individual attention heads within the layer.
        output_attentions (bool, optional): Flag to indicate whether to output attention scores.

    Returns:
        tuple:
            A tuple containing the following elements:

            - hidden_states (tensor): The updated hidden states after applying attention mechanism.
            - additional_outputs (tuple): Any additional outputs returned by the attention mechanism.

    Raises:
        None
    """
    normed_hidden_states = self.layer_norm(hidden_states)
    attention_output = self.TransientGlobalSelfAttention(
        normed_hidden_states,
        mask=attention_mask,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        output_attentions=output_attentions,
    )
    hidden_states = hidden_states + self.dropout(attention_output[0])
    outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LocalAttention

Bases: Module

LongT5LocalAttention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
class LongT5LocalAttention(nn.Module):
    """LongT5LocalAttention"""
    def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
        """
        Initializes an instance of the LongT5LocalAttention class.

        Args:
            self: The instance of the class.
            config (LongT5Config): An object containing configuration parameters for the attention mechanism.
            has_relative_attention_bias (bool): A flag indicating whether relative attention bias is enabled.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.local_radius = config.local_radius     #
        self.block_len = self.local_radius + 1      #
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim

        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
        self.pruned_heads = set()
        self.gradient_checkpointing = False

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        """
        This method computes the relative position bucket for a given relative position in the LongT5LocalAttention class.

        Args:
            relative_position (Tensor): A tensor representing the relative position.
            bidirectional (bool, optional): A boolean indicating whether the attention is bidirectional. Defaults to True.
            num_buckets (int, optional): An integer specifying the number of buckets. Defaults to 32.
            max_distance (int, optional): An integer representing the maximum distance. Defaults to 128.

        Returns:
            Tensor: A tensor representing the relative position bucket.

        Raises:
            TypeError: If the relative_position is not a tensor.
            ValueError: If the num_buckets or max_distance are non-positive integers.

        Note:
            - The relative_position should have a shape compatible with other tensors in the computation.
            - The num_buckets should be a positive integer.
            - The max_distance should be a positive integer greater than num_buckets.
            - The bidirectional flag determines whether the attention is computed bidirectionally or unidirectionally.

        Example:
            ```python
            >>> relative_position = tensor([1, -2, 3, -4])
            >>> bucket = LongT5LocalAttention._relative_position_bucket(relative_position)
            ```
        """
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).astype(mindspore.int64) * num_buckets
            relative_position = ops.abs(relative_position)
        else:
            relative_position = 0 - \
                ops.minimum(relative_position, ops.zeros(relative_position.shape)).astype(mindspore.int64)
        # now relative_position is in the range [0, inf)
        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact
        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
            ops.log(relative_position.astype(mindspore.float32) / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).astype(mindspore.int64)
        relative_position_if_large = ops.minimum(
            relative_position_if_large, ops.fill(relative_position_if_large.dtype, \
                                                 relative_position_if_large.shape, num_buckets - 1)
        )
        # relative_buckets += ops.where(is_small, relative_position\
        # , relative_position_if_large) # mindspore 2.0
        relative_buckets += ops.select(is_small.astype(mindspore.bool_), \
                                relative_position, relative_position_if_large) # mindspore 1.10
        return relative_buckets

    def compute_bias(self, block_length: int):
        """Compute binned relative position bias"""
        memory_position = ops.arange(3 * block_length, dtype=mindspore.int64)
        context_position = memory_position[block_length:-block_length]
        # (block_length, 3 * block_length)
        relative_position = memory_position[None, :] - context_position[:, None]
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # (block_length, 3 * block_length)
            bidirectional=(not self.is_decoder),
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        # (block_length, 3 * block_length, num_heads)
        values = self.relative_attention_bias(relative_position_bucket)
        # (1, 1, num_heads, block_length, 3 * block_length)
        values = values.transpose([2, 0, 1]).expand_dims(0).expand_dims(0)
        return values

    def forward(
        self,
        hidden_states,
        mask=None,
        position_bias=None,
        layer_head_mask=None,
        output_attentions=False,
    ):
        '''
        Constructs the local attention mechanism for the LongT5 model.

        Args:
            self (LongT5LocalAttention): An instance of the LongT5LocalAttention class.
            hidden_states (Tensor): The input hidden states tensor of shape (batch_size, seq_length, hidden_dim).
            mask (Tensor, optional): The attention mask tensor of shape (batch_size, seq_length). Defaults to None.
            position_bias (Tensor, optional): The position bias tensor of shape (1, 1, n_heads, block_len, 3 * block_len).
                Defaults to None.
            layer_head_mask (Tensor, optional):
                The layer head mask tensor of shape (batch_size, n_heads, seq_length, seq_length). Defaults to None.
            output_attentions (bool, optional): Flag to output attention weights. Defaults to False.

        Returns:
            Tuple:
                A tuple containing the following elements:

                - attn_output (Tensor): The output tensor of shape (batch_size, seq_length, hidden_dim).
                - present_key_value_state (None): Placeholder for future use.
                - position_bias (Tensor): The position bias tensor of shape (1, 1, n_heads, block_len, 3 * block_len).
                - attn_weights (Tensor, optional): The attention weights tensor of shape
                (batch_size, n_heads, seq_length, seq_length), returned only if output_attentions is set to True.

        Raises:
            None.
        '''
        batch_size, seq_length = hidden_states.shape[:2]

        def shape(states):
            """projection"""
            return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)

        def unshape(states):
            """reshape"""
            return states.contiguous().view(batch_size, -1, self.inner_dim)

        # get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
        query_states = shape(self.q(hidden_states))
        key_states = shape(self.k(hidden_states))
        value_states = shape(self.v(hidden_states))

        # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
        query_states = _split_into_blocks(query_states, self.block_len, dim=1)
        key_states = _split_into_blocks(key_states, self.block_len, dim=1)
        value_states = _split_into_blocks(value_states, self.block_len, dim=1)

        # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
        key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
        value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)

