Skip to content

luke

mindnlp.transformers.models.luke.luke

MindNlp LUKE model

mindnlp.transformers.models.luke.luke.EntityPredictionHead

Bases: Module

EntityPredictionHead

Source code in mindnlp/transformers/models/luke/luke.py
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
class EntityPredictionHead(nn.Module):
    """
    EntityPredictionHead
    """
    def __init__(self, config):
        """
        Initialize the EntityPredictionHead instance.

        Args:
            self (EntityPredictionHead): The EntityPredictionHead instance.
            config (object): The configuration object containing parameters for entity prediction head.
                This object should have attributes required for initializing the EntityPredictionHead instance.
                It must be provided as an argument during initialization.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not provided or is of an incorrect type.
            ValueError: If the config object does not contain the required attributes for initialization.
            RuntimeError: If there is an issue with initializing any component within the EntityPredictionHead instance.
        """
        super().__init__()
        self.config = config
        self.transform = EntityPredictionHeadTransform(config)
        self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False)
        self.bias = mindspore.Parameter(ops.zeros((config.entity_vocab_size,)))

    def construct(self, hidden_states):
        """
        Method to construct the entity prediction head using the given hidden states.

        Args:
            self (EntityPredictionHead): An instance of the EntityPredictionHead class.
            hidden_states (tensor): The hidden states to be used for constructing the entity prediction head.
                Should be a tensor representing the hidden states of the input data.

        Returns:
            None: This method does not return any value.
                The entity prediction head is constructed and updated within the class instance.

        Raises:
            TypeError: If the input hidden_states is not of type tensor.
            ValueError: If the hidden_states tensor is empty or has invalid dimensions.
        """
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias

        return hidden_states

mindnlp.transformers.models.luke.luke.EntityPredictionHead.__init__(config)

Initialize the EntityPredictionHead instance.

PARAMETER DESCRIPTION
self

The EntityPredictionHead instance.

TYPE: EntityPredictionHead

config

The configuration object containing parameters for entity prediction head. This object should have attributes required for initializing the EntityPredictionHead instance. It must be provided as an argument during initialization.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not provided or is of an incorrect type.

ValueError

If the config object does not contain the required attributes for initialization.

RuntimeError

If there is an issue with initializing any component within the EntityPredictionHead instance.

Source code in mindnlp/transformers/models/luke/luke.py
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
def __init__(self, config):
    """
    Initialize the EntityPredictionHead instance.

    Args:
        self (EntityPredictionHead): The EntityPredictionHead instance.
        config (object): The configuration object containing parameters for entity prediction head.
            This object should have attributes required for initializing the EntityPredictionHead instance.
            It must be provided as an argument during initialization.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not provided or is of an incorrect type.
        ValueError: If the config object does not contain the required attributes for initialization.
        RuntimeError: If there is an issue with initializing any component within the EntityPredictionHead instance.
    """
    super().__init__()
    self.config = config
    self.transform = EntityPredictionHeadTransform(config)
    self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False)
    self.bias = mindspore.Parameter(ops.zeros((config.entity_vocab_size,)))

mindnlp.transformers.models.luke.luke.EntityPredictionHead.construct(hidden_states)

Method to construct the entity prediction head using the given hidden states.

PARAMETER DESCRIPTION
self

An instance of the EntityPredictionHead class.

TYPE: EntityPredictionHead

hidden_states

The hidden states to be used for constructing the entity prediction head. Should be a tensor representing the hidden states of the input data.

TYPE: tensor

RETURNS DESCRIPTION
None

This method does not return any value. The entity prediction head is constructed and updated within the class instance.

RAISES DESCRIPTION
TypeError

If the input hidden_states is not of type tensor.

ValueError

If the hidden_states tensor is empty or has invalid dimensions.

Source code in mindnlp/transformers/models/luke/luke.py
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
def construct(self, hidden_states):
    """
    Method to construct the entity prediction head using the given hidden states.

    Args:
        self (EntityPredictionHead): An instance of the EntityPredictionHead class.
        hidden_states (tensor): The hidden states to be used for constructing the entity prediction head.
            Should be a tensor representing the hidden states of the input data.

    Returns:
        None: This method does not return any value.
            The entity prediction head is constructed and updated within the class instance.

    Raises:
        TypeError: If the input hidden_states is not of type tensor.
        ValueError: If the hidden_states tensor is empty or has invalid dimensions.
    """
    hidden_states = self.transform(hidden_states)
    hidden_states = self.decoder(hidden_states) + self.bias

    return hidden_states

mindnlp.transformers.models.luke.luke.EntityPredictionHeadTransform

Bases: Module

EntityPredictionHeadTransform

Source code in mindnlp/transformers/models/luke/luke.py
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
class EntityPredictionHeadTransform(nn.Module):
    """
    EntityPredictionHeadTransform
    """
    def __init__(self, config):
        """
        Initializes the EntityPredictionHeadTransform class.

        Args:
            self: The instance of the EntityPredictionHeadTransform class.
            config:
                An object containing configuration parameters for the EntityPredictionHeadTransform class.

                - Type: Any
                - Purpose: Specifies the configuration settings for the EntityPredictionHeadTransform instance.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            TypeError: If the config.hidden_act parameter is not a string or a valid activation function.
            ValueError: If the config.entity_emb_size is invalid or the config.layer_norm_eps is not
                within the valid range.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.entity_emb_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.layer_norm = nn.LayerNorm([config.entity_emb_size, ], eps=config.layer_norm_eps)

    def construct(self, hidden_states):
        """
        Method to construct the entity prediction head transformation.

        Args:
            self (EntityPredictionHeadTransform): An instance of the EntityPredictionHeadTransform class.
            hidden_states (tensor): The input hidden states to be transformed.
                It should be a tensor representing the hidden states of the model.

        Returns:
            tensor: The transformed hidden states after passing through the dense layer,
                activation function, and layer normalization.
                It retains the same shape and structure as the input hidden states.