        # compute scores
        scores = ops.einsum(
            "...qhd,...khd->...hqk", query_states, key_states
        )  # (batch_size, num_block, n_heads, block_len, 3 * block_len)

        if position_bias is None:
            # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
            if not self.has_relative_attention_bias:
                position_bias = ops.zeros(
                    (1, 1, self.n_heads, self.block_len, 3 * self.block_len), scores.dtype
                )
                if self.gradient_checkpointing and self.training:
                    position_bias.requires_grad = True
            else:
                position_bias = self.compute_bias(self.block_len)

            if mask is not None:
                # Replace masked positions with -1e10 (according to the original implementation)
                mask = ops.where(mask > 0, 0.0, -1e10)
                # We need to adjust position bias shape to be sum with mask
                position_bias = position_bias + mask.transpose(1, 2)

        scores += position_bias
        # (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
        attn_weights = ops.softmax(scores.astype(mindspore.float32), axis=-1).astype(
            scores.dtype
        )
        # (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
        if self.training:
            attn_weights = ops.dropout(
                attn_weights, p=self.dropout
            )  # (batch_size, n_heads, seq_length, key_length)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask
        attn_weights = attn_weights.type(value_states.dtype)    # 存疑
        attn_output = unshape(ops.einsum("...hqk,...khd->...qhd", attn_weights, value_states))   # (batch_size, seq_length, dim)
        attn_output = attn_output[:, :seq_length, :]
        attn_output = self.o(attn_output)

        present_key_value_state = None
        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

        if output_attentions:
            outputs = outputs + (attn_weights,)
        return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LocalAttention.__init__(config, has_relative_attention_bias=False)

Initializes an instance of the LongT5LocalAttention class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object containing configuration parameters for the attention mechanism.

TYPE: LongT5Config

has_relative_attention_bias

A flag indicating whether relative attention bias is enabled.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
    """
    Initializes an instance of the LongT5LocalAttention class.

    Args:
        self: The instance of the class.
        config (LongT5Config): An object containing configuration parameters for the attention mechanism.
        has_relative_attention_bias (bool): A flag indicating whether relative attention bias is enabled.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.is_decoder = config.is_decoder
    self.has_relative_attention_bias = has_relative_attention_bias
    self.relative_attention_num_buckets = config.relative_attention_num_buckets
    self.relative_attention_max_distance = config.relative_attention_max_distance
    self.d_model = config.d_model
    self.key_value_proj_dim = config.d_kv
    self.n_heads = config.num_heads
    self.local_radius = config.local_radius     #
    self.block_len = self.local_radius + 1      #
    self.dropout = config.dropout_rate
    self.inner_dim = self.n_heads * self.key_value_proj_dim

    # Mesh TensorFlow initialization to avoid scaling before softmax
    self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

    if self.has_relative_attention_bias:
        self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
    self.pruned_heads = set()
    self.gradient_checkpointing = False

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LocalAttention.compute_bias(block_length)

Compute binned relative position bias

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
def compute_bias(self, block_length: int):
    """Compute binned relative position bias"""
    memory_position = ops.arange(3 * block_length, dtype=mindspore.int64)
    context_position = memory_position[block_length:-block_length]
    # (block_length, 3 * block_length)
    relative_position = memory_position[None, :] - context_position[:, None]
    relative_position_bucket = self._relative_position_bucket(
        relative_position,  # (block_length, 3 * block_length)
        bidirectional=(not self.is_decoder),
        num_buckets=self.relative_attention_num_buckets,
        max_distance=self.relative_attention_max_distance,
    )
    # (block_length, 3 * block_length, num_heads)
    values = self.relative_attention_bias(relative_position_bucket)
    # (1, 1, num_heads, block_length, 3 * block_length)
    values = values.transpose([2, 0, 1]).expand_dims(0).expand_dims(0)
    return values

mindnlp.transformers.models.longt5.modeling_longt5.LongT5LocalAttention.forward(hidden_states, mask=None, position_bias=None, layer_head_mask=None, output_attentions=False)

Constructs the local attention mechanism for the LongT5 model.

PARAMETER DESCRIPTION
self

An instance of the LongT5LocalAttention class.

TYPE: LongT5LocalAttention

hidden_states

The input hidden states tensor of shape (batch_size, seq_length, hidden_dim).

TYPE: Tensor

mask

The attention mask tensor of shape (batch_size, seq_length). Defaults to None.

TYPE: Tensor DEFAULT: None

position_bias

The position bias tensor of shape (1, 1, n_heads, block_len, 3 * block_len). Defaults to None.

TYPE: Tensor DEFAULT: None

layer_head_mask

The layer head mask tensor of shape (batch_size, n_heads, seq_length, seq_length). Defaults to None.

TYPE: Tensor DEFAULT: None

output_attentions

Flag to output attention weights. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
Tuple

A tuple containing the following elements:

  • attn_output (Tensor): The output tensor of shape (batch_size, seq_length, hidden_dim).
  • present_key_value_state (None): Placeholder for future use.
  • position_bias (Tensor): The position bias tensor of shape (1, 1, n_heads, block_len, 3 * block_len).
  • attn_weights (Tensor, optional): The attention weights tensor of shape (batch_size, n_heads, seq_length, seq_length), returned only if output_attentions is set to True.
Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
def forward(
    self,
    hidden_states,
    mask=None,
    position_bias=None,
    layer_head_mask=None,
    output_attentions=False,
):
    '''
    Constructs the local attention mechanism for the LongT5 model.

    Args:
        self (LongT5LocalAttention): An instance of the LongT5LocalAttention class.
        hidden_states (Tensor): The input hidden states tensor of shape (batch_size, seq_length, hidden_dim).
        mask (Tensor, optional): The attention mask tensor of shape (batch_size, seq_length). Defaults to None.
        position_bias (Tensor, optional): The position bias tensor of shape (1, 1, n_heads, block_len, 3 * block_len).
            Defaults to None.
        layer_head_mask (Tensor, optional):
            The layer head mask tensor of shape (batch_size, n_heads, seq_length, seq_length). Defaults to None.
        output_attentions (bool, optional): Flag to output attention weights. Defaults to False.

    Returns:
        Tuple:
            A tuple containing the following elements:

            - attn_output (Tensor): The output tensor of shape (batch_size, seq_length, hidden_dim).
            - present_key_value_state (None): Placeholder for future use.
            - position_bias (Tensor): The position bias tensor of shape (1, 1, n_heads, block_len, 3 * block_len).
            - attn_weights (Tensor, optional): The attention weights tensor of shape
            (batch_size, n_heads, seq_length, seq_length), returned only if output_attentions is set to True.

    Raises:
        None.
    '''
    batch_size, seq_length = hidden_states.shape[:2]

    def shape(states):
        """projection"""
        return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)

    def unshape(states):
        """reshape"""
        return states.contiguous().view(batch_size, -1, self.inner_dim)

    # get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
    query_states = shape(self.q(hidden_states))
    key_states = shape(self.k(hidden_states))
    value_states = shape(self.v(hidden_states))

    # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
    query_states = _split_into_blocks(query_states, self.block_len, dim=1)
    key_states = _split_into_blocks(key_states, self.block_len, dim=1)
    value_states = _split_into_blocks(value_states, self.block_len, dim=1)

    # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
    key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
    value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)

    # compute scores
    scores = ops.einsum(
        "...qhd,...khd->...hqk", query_states, key_states
    )  # (batch_size, num_block, n_heads, block_len, 3 * block_len)

    if position_bias is None:
        # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
        if not self.has_relative_attention_bias:
            position_bias = ops.zeros(
                (1, 1, self.n_heads, self.block_len, 3 * self.block_len), scores.dtype
            )
            if self.gradient_checkpointing and self.training:
                position_bias.requires_grad = True
        else:
            position_bias = self.compute_bias(self.block_len)

        if mask is not None:
            # Replace masked positions with -1e10 (according to the original implementation)
            mask = ops.where(mask > 0, 0.0, -1e10)
            # We need to adjust position bias shape to be sum with mask
            position_bias = position_bias + mask.transpose(1, 2)

    scores += position_bias
    # (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
    attn_weights = ops.softmax(scores.astype(mindspore.float32), axis=-1).astype(
        scores.dtype
    )
    # (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
    if self.training:
        attn_weights = ops.dropout(
            attn_weights, p=self.dropout
        )  # (batch_size, n_heads, seq_length, key_length)

    # Mask heads if we want to
    if layer_head_mask is not None:
        attn_weights = attn_weights * layer_head_mask
    attn_weights = attn_weights.type(value_states.dtype)    # 存疑
    attn_output = unshape(ops.einsum("...hqk,...khd->...qhd", attn_weights, value_states))   # (batch_size, seq_length, dim)
    attn_output = attn_output[:, :seq_length, :]
    attn_output = self.o(attn_output)

    present_key_value_state = None
    outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

    if output_attentions:
        outputs = outputs + (attn_weights,)
    return outputs

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model

Bases: LongT5PreTrainedModel

LongT5Model

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
class LongT5Model(LongT5PreTrainedModel):
    """LongT5Model"""
    _keys_to_ignore_on_load_unexpected = [
        r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
    ]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: LongT5Config):
        """
        Initializes a LongT5Model instance.

        Args:
            self: The instance of the LongT5Model class.
            config (LongT5Config): An instance of LongT5Config containing the configuration parameters for the model.
                It specifies the model's architecture, including vocab size and model dimension.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = LongT5Stack(encoder_config)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = LongT5Stack(decoder_config)

    def get_input_embeddings(self):
        """
        Method to retrieve input embeddings in the LongT5Model class.

        Args:
            self: The instance of the LongT5Model class.

        Returns:
            The shared input embeddings used in the LongT5Model.

        Raises:
            None.
        """
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """
        Sets the input embeddings for the LongT5Model.

        Args:
            self (LongT5Model): The instance of the LongT5Model class.
            new_embeddings: The new embeddings to be set for the input.
                It should be a tensor representing the embeddings.
                The shape of the tensor should match the expected input shape of the model.

        Returns:
            None.

        Raises:
            None.

        """
        self.shared = new_embeddings
        # self.encoder.set_input_embeddings(new_embeddings)
        # self.decoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        Tie the weights of the encoder and decoder word embeddings if specified in the configuration.

        Args:
            self (LongT5Model): The instance of the LongT5Model class.

        Returns:
            None.

        Raises:
            None
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

    def get_encoder(self):
        """get encoder"""
        return self.encoder

    def get_decoder(self):
        """get decoder"""
        return self.decoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        decoder_input_ids = None,
        decoder_attention_mask = None,
        head_mask = None,
        decoder_head_mask = None,
        cross_attn_head_mask = None,
        encoder_outputs = None,
        past_key_values = None,
        inputs_embeds = None,
        decoder_inputs_embeds = None,
        use_cache = None,
        output_attentions = None,
        output_hidden_states = None,
        return_dict = None,
    ):
        """
        This method forwards a LongT5 model with the specified parameters.

        Args:
            self (object): The instance of the class.
            input_ids (list): The input token IDs for the encoder.
            attention_mask (list): The attention mask for the encoder input.
            decoder_input_ids (list): The input token IDs for the decoder.
            decoder_attention_mask (list): The attention mask for the decoder input.
            head_mask (list): The mask applied to the encoder's attention heads.
            decoder_head_mask (list): The mask applied to the decoder's attention heads.
            cross_attn_head_mask (list): The mask applied to the cross-attention heads.
            encoder_outputs (object): The output of the encoder.
            past_key_values (object): The past key values for the decoder.
            inputs_embeds (object): The embeddings for the encoder inputs.
            decoder_inputs_embeds (object): The embeddings for the decoder inputs.
            use_cache (bool): Flag indicating whether to use cache.
            output_attentions (bool): Flag indicating whether to output attentions.
            output_hidden_states (bool): Flag indicating whether to output hidden states.
            return_dict (bool): Flag indicating whether to return a dictionary.

        Returns:
            None

        Raises:
            None
        """
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                # warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        hidden_states = encoder_outputs[0]

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model.__init__(config)

Initializes a LongT5Model instance.

PARAMETER DESCRIPTION
self

The instance of the LongT5Model class.

config

An instance of LongT5Config containing the configuration parameters for the model. It specifies the model's architecture, including vocab size and model dimension.

TYPE: LongT5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
def __init__(self, config: LongT5Config):
    """
    Initializes a LongT5Model instance.

    Args:
        self: The instance of the LongT5Model class.
        config (LongT5Config): An instance of LongT5Config containing the configuration parameters for the model.
            It specifies the model's architecture, including vocab size and model dimension.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.is_decoder = False
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = LongT5Stack(encoder_config)

    decoder_config = copy.deepcopy(config)
    decoder_config.is_decoder = True
    decoder_config.is_encoder_decoder = False
    decoder_config.num_layers = config.num_decoder_layers
    self.decoder = LongT5Stack(decoder_config)

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

This method forwards a LongT5 model with the specified parameters.

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

input_ids

The input token IDs for the encoder.

TYPE: list DEFAULT: None

attention_mask

The attention mask for the encoder input.

TYPE: list DEFAULT: None

decoder_input_ids

The input token IDs for the decoder.

TYPE: list DEFAULT: None

decoder_attention_mask

The attention mask for the decoder input.