        Raises:
            None.
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        return hidden_states

mindnlp.transformers.models.luke.luke.EntityPredictionHeadTransform.__init__(config)

Initializes the EntityPredictionHeadTransform class.

PARAMETER DESCRIPTION
self

The instance of the EntityPredictionHeadTransform class.

config

An object containing configuration parameters for the EntityPredictionHeadTransform class.

  • Type: Any
  • Purpose: Specifies the configuration settings for the EntityPredictionHeadTransform instance.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config.hidden_act parameter is not a string or a valid activation function.

ValueError

If the config.entity_emb_size is invalid or the config.layer_norm_eps is not within the valid range.

Source code in mindnlp/transformers/models/luke/luke.py
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
def __init__(self, config):
    """
    Initializes the EntityPredictionHeadTransform class.

    Args:
        self: The instance of the EntityPredictionHeadTransform class.
        config:
            An object containing configuration parameters for the EntityPredictionHeadTransform class.

            - Type: Any
            - Purpose: Specifies the configuration settings for the EntityPredictionHeadTransform instance.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        TypeError: If the config.hidden_act parameter is not a string or a valid activation function.
        ValueError: If the config.entity_emb_size is invalid or the config.layer_norm_eps is not
            within the valid range.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.entity_emb_size)
    if isinstance(config.hidden_act, str):
        self.transform_act_fn = ACT2FN[config.hidden_act]
    else:
        self.transform_act_fn = config.hidden_act
    self.layer_norm = nn.LayerNorm([config.entity_emb_size, ], eps=config.layer_norm_eps)

mindnlp.transformers.models.luke.luke.EntityPredictionHeadTransform.construct(hidden_states)

Method to construct the entity prediction head transformation.

PARAMETER DESCRIPTION
self

An instance of the EntityPredictionHeadTransform class.

TYPE: EntityPredictionHeadTransform

hidden_states

The input hidden states to be transformed. It should be a tensor representing the hidden states of the model.

TYPE: tensor

RETURNS DESCRIPTION
tensor

The transformed hidden states after passing through the dense layer, activation function, and layer normalization. It retains the same shape and structure as the input hidden states.

Source code in mindnlp/transformers/models/luke/luke.py
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
def construct(self, hidden_states):
    """
    Method to construct the entity prediction head transformation.

    Args:
        self (EntityPredictionHeadTransform): An instance of the EntityPredictionHeadTransform class.
        hidden_states (tensor): The input hidden states to be transformed.
            It should be a tensor representing the hidden states of the model.

    Returns:
        tensor: The transformed hidden states after passing through the dense layer,
            activation function, and layer normalization.
            It retains the same shape and structure as the input hidden states.

    Raises:
        None.
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.transform_act_fn(hidden_states)
    hidden_states = self.layer_norm(hidden_states)
    return hidden_states

mindnlp.transformers.models.luke.luke.LukeAttention

Bases: Module

LukeAttention

Source code in mindnlp/transformers/models/luke/luke.py
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
class LukeAttention(nn.Module):
    """
    LukeAttention
    """
    def __init__(self, config):
        """
        Initializes a new instance of the LukeAttention class.

        Args:
            self (LukeAttention): The current instance of the LukeAttention class.
            config: The configuration object for the attention mechanism.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.self = LukeSelfAttention(config)
        self.output = LukeSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        """
        NotImplementedError
        """
        raise NotImplementedError("LUKE does not support the pruning of attention heads")

    def construct(
            self,
            word_hidden_states,
            entity_hidden_states,
            attention_mask=None,
            head_mask=None,
            output_attentions=False,
    ):
        """
        Constructs the attention mechanism in the LukeAttention class.

        Args:
            self (LukeAttention): The instance of the LukeAttention class.
            word_hidden_states (tensor): The hidden states of words. Shape: (batch_size, word_seq_len, hidden_size).
            entity_hidden_states (tensor): The hidden states of entities. Shape: (batch_size, entity_seq_len, hidden_size).
            attention_mask (tensor, optional): Mask to avoid performing attention on padding tokens.
                Shape: (batch_size, 1, word_seq_len, entity_seq_len).
            head_mask (tensor, optional): Mask to exclude certain attention heads. Shape: (num_attention_heads,).
            output_attentions (bool): Whether to output attentions. Default is False.

        Returns:
            tuple: A tuple containing word_attention_output and entity_attention_output
                if entity_hidden_states is not None, else None.

                - word_attention_output (tensor): The attention output for word hidden states.
                Shape: (batch_size, word_seq_len, hidden_size).
                - entity_attention_output (tensor or None): The attention output for entity hidden states
                if entity_hidden_states is not None, else None.
                - additional outputs: Additional outputs returned by the attention mechanism.

        Raises:
            ValueError: If the shapes of word_hidden_states and entity_hidden_states are incompatible.
            RuntimeError: If an error occurs during the attention computation.
            IndexError: If the attention indices are out of bounds.
        """
        word_size = word_hidden_states.shape[1]
        self_outputs = self.self(
            word_hidden_states,
            entity_hidden_states,
            attention_mask,
            head_mask,
            output_attentions,
        )
        if entity_hidden_states is None:
            concat_self_outputs = self_outputs[0]
            concat_hidden_states = word_hidden_states
        else:
            concat_self_outputs = ops.cat(self_outputs[:2], axis=1)
            concat_hidden_states = ops.cat([word_hidden_states, entity_hidden_states], axis=1)

        attention_output = self.output(concat_self_outputs, concat_hidden_states)

        word_attention_output = attention_output[:, :word_size, :]
        if entity_hidden_states is None:
            entity_attention_output = None
        else:
            entity_attention_output = attention_output[:, word_size:, :]

        # add attentions if we output them
        outputs = (word_attention_output, entity_attention_output) + self_outputs[2:]

        return outputs

mindnlp.transformers.models.luke.luke.LukeAttention.__init__(config)

Initializes a new instance of the LukeAttention class.

PARAMETER DESCRIPTION
self

The current instance of the LukeAttention class.