TYPE: list DEFAULT: None

head_mask

The mask applied to the encoder's attention heads.

TYPE: list DEFAULT: None

decoder_head_mask

The mask applied to the decoder's attention heads.

TYPE: list DEFAULT: None

cross_attn_head_mask

The mask applied to the cross-attention heads.

TYPE: list DEFAULT: None

encoder_outputs

The output of the encoder.

TYPE: object DEFAULT: None

past_key_values

The past key values for the decoder.

TYPE: object DEFAULT: None

inputs_embeds

The embeddings for the encoder inputs.

TYPE: object DEFAULT: None

decoder_inputs_embeds

The embeddings for the decoder inputs.

TYPE: object DEFAULT: None

use_cache

Flag indicating whether to use cache.

TYPE: bool DEFAULT: None

output_attentions

Flag indicating whether to output attentions.

TYPE: bool DEFAULT: None

output_hidden_states

Flag indicating whether to output hidden states.

TYPE: bool DEFAULT: None

return_dict

Flag indicating whether to return a dictionary.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
def forward(
    self,
    input_ids = None,
    attention_mask = None,
    decoder_input_ids = None,
    decoder_attention_mask = None,
    head_mask = None,
    decoder_head_mask = None,
    cross_attn_head_mask = None,
    encoder_outputs = None,
    past_key_values = None,
    inputs_embeds = None,
    decoder_inputs_embeds = None,
    use_cache = None,
    output_attentions = None,
    output_hidden_states = None,
    return_dict = None,
):
    """
    This method forwards a LongT5 model with the specified parameters.

    Args:
        self (object): The instance of the class.
        input_ids (list): The input token IDs for the encoder.
        attention_mask (list): The attention mask for the encoder input.
        decoder_input_ids (list): The input token IDs for the decoder.
        decoder_attention_mask (list): The attention mask for the decoder input.
        head_mask (list): The mask applied to the encoder's attention heads.
        decoder_head_mask (list): The mask applied to the decoder's attention heads.
        cross_attn_head_mask (list): The mask applied to the cross-attention heads.
        encoder_outputs (object): The output of the encoder.
        past_key_values (object): The past key values for the decoder.
        inputs_embeds (object): The embeddings for the encoder inputs.
        decoder_inputs_embeds (object): The embeddings for the decoder inputs.
        use_cache (bool): Flag indicating whether to use cache.
        output_attentions (bool): Flag indicating whether to output attentions.
        output_hidden_states (bool): Flag indicating whether to output hidden states.
        return_dict (bool): Flag indicating whether to return a dictionary.

    Returns:
        None

    Raises:
        None
    """
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
    if head_mask is not None and decoder_head_mask is None:
        if self.config.num_layers == self.config.num_decoder_layers:
            # warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
            decoder_head_mask = head_mask

    # Encode if needed (training, first prediction pass)
    if encoder_outputs is None:
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
    elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
        encoder_outputs = BaseModelOutput(
            last_hidden_state=encoder_outputs[0],
            hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
            attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
        )

    hidden_states = encoder_outputs[0]

    # Decode
    decoder_outputs = self.decoder(
        input_ids=decoder_input_ids,
        attention_mask=decoder_attention_mask,
        inputs_embeds=decoder_inputs_embeds,
        past_key_values=past_key_values,
        encoder_hidden_states=hidden_states,
        encoder_attention_mask=attention_mask,
        head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    if not return_dict:
        return decoder_outputs + encoder_outputs

    return Seq2SeqModelOutput(
        last_hidden_state=decoder_outputs.last_hidden_state,
        past_key_values=decoder_outputs.past_key_values,
        decoder_hidden_states=decoder_outputs.hidden_states,
        decoder_attentions=decoder_outputs.attentions,
        cross_attentions=decoder_outputs.cross_attentions,
        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
        encoder_hidden_states=encoder_outputs.hidden_states,
        encoder_attentions=encoder_outputs.attentions,
    )

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model.get_decoder()

get decoder

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2172
2173
2174
def get_decoder(self):
    """get decoder"""
    return self.decoder

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model.get_encoder()

get encoder

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2168
2169
2170
def get_encoder(self):
    """get encoder"""
    return self.encoder

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model.get_input_embeddings()

Method to retrieve input embeddings in the LongT5Model class.

PARAMETER DESCRIPTION
self

The instance of the LongT5Model class.

RETURNS DESCRIPTION

The shared input embeddings used in the LongT5Model.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
def get_input_embeddings(self):
    """
    Method to retrieve input embeddings in the LongT5Model class.

    Args:
        self: The instance of the LongT5Model class.

    Returns:
        The shared input embeddings used in the LongT5Model.

    Raises:
        None.
    """
    return self.shared

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Model.set_input_embeddings(new_embeddings)

Sets the input embeddings for the LongT5Model.

PARAMETER DESCRIPTION
self

The instance of the LongT5Model class.

TYPE: LongT5Model

new_embeddings

The new embeddings to be set for the input. It should be a tensor representing the embeddings. The shape of the tensor should match the expected input shape of the model.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
def set_input_embeddings(self, new_embeddings):
    """
    Sets the input embeddings for the LongT5Model.

    Args:
        self (LongT5Model): The instance of the LongT5Model class.
        new_embeddings: The new embeddings to be set for the input.
            It should be a tensor representing the embeddings.
            The shape of the tensor should match the expected input shape of the model.

    Returns:
        None.

    Raises:
        None.

    """
    self.shared = new_embeddings

mindnlp.transformers.models.longt5.modeling_longt5.LongT5PreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
class LongT5PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = LongT5Config
    base_model_prefix = "transformer"

    supports_gradient_checkpointing = True
    _no_split_modules = ["LongT5Block"]

    @property
    def dummy_inputs(self):
        """
        This method generates dummy inputs for the LongT5PreTrainedModel class.

        Args:
            self: An instance of the LongT5PreTrainedModel class.