TYPE: LukeAttention

config

The configuration object for the attention mechanism.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/luke/luke.py
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def __init__(self, config):
    """
    Initializes a new instance of the LukeAttention class.

    Args:
        self (LukeAttention): The current instance of the LukeAttention class.
        config: The configuration object for the attention mechanism.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.self = LukeSelfAttention(config)
    self.output = LukeSelfOutput(config)
    self.pruned_heads = set()

mindnlp.transformers.models.luke.luke.LukeAttention.construct(word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False)

Constructs the attention mechanism in the LukeAttention class.

PARAMETER DESCRIPTION
self

The instance of the LukeAttention class.

TYPE: LukeAttention

word_hidden_states

The hidden states of words. Shape: (batch_size, word_seq_len, hidden_size).

TYPE: tensor

entity_hidden_states

The hidden states of entities. Shape: (batch_size, entity_seq_len, hidden_size).

TYPE: tensor

attention_mask

Mask to avoid performing attention on padding tokens. Shape: (batch_size, 1, word_seq_len, entity_seq_len).

TYPE: tensor DEFAULT: None

head_mask

Mask to exclude certain attention heads. Shape: (num_attention_heads,).

TYPE: tensor DEFAULT: None

output_attentions

Whether to output attentions. Default is False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
tuple

A tuple containing word_attention_output and entity_attention_output if entity_hidden_states is not None, else None.

  • word_attention_output (tensor): The attention output for word hidden states. Shape: (batch_size, word_seq_len, hidden_size).
  • entity_attention_output (tensor or None): The attention output for entity hidden states if entity_hidden_states is not None, else None.
  • additional outputs: Additional outputs returned by the attention mechanism.
RAISES DESCRIPTION
ValueError

If the shapes of word_hidden_states and entity_hidden_states are incompatible.

RuntimeError

If an error occurs during the attention computation.

IndexError

If the attention indices are out of bounds.

Source code in mindnlp/transformers/models/luke/luke.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
def construct(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
):
    """
    Constructs the attention mechanism in the LukeAttention class.

    Args:
        self (LukeAttention): The instance of the LukeAttention class.
        word_hidden_states (tensor): The hidden states of words. Shape: (batch_size, word_seq_len, hidden_size).
        entity_hidden_states (tensor): The hidden states of entities. Shape: (batch_size, entity_seq_len, hidden_size).
        attention_mask (tensor, optional): Mask to avoid performing attention on padding tokens.
            Shape: (batch_size, 1, word_seq_len, entity_seq_len).
        head_mask (tensor, optional): Mask to exclude certain attention heads. Shape: (num_attention_heads,).
        output_attentions (bool): Whether to output attentions. Default is False.

    Returns:
        tuple: A tuple containing word_attention_output and entity_attention_output
            if entity_hidden_states is not None, else None.

            - word_attention_output (tensor): The attention output for word hidden states.
            Shape: (batch_size, word_seq_len, hidden_size).
            - entity_attention_output (tensor or None): The attention output for entity hidden states
            if entity_hidden_states is not None, else None.
            - additional outputs: Additional outputs returned by the attention mechanism.

    Raises:
        ValueError: If the shapes of word_hidden_states and entity_hidden_states are incompatible.
        RuntimeError: If an error occurs during the attention computation.
        IndexError: If the attention indices are out of bounds.
    """
    word_size = word_hidden_states.shape[1]
    self_outputs = self.self(
        word_hidden_states,
        entity_hidden_states,
        attention_mask,
        head_mask,
        output_attentions,
    )
    if entity_hidden_states is None:
        concat_self_outputs = self_outputs[0]
        concat_hidden_states = word_hidden_states
    else:
        concat_self_outputs = ops.cat(self_outputs[:2], axis=1)
        concat_hidden_states = ops.cat([word_hidden_states, entity_hidden_states], axis=1)

    attention_output = self.output(concat_self_outputs, concat_hidden_states)

    word_attention_output = attention_output[:, :word_size, :]
    if entity_hidden_states is None:
        entity_attention_output = None
    else:
        entity_attention_output = attention_output[:, word_size:, :]

    # add attentions if we output them
    outputs = (word_attention_output, entity_attention_output) + self_outputs[2:]

    return outputs

mindnlp.transformers.models.luke.luke.LukeAttention.prune_heads(heads)

NotImplementedError

Source code in mindnlp/transformers/models/luke/luke.py
476
477
478
479
480
def prune_heads(self, heads):
    """
    NotImplementedError
    """
    raise NotImplementedError("LUKE does not support the pruning of attention heads")

mindnlp.transformers.models.luke.luke.LukeEmbeddings

Bases: Module

LukeEmbeddings

Source code in mindnlp/transformers/models/luke/luke.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
class LukeEmbeddings(nn.Module):
    """
    LukeEmbeddings
    """
    def __init__(self, config: LukeConfig):
        """
        Initializes an instance of the LukeEmbeddings class.

        Args:
            self: The instance of the class itself.
            config (LukeConfig):
                An object of the LukeConfig class containing configuration parameters.

                - vocab_size (int): The size of the vocabulary.
                - hidden_size (int): The size of the hidden state.
                - pad_token_id (int): The index of the padding token in the vocabulary.
                - max_position_embeddings (int): The maximum number of positions for positional embeddings.
                - type_vocab_size (int): The size of the token type vocabulary.
                - layer_norm_eps (float): The epsilon value for layer normalization.
                - hidden_dropout_prob (float): The dropout probability for the hidden layers.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm([config.hidden_size, ], eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )

    def construct(
            self,
            input_ids=None,
            token_type_ids=None,
            position_ids=None,
            inputs_embeds=None,
    ):
        """
        Args:
            self (LukeEmbeddings): The instance of the LukeEmbeddings class.
            input_ids (Tensor, optional): A 2-D tensor containing the input token IDs. Defaults to None.
            token_type_ids (Tensor, optional): A 2-D tensor containing the token type IDs. Defaults to None.
            position_ids (Tensor, optional): A 2-D tensor containing the position IDs. Defaults to None.
            inputs_embeds (Tensor, optional): A 3-D tensor containing the input embeddings. Defaults to None.

        Returns:
            None.

        Raises:
            ValueError: If both input_ids and inputs_embeds are None.
            ValueError: If input_ids and inputs_embeds have mismatched shapes.
            TypeError: If the data type of token_type_ids is not int64.
        """
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.shape
        else:
            input_shape = inputs_embeds.shape[:-1]

        if token_type_ids is None:
            token_type_ids = Tensor(np.zeros(input_shape), dtype=mindspore.int64)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        #     print

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
        """
        input_shape = inputs_embeds.shape()[:-1]
        sequence_length = input_shape[1]

        position_ids = mindspore.numpy.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=mindspore.int64
        )
        return ops.broadcast_to(position_ids.unsqueeze(0), input_shape)

mindnlp.transformers.models.luke.luke.LukeEmbeddings.__init__(config)

Initializes an instance of the LukeEmbeddings class.

PARAMETER DESCRIPTION
self

The instance of the class itself.

config

An object of the LukeConfig class containing configuration parameters.

  • vocab_size (int): The size of the vocabulary.
  • hidden_size (int): The size of the hidden state.
  • pad_token_id (int): The index of the padding token in the vocabulary.
  • max_position_embeddings (int): The maximum number of positions for positional embeddings.
  • type_vocab_size (int): The size of the token type vocabulary.
  • layer_norm_eps (float): The epsilon value for layer normalization.
  • hidden_dropout_prob (float): The dropout probability for the hidden layers.

TYPE: LukeConfig

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/luke/luke.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def __init__(self, config: LukeConfig):
    """
    Initializes an instance of the LukeEmbeddings class.

    Args:
        self: The instance of the class itself.
        config (LukeConfig):
            An object of the LukeConfig class containing configuration parameters.

            - vocab_size (int): The size of the vocabulary.
            - hidden_size (int): The size of the hidden state.
            - pad_token_id (int): The index of the padding token in the vocabulary.
            - max_position_embeddings (int): The maximum number of positions for positional embeddings.
            - type_vocab_size (int): The size of the token type vocabulary.
            - layer_norm_eps (float): The epsilon value for layer normalization.
            - hidden_dropout_prob (float): The dropout probability for the hidden layers.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
    self.layer_norm = nn.LayerNorm([config.hidden_size, ], eps=config.layer_norm_eps)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

    # End copy
    self.padding_idx = config.pad_token_id
    self.position_embeddings = nn.Embedding(
        config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
    )

mindnlp.transformers.models.luke.luke.LukeEmbeddings.construct(input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None)

PARAMETER DESCRIPTION
self

The instance of the LukeEmbeddings class.

TYPE: LukeEmbeddings

input_ids

A 2-D tensor containing the input token IDs. Defaults to None.

TYPE: Tensor DEFAULT: None

token_type_ids

A 2-D tensor containing the token type IDs. Defaults to None.

TYPE: Tensor DEFAULT: None

position_ids

A 2-D tensor containing the position IDs. Defaults to None.

TYPE: Tensor DEFAULT: None

inputs_embeds

A 3-D tensor containing the input embeddings. Defaults to None.

TYPE: Tensor DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If both input_ids and inputs_embeds are None.

ValueError

If input_ids and inputs_embeds have mismatched shapes.

TypeError

If the data type of token_type_ids is not int64.

Source code in mindnlp/transformers/models/luke/luke.py
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def construct(
        self,
        input_ids=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
):
    """
    Args:
        self (LukeEmbeddings): The instance of the LukeEmbeddings class.
        input_ids (Tensor, optional): A 2-D tensor containing the input token IDs. Defaults to None.
        token_type_ids (Tensor, optional): A 2-D tensor containing the token type IDs. Defaults to None.
        position_ids (Tensor, optional): A 2-D tensor containing the position IDs. Defaults to None.
        inputs_embeds (Tensor, optional): A 3-D tensor containing the input embeddings. Defaults to None.

    Returns:
        None.

    Raises:
        ValueError: If both input_ids and inputs_embeds are None.
        ValueError: If input_ids and inputs_embeds have mismatched shapes.
        TypeError: If the data type of token_type_ids is not int64.
    """
    if position_ids is None:
        if input_ids is not None:
            # Create the position ids from the input token ids. Any padded tokens remain padded.
            position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
        else:
            position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

    if input_ids is not None:
        input_shape = input_ids.shape
    else:
        input_shape = inputs_embeds.shape[:-1]

    if token_type_ids is None:
        token_type_ids = Tensor(np.zeros(input_shape), dtype=mindspore.int64)

    if inputs_embeds is None:
        inputs_embeds = self.word_embeddings(input_ids)
    #     print

    position_embeddings = self.position_embeddings(position_ids)
    token_type_embeddings = self.token_type_embeddings(token_type_ids)

    embeddings = inputs_embeds + position_embeddings + token_type_embeddings
    embeddings = self.layer_norm(embeddings)
    embeddings = self.dropout(embeddings)
    return embeddings

mindnlp.transformers.models.luke.luke.LukeEmbeddings.create_position_ids_from_inputs_embeds(inputs_embeds)

We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

Source code in mindnlp/transformers/models/luke/luke.py
125
126
127
128
129
130
131
132
133
134
135
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
    """
    We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
    """
    input_shape = inputs_embeds.shape()[:-1]
    sequence_length = input_shape[1]

    position_ids = mindspore.numpy.arange(
        self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=mindspore.int64
    )
    return ops.broadcast_to(position_ids.unsqueeze(0), input_shape)

mindnlp.transformers.models.luke.luke.LukeEncoder

Bases: Module

LukeEncoder

Source code in mindnlp/transformers/models/luke/luke.py
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
class LukeEncoder(nn.Module):
    """
    LukeEncoder
    """
    def __init__(self, config):
        """Initialize a LukeEncoder object.