        Returns:
            None

        Raises:
            None
        """
        input_ids = mindspore.tensor(DUMMY_INPUTS)
        input_mask = mindspore.tensor(DUMMY_MASK)
        dummy_inputs = {
            "decoder_input_ids": input_ids,
            "input_ids": input_ids,
            "decoder_attention_mask": input_mask,
        }
        return dummy_inputs

    def _init_weights(self, cell):
        """Initialize the weights"""
        factor = self.config.initializer_factor  # Used for testing weights initialization
        if isinstance(cell, LongT5LayerNorm):
            cell.weight.set_data(initializer(Constant(factor * 1.0), cell.weight.shape, cell.weight.dtype))
        elif isinstance(cell, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)):
            # Mesh TensorFlow embeddings initialization
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
            cell.shared.weight.set_data(initializer(Normal(factor * 1.0),
                                                    cell.shared.weight.shape, cell.shared.weight.dtype))
        elif isinstance(cell, LongT5DenseActDense):
            # Mesh TensorFlow FF initialization
            # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
            # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
            cell.wi.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                cell.wi.weight.shape, cell.wi.weight.dtype))
            if hasattr(cell.wi, "bias") and cell.wi.bias is not None:
                cell.wi.bias.set_data(initializer('zeros', cell.wi.bias.shape, cell.wi.bias.dtype))
            cell.wo.weight.set_data(initializer(Normal(factor * ((self.config.d_ff) ** -0.5)),
                                                cell.wo.weight.shape, cell.wo.weight.dtype))
            if hasattr(cell.wo, "bias") and cell.wo.bias is not None:
                cell.wo.bias.set_data(initializer('zeros', cell.wo.bias.shape, cell.wo.bias.dtype))
        elif isinstance(cell, LongT5DenseGatedActDense):
            cell.wi_0.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                  cell.wi_0.weight.shape, cell.wi_0.weight.dtype))
            if hasattr(cell.wi_0, "bias") and cell.wi_0.bias is not None:
                cell.wi_0.bias.set_data(initializer('zeros', cell.wi_0.bias.shape, cell.wi_0.bias.dtype))
            cell.wi_1.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                  cell.wi_1.weight.shape, cell.wi_1.weight.dtype))
            if hasattr(cell.wi_1, "bias") and cell.wi_1.bias is not None:
                cell.wi_1.bias.set_data(initializer('zeros', cell.wi_1.bias.shape, cell.wi_1.bias.dtype))
            cell.wo.weight.set_data(initializer(Normal(factor * ((self.config.d_ff) ** -0.5)),
                                                cell.wo.weight.shape, cell.wo.weight.dtype))
            if hasattr(cell.wo, "bias") and cell.wo.bias is not None:
                cell.wo.bias.set_data(initializer('zeros', cell.wo.bias.shape, cell.wo.bias.dtype))

        elif isinstance(cell, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)):
            # Mesh TensorFlow attention initialization to avoid scaling before softmax
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
            d_model = self.config.d_model
            key_value_proj_dim = self.config.d_kv
            n_heads = self.config.num_heads

            cell.q.weight.set_data(initializer(Normal(factor * ((d_model * key_value_proj_dim) ** -0.5)),
                                               cell.q.weight.shape, cell.q.weight.dtype))
            cell.k.weight.set_data(initializer(Normal(factor * (d_model ** -0.5)),
                                               cell.k.weight.shape, cell.k.weight.dtype))
            cell.v.weight.set_data(initializer(Normal(factor * (d_model ** -0.5)),
                                               cell.v.weight.shape, cell.v.weight.dtype))
            cell.o.weight.set_data(initializer(Normal(factor * ((n_heads * key_value_proj_dim) ** -0.5)),
                                               cell.o.weight.shape, cell.o.weight.dtype))
            if cell.has_relative_attention_bias:
                cell.relative_attention_bias.weight.set_data(initializer(Normal(factor * (d_model**-0.5)),
                                                    cell.relative_attention_bias.weight.shape, cell.relative_attention_bias.weight.dtype))
                if isinstance(cell, LongT5TransientGlobalAttention):
                    cell.global_relative_attention_bias.weight.set_data(initializer(Normal(factor * (d_model ** -0.5)),
                                                                             cell.global_relative_attention_bias.weight.shape,
                                                                             cell.global_relative_attention_bias.weight.dtype))

    def _shift_right(self, input_ids):
        """
        Shifts the input_ids to the right by one position and fills the shifted position with the decoder_start_token_id.

        Args:
            self (LongT5PreTrainedModel): The instance of the LongT5PreTrainedModel class.
            input_ids (torch.Tensor): The input tensor containing token ids to be shifted to the right.

        Returns:
            torch.Tensor: The shifted input_ids tensor with the first position filled with the decoder_start_token_id.

        Raises:
            ValueError: If self.model.config.decoder_start_token_id is not defined
                or if self.model.config.pad_token_id is not defined.
        """
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

        if decoder_start_token_id is None:
            raise ValueError(
                "self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the pad_token_id. "
                "See LongT5 docs for more information."
            )

        # shift inputs to the right
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].copy()
        shifted_input_ids[..., 0] = decoder_start_token_id

        if pad_token_id is None:
            raise ValueError("self.model.config.pad_token_id has to be defined.")
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids = shifted_input_ids.masked_fill(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids

mindnlp.transformers.models.longt5.modeling_longt5.LongT5PreTrainedModel.dummy_inputs property

This method generates dummy inputs for the LongT5PreTrainedModel class.

PARAMETER DESCRIPTION
self

An instance of the LongT5PreTrainedModel class.

RETURNS DESCRIPTION

None

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Stack

Bases: LongT5PreTrainedModel

LongT5Stack

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
class LongT5Stack(LongT5PreTrainedModel):
    """LongT5Stack"""
    def __init__(self, config, embed_tokens=None):
        """
        Initializes an instance of the LongT5Stack class.

        Args:
            self (LongT5Stack): An instance of the LongT5Stack class.
            config: A configuration object containing various parameters for the LongT5Stack.
            embed_tokens: An optional nn.Embedding object representing the embedding tokens. Defaults to None.

        Returns:
            None.

        Raises:
            None.

        Description:
            This method initializes the LongT5Stack instance by setting various attributes and creating
            the necessary layers. It takes in the following parameters:

            - self: The instance of the LongT5Stack class itself.
            - config: A configuration object which contains the parameters for the LongT5Stack.
            - embed_tokens: An optional nn.Embedding object that represents the embedding tokens.
            If provided, the weight of the embed_tokens will be set to the weight of the provided object.