        Args:
            self (LukeEncoder): The LukeEncoder instance.
            config (dict): A dictionary containing configuration parameters for the encoder.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def construct(
            self,
            word_hidden_states,
            entity_hidden_states,
            attention_mask=None,
            head_mask=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
    ):
        """
        This method constructs the hidden states and attentions for a LukeEncoder model.

        Args:
            self: The instance of the LukeEncoder class.
            word_hidden_states: The hidden states of words, of shape (batch_size, sequence_length, hidden_size).
            entity_hidden_states: The hidden states of entities, of shape (batch_size, num_entities, hidden_size).
            attention_mask: An optional tensor of shape (batch_size, sequence_length) containing attention mask values.
            head_mask: An optional tensor of shape (num_layers, num_attention_heads) providing a mask for attention heads.
            output_attentions: A boolean flag indicating whether to output attention weights.
            output_hidden_states: A boolean flag indicating whether to output hidden states.
            return_dict: A boolean flag indicating whether to return the output as a dictionary.

        Returns:
            None

        Raises:
            ValueError: If the dimensions of input tensors are not valid.
            TypeError: If the input parameters are not of the expected types.
            IndexError: If the head mask dimensions do not match the expected shape.
        """
        all_word_hidden_states = () if output_hidden_states else None
        all_entity_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
                all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            # TODO
            # if self.gradient_checkpointing and self.training:
            #
            #     def create_custom_forward(module):
            #         def custom_forward(*inputs):
            #             return module(*inputs, output_attentions)
            #
            #         return custom_forward
            #
            #     layer_outputs = torch.utils.checkpoint.checkpoint(
            #         create_custom_forward(layer_module),
            #         word_hidden_states,
            #         entity_hidden_states,
            #         attention_mask,
            #         layer_head_mask,
            #     )
            layer_outputs = layer_module(
                word_hidden_states,
                entity_hidden_states,
                attention_mask,
                layer_head_mask,
                output_attentions,
            )

            word_hidden_states = layer_outputs[0]

            if entity_hidden_states is not None:
                entity_hidden_states = layer_outputs[1]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
            all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
        if not return_dict:
            return tuple(
                v
                for v in [
                    word_hidden_states,
                    all_word_hidden_states,
                    all_self_attentions,
                    entity_hidden_states,
                    all_entity_hidden_states,
                ]
                if v is not None
            )
        return {
            "last_hidden_state": word_hidden_states,
            "hidden_states": all_word_hidden_states,
            "attentions": all_self_attentions,
            "entity_last_hidden_state": entity_hidden_states,
            "entity_hidden_states": all_entity_hidden_states,
        }

mindnlp.transformers.models.luke.luke.LukeEncoder.__init__(config)

Initialize a LukeEncoder object.

PARAMETER DESCRIPTION
self

The LukeEncoder instance.

TYPE: LukeEncoder

config

A dictionary containing configuration parameters for the encoder.

TYPE: dict

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/luke/luke.py
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
def __init__(self, config):
    """Initialize a LukeEncoder object.

    Args:
        self (LukeEncoder): The LukeEncoder instance.
        config (dict): A dictionary containing configuration parameters for the encoder.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.config = config
    self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)])
    self.gradient_checkpointing = False

mindnlp.transformers.models.luke.luke.LukeEncoder.construct(word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)

This method constructs the hidden states and attentions for a LukeEncoder model.

PARAMETER DESCRIPTION
self

The instance of the LukeEncoder class.

word_hidden_states

The hidden states of words, of shape (batch_size, sequence_length, hidden_size).

entity_hidden_states

The hidden states of entities, of shape (batch_size, num_entities, hidden_size).

attention_mask

An optional tensor of shape (batch_size, sequence_length) containing attention mask values.

DEFAULT: None

head_mask

An optional tensor of shape (num_layers, num_attention_heads) providing a mask for attention heads.

DEFAULT: None

output_attentions

A boolean flag indicating whether to output attention weights.

DEFAULT: False

output_hidden_states

A boolean flag indicating whether to output hidden states.

DEFAULT: False

return_dict

A boolean flag indicating whether to return the output as a dictionary.

DEFAULT: True

RETURNS DESCRIPTION

None

RAISES DESCRIPTION
ValueError

If the dimensions of input tensors are not valid.

TypeError

If the input parameters are not of the expected types.

IndexError

If the head mask dimensions do not match the expected shape.

Source code in mindnlp/transformers/models/luke/luke.py
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
def construct(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
):
    """
    This method constructs the hidden states and attentions for a LukeEncoder model.

    Args:
        self: The instance of the LukeEncoder class.
        word_hidden_states: The hidden states of words, of shape (batch_size, sequence_length, hidden_size).
        entity_hidden_states: The hidden states of entities, of shape (batch_size, num_entities, hidden_size).
        attention_mask: An optional tensor of shape (batch_size, sequence_length) containing attention mask values.
        head_mask: An optional tensor of shape (num_layers, num_attention_heads) providing a mask for attention heads.
        output_attentions: A boolean flag indicating whether to output attention weights.
        output_hidden_states: A boolean flag indicating whether to output hidden states.
        return_dict: A boolean flag indicating whether to return the output as a dictionary.

    Returns:
        None

    Raises:
        ValueError: If the dimensions of input tensors are not valid.
        TypeError: If the input parameters are not of the expected types.
        IndexError: If the head mask dimensions do not match the expected shape.
    """
    all_word_hidden_states = () if output_hidden_states else None
    all_entity_hidden_states = () if output_hidden_states else None
    all_self_attentions = () if output_attentions else None

    for i, layer_module in enumerate(self.layer):
        if output_hidden_states:
            all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
            all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)

        layer_head_mask = head_mask[i] if head_mask is not None else None
        # TODO
        # if self.gradient_checkpointing and self.training:
        #
        #     def create_custom_forward(module):
        #         def custom_forward(*inputs):
        #             return module(*inputs, output_attentions)
        #
        #         return custom_forward
        #
        #     layer_outputs = torch.utils.checkpoint.checkpoint(
        #         create_custom_forward(layer_module),
        #         word_hidden_states,
        #         entity_hidden_states,
        #         attention_mask,
        #         layer_head_mask,
        #     )
        layer_outputs = layer_module(
            word_hidden_states,
            entity_hidden_states,
            attention_mask,
            layer_head_mask,
            output_attentions,
        )