        The method performs the following steps:

        1. Calls the __init__ method of the super class to initialize the parent class.
        2. Sets the embed_tokens attribute to an nn.Embedding object with the specified vocabulary size and d_model.
        3. If embed_tokens is not None, it sets the weight of self.embed_tokens to the weight of the provided embed_tokens.
        4. Sets the is_decoder attribute to the value of config.is_decoder.
        5. Sets the local_radius attribute to the value of config.local_radius.
        6. Sets the block_len attribute to the local_radius + 1.
        7. Creates a block attribute as an nn.ModuleList containing LongT5Block objects. The number of blocks is
        determined by config.num_layers. Each block is initialized with a relative_attention_bias if it is the
        first block in the list.
        8. Sets the final_layer_norm attribute to a LongT5LayerNorm object with the specified d_model and layer_norm_epsilon.
        9. Sets the dropout attribute to an nn.Dropout object with the specified dropout_rate.
        10. Sets the gradient_checkpointing attribute to False.
        11. Calls the post_init method.

        Note:
            The LongT5Stack class is part of the LongT5 model and is responsible for stacking multiple LongT5Blocks
            to form the complete LongT5 model.
        """
        super().__init__(config)

        self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight
        self.is_decoder = config.is_decoder

        self.local_radius = config.local_radius
        self.block_len = self.local_radius + 1

        self.block = nn.ModuleList(
            [LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
        )
        self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Method: get_input_embeddings

        Description:
            This method retrieves the input embeddings from the LongT5Stack class.

        Args:
            self: The instance of the LongT5Stack class. It is used to access the embed_tokens attribute.

        Returns:
            The embed_tokens attribute: which represents the input embeddings.

        Raises:
            None
        """
        return self.embed_tokens

    def set_input_embeddings(self, new_embeddings):
        """
        Sets the input embeddings for the LongT5Stack class.

        Args:
            self (LongT5Stack): The instance of the LongT5Stack class.
            new_embeddings (Any): The new embeddings to be set for the input tokens. It can be any object type.

        Returns:
            None.

        Raises:
            None.
        """
        self.embed_tokens = new_embeddings

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        '''
        This method forwards the LongT5Stack model. It takes 13 parameters:

        Args:
            self (object): The instance of the class.
            input_ids (Tensor, optional): The input tensor of token indices. Default is None.
            attention_mask (Tensor, optional): The attention mask tensor. Default is None.
            encoder_hidden_states (Tensor, optional): The hidden states of the encoder. Default is None.
            encoder_attention_mask (Tensor, optional): The attention mask for the encoder. Default is None.
            inputs_embeds (Tensor, optional): The embedded input tensor. Default is None.
            head_mask (Tensor, optional): The head mask tensor. Default is None.
            cross_attn_head_mask (Tensor, optional): The cross-attention head mask tensor. Default is None.
            past_key_values (list, optional): The list of past key values. Default is None.
            use_cache (bool, optional): Flag indicating whether to use cache. Default is None.
            output_attentions (bool, optional): Flag indicating whether to output attentions. Default is None.
            output_hidden_states (bool, optional): Flag indicating whether to output hidden states. Default is None.
            return_dict (bool, optional): Flag indicating whether to return a dictionary. Default is None.

        Returns:
            None.

        Raises:
            ValueError: If both input_ids and inputs_embeds are specified simultaneously,
                or if neither input_ids nor inputs_embeds are specified.
            AssertionError: If the model is used as a decoder and use_cache is set to True,
                or if the model is used as a decoder and encoder_attention_mask is not specified
                while encoder_hidden_states is provided.
        '''
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
                f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
            )
        if input_ids is not None:
            input_shape = input_ids.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")

        if inputs_embeds is None:
            assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
            inputs_embeds = self.embed_tokens(input_ids.astype(mindspore.int64))

        batch_size, seq_length = input_shape

        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length

        if use_cache is True:
            assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"

        if attention_mask is None:
            attention_mask = ops.ones((batch_size, mask_seq_length), mindspore.float32)

        if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
            encoder_seq_length = encoder_hidden_states.shape[1]
            encoder_attention_mask = ops.ones(
                (batch_size, encoder_seq_length), mindspore.int64
            )

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder:
            extended_attention_mask = self.get_extended_attention_mask(
                attention_mask, input_shape, inputs_embeds.device
            )
        elif self.config.encoder_attention_type == "local":
            extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len)
        else:  # we need to use both local attention mask and standard extended mask for transient-global attention
            extended_attention_mask = attention_mask

        if self.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.shape
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = ops.ones(encoder_hidden_shape)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None
        position_bias = None
        encoder_decoder_position_bias = None

        hidden_states = self.dropout(inputs_embeds)

        for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
            layer_head_mask = head_mask[i]
            cross_attn_layer_head_mask = cross_attn_head_mask[i]
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
                hidden_states,
                attention_mask=extended_attention_mask,
                position_bias=position_bias,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_extended_attention_mask,
                encoder_decoder_position_bias=encoder_decoder_position_bias,
                layer_head_mask=layer_head_mask,
                cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=past_key_value,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )

            # layer_outputs is a tuple with:
            # hidden-states, key-value-states, (self-attention position bias), \
            # (self-attention weights), (cross-attention position bias), (cross-attention weights)
            if use_cache is False:
                layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]

            hidden_states, present_key_value_state = layer_outputs[:2]

            # We share the position biases between the layers - the first layer store them
            # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
            # (cross-attention position bias), (cross-attention weights)
            position_bias = layer_outputs[2]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
            # append next layer key value states
            if use_cache:
                present_key_value_states = present_key_value_states + (present_key_value_state,)

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[3],)
                if self.is_decoder:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[5],)

        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Stack.__init__(config, embed_tokens=None)

Initializes an instance of the LongT5Stack class.

PARAMETER DESCRIPTION
self

An instance of the LongT5Stack class.

TYPE: LongT5Stack

config

A configuration object containing various parameters for the LongT5Stack.

embed_tokens

An optional nn.Embedding object representing the embedding tokens. Defaults to None.

DEFAULT: None

RETURNS DESCRIPTION

None.

Description

This method initializes the LongT5Stack instance by setting various attributes and creating the necessary layers. It takes in the following parameters:

  • self: The instance of the LongT5Stack class itself.
  • config: A configuration object which contains the parameters for the LongT5Stack.
  • embed_tokens: An optional nn.Embedding object that represents the embedding tokens. If provided, the weight of the embed_tokens will be set to the weight of the provided object.

The method performs the following steps:

  1. Calls the init method of the super class to initialize the parent class.
  2. Sets the embed_tokens attribute to an nn.Embedding object with the specified vocabulary size and d_model.
  3. If embed_tokens is not None, it sets the weight of self.embed_tokens to the weight of the provided embed_tokens.
  4. Sets the is_decoder attribute to the value of config.is_decoder.
  5. Sets the local_radius attribute to the value of config.local_radius.
  6. Sets the block_len attribute to the local_radius + 1.
  7. Creates a block attribute as an nn.ModuleList containing LongT5Block objects. The number of blocks is determined by config.num_layers. Each block is initialized with a relative_attention_bias if it is the first block in the list.
  8. Sets the final_layer_norm attribute to a LongT5LayerNorm object with the specified d_model and layer_norm_epsilon.
  9. Sets the dropout attribute to an nn.Dropout object with the specified dropout_rate.
  10. Sets the gradient_checkpointing attribute to False.
  11. Calls the post_init method.
Note

The LongT5Stack class is part of the LongT5 model and is responsible for stacking multiple LongT5Blocks to form the complete LongT5 model.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
def __init__(self, config, embed_tokens=None):
    """
    Initializes an instance of the LongT5Stack class.

    Args:
        self (LongT5Stack): An instance of the LongT5Stack class.
        config: A configuration object containing various parameters for the LongT5Stack.
        embed_tokens: An optional nn.Embedding object representing the embedding tokens. Defaults to None.

    Returns:
        None.

    Raises:
        None.

    Description:
        This method initializes the LongT5Stack instance by setting various attributes and creating
        the necessary layers. It takes in the following parameters:

        - self: The instance of the LongT5Stack class itself.
        - config: A configuration object which contains the parameters for the LongT5Stack.
        - embed_tokens: An optional nn.Embedding object that represents the embedding tokens.
        If provided, the weight of the embed_tokens will be set to the weight of the provided object.

    The method performs the following steps:

    1. Calls the __init__ method of the super class to initialize the parent class.
    2. Sets the embed_tokens attribute to an nn.Embedding object with the specified vocabulary size and d_model.
    3. If embed_tokens is not None, it sets the weight of self.embed_tokens to the weight of the provided embed_tokens.
    4. Sets the is_decoder attribute to the value of config.is_decoder.
    5. Sets the local_radius attribute to the value of config.local_radius.
    6. Sets the block_len attribute to the local_radius + 1.
    7. Creates a block attribute as an nn.ModuleList containing LongT5Block objects. The number of blocks is
    determined by config.num_layers. Each block is initialized with a relative_attention_bias if it is the
    first block in the list.
    8. Sets the final_layer_norm attribute to a LongT5LayerNorm object with the specified d_model and layer_norm_epsilon.
    9. Sets the dropout attribute to an nn.Dropout object with the specified dropout_rate.
    10. Sets the gradient_checkpointing attribute to False.
    11. Calls the post_init method.

    Note:
        The LongT5Stack class is part of the LongT5 model and is responsible for stacking multiple LongT5Blocks
        to form the complete LongT5 model.
    """
    super().__init__(config)

    self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
    if embed_tokens is not None:
        self.embed_tokens.weight = embed_tokens.weight
    self.is_decoder = config.is_decoder

    self.local_radius = config.local_radius
    self.block_len = self.local_radius + 1

    self.block = nn.ModuleList(
        [LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
    )
    self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(config.dropout_rate)

    self.gradient_checkpointing = False

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Stack.forward(input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

This method forwards the LongT5Stack model. It takes 13 parameters:

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

input_ids

The input tensor of token indices. Default is None.

TYPE: Tensor DEFAULT: None

attention_mask

The attention mask tensor. Default is None.

TYPE: Tensor DEFAULT: None

encoder_hidden_states

The hidden states of the encoder. Default is None.

TYPE: Tensor DEFAULT: None

encoder_attention_mask

The attention mask for the encoder. Default is None.

TYPE: Tensor DEFAULT: None

inputs_embeds

The embedded input tensor. Default is None.

TYPE: Tensor DEFAULT: None

head_mask

The head mask tensor. Default is None.

TYPE: Tensor DEFAULT: None

cross_attn_head_mask

The cross-attention head mask tensor. Default is None.

TYPE: Tensor DEFAULT: None

past_key_values

The list of past key values. Default is None.

TYPE: list DEFAULT: None

use_cache

Flag indicating whether to use cache. Default is None.

TYPE: bool DEFAULT: None

output_attentions

Flag indicating whether to output attentions. Default is None.

TYPE: bool DEFAULT: None

output_hidden_states

Flag indicating whether to output hidden states. Default is None.

TYPE: bool DEFAULT: None

return_dict

Flag indicating whether to return a dictionary. Default is None.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If both input_ids and inputs_embeds are specified simultaneously, or if neither input_ids nor inputs_embeds are specified.

AssertionError

If the model is used as a decoder and use_cache is set to True, or if the model is used as a decoder and encoder_attention_mask is not specified while encoder_hidden_states is provided.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
def forward(
    self,
    input_ids=None,
    attention_mask=None,
    encoder_hidden_states=None,
    encoder_attention_mask=None,
    inputs_embeds=None,
    head_mask=None,
    cross_attn_head_mask=None,
    past_key_values=None,
    use_cache=None,
    output_attentions=None,
    output_hidden_states=None,
    return_dict=None,
):
    '''
    This method forwards the LongT5Stack model. It takes 13 parameters:

    Args:
        self (object): The instance of the class.
        input_ids (Tensor, optional): The input tensor of token indices. Default is None.
        attention_mask (Tensor, optional): The attention mask tensor. Default is None.
        encoder_hidden_states (Tensor, optional): The hidden states of the encoder. Default is None.
        encoder_attention_mask (Tensor, optional): The attention mask for the encoder. Default is None.
        inputs_embeds (Tensor, optional): The embedded input tensor. Default is None.
        head_mask (Tensor, optional): The head mask tensor. Default is None.
        cross_attn_head_mask (Tensor, optional): The cross-attention head mask tensor. Default is None.
        past_key_values (list, optional): The list of past key values. Default is None.
        use_cache (bool, optional): Flag indicating whether to use cache. Default is None.
        output_attentions (bool, optional): Flag indicating whether to output attentions. Default is None.
        output_hidden_states (bool, optional): Flag indicating whether to output hidden states. Default is None.
        return_dict (bool, optional): Flag indicating whether to return a dictionary. Default is None.

    Returns:
        None.