        word_hidden_states = layer_outputs[0]

        if entity_hidden_states is not None:
            entity_hidden_states = layer_outputs[1]

        if output_attentions:
            all_self_attentions = all_self_attentions + (layer_outputs[2],)

    if output_hidden_states:
        all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
        all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
    if not return_dict:
        return tuple(
            v
            for v in [
                word_hidden_states,
                all_word_hidden_states,
                all_self_attentions,
                entity_hidden_states,
                all_entity_hidden_states,
            ]
            if v is not None
        )
    return {
        "last_hidden_state": word_hidden_states,
        "hidden_states": all_word_hidden_states,
        "attentions": all_self_attentions,
        "entity_last_hidden_state": entity_hidden_states,
        "entity_hidden_states": all_entity_hidden_states,
    }

mindnlp.transformers.models.luke.luke.LukeEntityEmbeddings

Bases: Module

LukeEntityEmbeddings

Source code in mindnlp/transformers/models/luke/luke.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
class LukeEntityEmbeddings(nn.Module):
    """
    LukeEntityEmbeddings
    """
    def __init__(self, config: LukeConfig):
        """
        Initializes the LukeEntityEmbeddings class.

        Args:
            self: The instance of the class.
            config (LukeConfig): An instance of LukeConfig containing the configuration parameters for the entity embeddings.
                It specifies the entity vocabulary size, entity embedding size, hidden size, maximum position embeddings,
                type vocabulary size, and layer normalization epsilon.
                It is used to configure the entity embeddings, position embeddings, token type embeddings,
                layer normalization, and dropout.

        Returns:
            None.

        Raises:
            None
        """
        super().__init__()
        self.config = config

        self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0)
        if config.entity_emb_size != config.hidden_size:
            self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False)

        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        self.layer_norm = nn.LayerNorm([config.hidden_size, ], eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

    def construct(
            self, entity_ids, position_ids, token_type_ids=None
    ):
        """
        This method constructs entity embeddings by combining entity, position, and token type embeddings.

        Args:
            self: The instance of the LukeEntityEmbeddings class.
            entity_ids (Tensor): A tensor containing the entity IDs for which embeddings need to be constructed.
            position_ids (Tensor): A tensor containing the position IDs representing the position of each entity.
            token_type_ids (Tensor, optional): A tensor containing the token type IDs. Defaults to None.
                If not provided, it is initialized as zeros_like(entity_ids).

        Returns:
            embeddings (Tensor): The combined embeddings of entities, positions,
                and token types after normalization and dropout.

        Raises:
            ValueError: If the dimensions of entity_embeddings and hidden_size do not match.
            TypeError: If entity_ids, position_ids, or token_type_ids are not of type Tensor.
            ValueError: If the position_ids contain values less than -1.
            RuntimeError: If any runtime error occurs during the computation process.
        """
        if token_type_ids is None:
            token_type_ids = ops.zeros_like(entity_ids)

        entity_embeddings = self.entity_embeddings(entity_ids)
        if self.config.entity_emb_size != self.config.hidden_size:
            entity_embeddings = self.entity_embedding_dense(entity_embeddings)

        position_embeddings = self.position_embeddings(ops.clamp(position_ids, min=0))
        position_embedding_mask = ops.cast(position_ids != -1, position_embeddings.dtype).unsqueeze(-1)
        position_embeddings = position_embeddings * position_embedding_mask
        position_embeddings = position_embeddings.sum(axis=-2)
        position_embeddings = position_embeddings / position_embedding_mask.sum(axis=-2).clamp(min=1e-7)

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = entity_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)

        return embeddings

mindnlp.transformers.models.luke.luke.LukeEntityEmbeddings.__init__(config)

Initializes the LukeEntityEmbeddings class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An instance of LukeConfig containing the configuration parameters for the entity embeddings. It specifies the entity vocabulary size, entity embedding size, hidden size, maximum position embeddings, type vocabulary size, and layer normalization epsilon. It is used to configure the entity embeddings, position embeddings, token type embeddings, layer normalization, and dropout.

TYPE: LukeConfig

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/luke/luke.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def __init__(self, config: LukeConfig):
    """
    Initializes the LukeEntityEmbeddings class.

    Args:
        self: The instance of the class.
        config (LukeConfig): An instance of LukeConfig containing the configuration parameters for the entity embeddings.
            It specifies the entity vocabulary size, entity embedding size, hidden size, maximum position embeddings,
            type vocabulary size, and layer normalization epsilon.
            It is used to configure the entity embeddings, position embeddings, token type embeddings,
            layer normalization, and dropout.

    Returns:
        None.

    Raises:
        None
    """
    super().__init__()
    self.config = config

    self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0)
    if config.entity_emb_size != config.hidden_size:
        self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False)

    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

    self.layer_norm = nn.LayerNorm([config.hidden_size, ], eps=config.layer_norm_eps)
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

mindnlp.transformers.models.luke.luke.LukeEntityEmbeddings.construct(entity_ids, position_ids, token_type_ids=None)

This method constructs entity embeddings by combining entity, position, and token type embeddings.

PARAMETER DESCRIPTION
self

The instance of the LukeEntityEmbeddings class.

entity_ids

A tensor containing the entity IDs for which embeddings need to be constructed.

TYPE: Tensor

position_ids

A tensor containing the position IDs representing the position of each entity.

TYPE: Tensor

token_type_ids

A tensor containing the token type IDs. Defaults to None. If not provided, it is initialized as zeros_like(entity_ids).

TYPE: Tensor DEFAULT: None

RETURNS DESCRIPTION
embeddings

The combined embeddings of entities, positions, and token types after normalization and dropout.

TYPE: Tensor

RAISES DESCRIPTION
ValueError

If the dimensions of entity_embeddings and hidden_size do not match.

TypeError

If entity_ids, position_ids, or token_type_ids are not of type Tensor.