    Raises:
        ValueError: If both input_ids and inputs_embeds are specified simultaneously,
            or if neither input_ids nor inputs_embeds are specified.
        AssertionError: If the model is used as a decoder and use_cache is set to True,
            or if the model is used as a decoder and encoder_attention_mask is not specified
            while encoder_hidden_states is provided.
    '''
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if input_ids is not None and inputs_embeds is not None:
        err_msg_prefix = "decoder_" if self.is_decoder else ""
        raise ValueError(
            f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
        )
    if input_ids is not None:
        input_shape = input_ids.shape
        input_ids = input_ids.view(-1, input_shape[-1])
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        err_msg_prefix = "decoder_" if self.is_decoder else ""
        raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")

    if inputs_embeds is None:
        assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
        inputs_embeds = self.embed_tokens(input_ids.astype(mindspore.int64))

    batch_size, seq_length = input_shape

    # required mask seq length can be calculated via length of past
    mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length

    if use_cache is True:
        assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"

    if attention_mask is None:
        attention_mask = ops.ones((batch_size, mask_seq_length), mindspore.float32)

    if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
        encoder_seq_length = encoder_hidden_states.shape[1]
        encoder_attention_mask = ops.ones(
            (batch_size, encoder_seq_length), mindspore.int64
        )

    # initialize past_key_values with `None` if past does not exist
    if past_key_values is None:
        past_key_values = [None] * len(self.block)

    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
    # ourselves in which case we just need to make it broadcastable to all heads.
    extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

    # If a 2D or 3D attention mask is provided for the cross-attention
    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
    if self.is_decoder:
        extended_attention_mask = self.get_extended_attention_mask(
            attention_mask, input_shape, inputs_embeds.device
        )
    elif self.config.encoder_attention_type == "local":
        extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len)
    else:  # we need to use both local attention mask and standard extended mask for transient-global attention
        extended_attention_mask = attention_mask

    if self.is_decoder and encoder_hidden_states is not None:
        encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.shape
        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
        if encoder_attention_mask is None:
            encoder_attention_mask = ops.ones(encoder_hidden_shape)
        encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
    else:
        encoder_extended_attention_mask = None

    # Prepare head mask if needed
    head_mask = self.get_head_mask(head_mask, self.config.num_layers)
    cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
    present_key_value_states = () if use_cache else None
    all_hidden_states = () if output_hidden_states else None
    all_attentions = () if output_attentions else None
    all_cross_attentions = () if (output_attentions and self.is_decoder) else None
    position_bias = None
    encoder_decoder_position_bias = None

    hidden_states = self.dropout(inputs_embeds)

    for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
        layer_head_mask = head_mask[i]
        cross_attn_layer_head_mask = cross_attn_head_mask[i]
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        layer_outputs = layer_module(
            hidden_states,
            attention_mask=extended_attention_mask,
            position_bias=position_bias,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            encoder_decoder_position_bias=encoder_decoder_position_bias,
            layer_head_mask=layer_head_mask,
            cross_attn_layer_head_mask=cross_attn_layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        # layer_outputs is a tuple with:
        # hidden-states, key-value-states, (self-attention position bias), \
        # (self-attention weights), (cross-attention position bias), (cross-attention weights)
        if use_cache is False:
            layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]

        hidden_states, present_key_value_state = layer_outputs[:2]

        # We share the position biases between the layers - the first layer store them
        # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
        # (cross-attention position bias), (cross-attention weights)
        position_bias = layer_outputs[2]
        if self.is_decoder and encoder_hidden_states is not None:
            encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
        # append next layer key value states
        if use_cache:
            present_key_value_states = present_key_value_states + (present_key_value_state,)

        if output_attentions:
            all_attentions = all_attentions + (layer_outputs[3],)
            if self.is_decoder:
                all_cross_attentions = all_cross_attentions + (layer_outputs[5],)

    hidden_states = self.final_layer_norm(hidden_states)
    hidden_states = self.dropout(hidden_states)

    # Add last layer
    if output_hidden_states:
        all_hidden_states = all_hidden_states + (hidden_states,)

    if not return_dict:
        return tuple(
            v
            for v in [
                hidden_states,
                present_key_value_states,
                all_hidden_states,
                all_attentions,
                all_cross_attentions,
            ]
            if v is not None
        )
    return BaseModelOutputWithPastAndCrossAttentions(
        last_hidden_state=hidden_states,
        past_key_values=present_key_value_states,
        hidden_states=all_hidden_states,
        attentions=all_attentions,
        cross_attentions=all_cross_attentions,
    )

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Stack.get_input_embeddings()

Description

This method retrieves the input embeddings from the LongT5Stack class.

PARAMETER DESCRIPTION
self

The instance of the LongT5Stack class. It is used to access the embed_tokens attribute.

RETURNS DESCRIPTION

The embed_tokens attribute: which represents the input embeddings.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
def get_input_embeddings(self):
    """
    Method: get_input_embeddings

    Description:
        This method retrieves the input embeddings from the LongT5Stack class.

    Args:
        self: The instance of the LongT5Stack class. It is used to access the embed_tokens attribute.

    Returns:
        The embed_tokens attribute: which represents the input embeddings.

    Raises:
        None
    """
    return self.embed_tokens

mindnlp.transformers.models.longt5.modeling_longt5.LongT5Stack.set_input_embeddings(new_embeddings)

Sets the input embeddings for the LongT5Stack class.

PARAMETER DESCRIPTION
self

The instance of the LongT5Stack class.

TYPE: LongT5Stack

new_embeddings

The new embeddings to be set for the input tokens. It can be any object type.

TYPE: Any

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
def set_input_embeddings(self, new_embeddings):
    """
    Sets the input embeddings for the LongT5Stack class.

    Args:
        self (LongT5Stack): The instance of the LongT5Stack class.
        new_embeddings (Any): The new embeddings to be set for the input tokens. It can be any object type.

    Returns:
        None.

    Raises:
        None.
    """
    self.embed_tokens = new_embeddings

mindnlp.transformers.models.longt5.modeling_longt5.LongT5TransientGlobalAttention

Bases: Module

LongT5TransientGlobalAttention

Source code in mindnlp/transformers/models/longt5/modeling_longt5.py
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
class LongT5TransientGlobalAttention(nn.Module):
    """LongT5TransientGlobalAttention"""
    def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
        """
        Initializes an instance of the LongT5TransientGlobalAttention class.

        Args:
            self: The instance of the class.
            config (LongT5Config): An object of the LongT5Config class containing configuration parameters.
            has_relative_attention_bias (bool, optional): Specifies whether relative attention bias is present.
                Default is False.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.local_radius = config.local_radius     # new
        self.block_len = self.local_radius + 1      # new
        self.global_block_size = config.global_block_size   # new
        self.