ValueError

If the position_ids contain values less than -1.

RuntimeError

If any runtime error occurs during the computation process.

Source code in mindnlp/transformers/models/luke/luke.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def construct(
        self, entity_ids, position_ids, token_type_ids=None
):
    """
    This method constructs entity embeddings by combining entity, position, and token type embeddings.

    Args:
        self: The instance of the LukeEntityEmbeddings class.
        entity_ids (Tensor): A tensor containing the entity IDs for which embeddings need to be constructed.
        position_ids (Tensor): A tensor containing the position IDs representing the position of each entity.
        token_type_ids (Tensor, optional): A tensor containing the token type IDs. Defaults to None.
            If not provided, it is initialized as zeros_like(entity_ids).

    Returns:
        embeddings (Tensor): The combined embeddings of entities, positions,
            and token types after normalization and dropout.

    Raises:
        ValueError: If the dimensions of entity_embeddings and hidden_size do not match.
        TypeError: If entity_ids, position_ids, or token_type_ids are not of type Tensor.
        ValueError: If the position_ids contain values less than -1.
        RuntimeError: If any runtime error occurs during the computation process.
    """
    if token_type_ids is None:
        token_type_ids = ops.zeros_like(entity_ids)

    entity_embeddings = self.entity_embeddings(entity_ids)
    if self.config.entity_emb_size != self.config.hidden_size:
        entity_embeddings = self.entity_embedding_dense(entity_embeddings)

    position_embeddings = self.position_embeddings(ops.clamp(position_ids, min=0))
    position_embedding_mask = ops.cast(position_ids != -1, position_embeddings.dtype).unsqueeze(-1)
    position_embeddings = position_embeddings * position_embedding_mask
    position_embeddings = position_embeddings.sum(axis=-2)
    position_embeddings = position_embeddings / position_embedding_mask.sum(axis=-2).clamp(min=1e-7)

    token_type_embeddings = self.token_type_embeddings(token_type_ids)

    embeddings = entity_embeddings + position_embeddings + token_type_embeddings
    embeddings = self.layer_norm(embeddings)
    embeddings = self.dropout(embeddings)

    return embeddings

mindnlp.transformers.models.luke.luke.LukeForEntityClassification

Bases: LukePreTrainedModel

LukeForEntityClassification

Source code in mindnlp/transformers/models/luke/luke.py
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
class LukeForEntityClassification(LukePreTrainedModel):
    """
    LukeForEntityClassification
    """
    def __init__(self, config):
        """
        Initializes a new instance of the LukeForEntityClassification class.

        Args:
            self: The instance of the class.
            config:
                A configuration object containing the settings for the LukeForEntityClassification model.

                - Type: object
                - Purpose: Specifies the configuration settings for the model.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of the expected type.
            ValueError: If the config parameter does not contain the required settings.
            RuntimeError: If there is an issue with the initialization process.
        """
        super().__init__(config)

        self.luke = LukeModel(config)

        self.num_labels = config.num_labels
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Constructs the LukeForEntityClassification model.

        Args:
            self (LukeForEntityClassification): The instance of the LukeForEntityClassification class.
            input_ids (Optional[Tensor]): The input tensor containing the indices of input sequence tokens in the vocabulary.
            attention_mask (Optional[Tensor]): The optional mask tensor, usually used to ignore padding tokens.
            token_type_ids (Optional[Tensor]): The optional tensor containing the type ids of input sequence tokens.
            position_ids (Optional[Tensor]): The optional tensor containing the positions ids of input sequence tokens.
            entity_ids (Optional[Tensor]): The optional tensor containing the indices of entity tokens in the vocabulary.
            entity_attention_mask (Optional[Tensor]): The optional mask tensor for entity tokens.
            entity_token_type_ids (Optional[Tensor]): The optional tensor containing the type ids of entity sequence tokens.
            entity_position_ids (Optional[Tensor]): The optional tensor containing the positions ids of entity sequence tokens.
            head_mask (Optional[Tensor]): The optional mask tensor for attention heads.
            inputs_embeds (Optional[Tensor]): The optional tensor containing the embeddings of input sequence tokens.
            labels (Optional[Tensor]): The optional tensor containing the labels of the entity classification task.
            output_attentions (Optional[bool]): Whether to return the attentions weights of the model.
            output_hidden_states (Optional[bool]): Whether to return the hidden states of the model.
            return_dict (Optional[bool]): Whether to return a dictionary instead of a tuple.

        Returns:
            Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]]: A tuple containing
                the loss, logits, hidden states, entity hidden states, and attentions weights (if available) respectively.

        Raises:
            None.

        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        feature_vector = outputs['entity_last_hidden_state'][:, 0, :]
        feature_vector = self.dropout(feature_vector)
        logits = self.classifier(feature_vector)

        loss = None
        if labels is not None:
            if labels.ndim == 1:
                loss = ops.cross_entropy(logits, labels)
            else:
                loss = ops.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits), Tensor(),
                                                            Tensor())
        return tuple(
            v
            for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForEntityClassification.__init__(config)

Initializes a new instance of the LukeForEntityClassification class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

A configuration object containing the settings for the LukeForEntityClassification model.

  • Type: object
  • Purpose: Specifies the configuration settings for the model.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of the expected type.

ValueError

If the config parameter does not contain the required settings.

RuntimeError

If there is an issue with the initialization process.

Source code in mindnlp/transformers/models/luke/luke.py
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
def __init__(self, config):
    """
    Initializes a new instance of the LukeForEntityClassification class.

    Args:
        self: The instance of the class.
        config:
            A configuration object containing the settings for the LukeForEntityClassification model.

            - Type: object
            - Purpose: Specifies the configuration settings for the model.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of the expected type.
        ValueError: If the config parameter does not contain the required settings.
        RuntimeError: If there is an issue with the initialization process.
    """
    super().__init__(config)

    self.luke = LukeModel(config)

    self.num_labels = config.num_labels
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

mindnlp.transformers.models.luke.luke.LukeForEntityClassification.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the LukeForEntityClassification model.

PARAMETER DESCRIPTION
self

The instance of the LukeForEntityClassification class.

TYPE: LukeForEntityClassification

input_ids

The input tensor containing the indices of input sequence tokens in the vocabulary.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The optional mask tensor, usually used to ignore padding tokens.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The optional tensor containing the type ids of input sequence tokens.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The optional tensor containing the positions ids of input sequence tokens.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

The optional tensor containing the indices of entity tokens in the vocabulary.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

The optional mask tensor for entity tokens.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

The optional tensor containing the type ids of entity sequence tokens.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

The optional tensor containing the positions ids of entity sequence tokens.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The optional mask tensor for attention heads.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The optional tensor containing the embeddings of input sequence tokens.

TYPE: Optional[Tensor] DEFAULT: None

labels

The optional tensor containing the labels of the entity classification task.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to return the attentions weights of the model.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to return the hidden states of the model.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary instead of a tuple.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION

Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]]: A tuple containing the loss, logits, hidden states, entity hidden states, and attentions weights (if available) respectively.

Source code in mindnlp/transformers/models/luke/luke.py
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Constructs the LukeForEntityClassification model.

    Args:
        self (LukeForEntityClassification): The instance of the LukeForEntityClassification class.
        input_ids (Optional[Tensor]): The input tensor containing the indices of input sequence tokens in the vocabulary.
        attention_mask (Optional[Tensor]): The optional mask tensor, usually used to ignore padding tokens.
        token_type_ids (Optional[Tensor]): The optional tensor containing the type ids of input sequence tokens.
        position_ids (Optional[Tensor]): The optional tensor containing the positions ids of input sequence tokens.
        entity_ids (Optional[Tensor]): The optional tensor containing the indices of entity tokens in the vocabulary.
        entity_attention_mask (Optional[Tensor]): The optional mask tensor for entity tokens.
        entity_token_type_ids (Optional[Tensor]): The optional tensor containing the type ids of entity sequence tokens.
        entity_position_ids (Optional[Tensor]): The optional tensor containing the positions ids of entity sequence tokens.
        head_mask (Optional[Tensor]): The optional mask tensor for attention heads.
        inputs_embeds (Optional[Tensor]): The optional tensor containing the embeddings of input sequence tokens.
        labels (Optional[Tensor]): The optional tensor containing the labels of the entity classification task.
        output_attentions (Optional[bool]): Whether to return the attentions weights of the model.
        output_hidden_states (Optional[bool]): Whether to return the hidden states of the model.
        return_dict (Optional[bool]): Whether to return a dictionary instead of a tuple.

    Returns:
        Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]]: A tuple containing
            the loss, logits, hidden states, entity hidden states, and attentions weights (if available) respectively.

    Raises:
        None.

    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    feature_vector = outputs['entity_last_hidden_state'][:, 0, :]
    feature_vector = self.dropout(feature_vector)
    logits = self.classifier(feature_vector)

    loss = None
    if labels is not None:
        if labels.ndim == 1:
            loss = ops.cross_entropy(logits, labels)
        else:
            loss = ops.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits), Tensor(),
                                                        Tensor())
    return tuple(
        v
        for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForEntityPairClassification

Bases: LukePreTrainedModel

LukeForEntityPairClassification

Source code in mindnlp/transformers/models/luke/luke.py
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
class LukeForEntityPairClassification(LukePreTrainedModel):
    """
    LukeForEntityPairClassification
    """
    def __init__(self, config):
        """
        Initializes a new instance of LukeForEntityPairClassification.

        Args:
            self: The object instance itself.
            config:
                The configuration object containing various parameters.

                - Type: object
                - Purpose: Contains the configuration settings for the Luke model.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.luke = LukeModel(config)

        self.num_labels = config.num_labels
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, bias=False)

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        This method 'construct' in the class 'LukeForEntityPairClassification' is responsible for constructing
        the model and performing entity pair classification.

        Args:
            self: The instance of the class.
            input_ids (Optional[Tensor]): Input tensor containing token indices. Default is None.
            attention_mask (Optional[Tensor]): Mask tensor for the input, indicating which tokens should be attended to.
                Default is None.
            token_type_ids (Optional[Tensor]): Tensor specifying the type of token (e.g., segment A or B). Default is None.
            position_ids (Optional[Tensor]): Tensor specifying the position of tokens. Default is None.
            entity_ids (Optional[Tensor]): Tensor containing entity indices.
            entity_attention_mask (Optional[Tensor]): Mask tensor for entity inputs. Default is None.
            entity_token_type_ids (Optional[Tensor]): Tensor specifying the type of entity token. Default is None.
            entity_position_ids (Optional[Tensor]): Tensor specifying the position of entity tokens. Default is None.
            head_mask (Optional[Tensor]): Mask tensor for attention heads. Default is None.
            inputs_embeds (Optional[Tensor]): Additional embeddings to be added to the model input embeddings.
                Default is None.
            labels (Optional[Tensor]): Tensor containing the classification labels. Default is None.
            output_attentions (Optional[bool]): Whether to output attentions. Default is None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
            return_dict (Optional[bool]): Whether to return a dictionary as output. Default is None.

        Returns:
            Tuple:
                A tuple containing elements that are not None among loss (if labels provided), logits, hidden states,
                entity hidden states, and attentions. Returns None if all elements are None.

        Raises:
            ValueError: If labels are provided but have an incorrect shape for cross-entropy computation.
            TypeError: If the input types are not as expected by the method.
            RuntimeError: If there are runtime issues during the execution of the method.
        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        feature_vector = ops.cat(
            [outputs['entity_last_hidden_state'][:, 0, :], outputs['entity_last_hidden_state'][:, 1, :]], axis=1
        )
        feature_vector = self.dropout(feature_vector)
        logits = self.classifier(feature_vector)

        loss = None
        if labels is not None:
            if labels.ndim == 1:
                loss = ops.cross_entropy(logits, labels)
            else:
                loss = ops.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits), Tensor(),
                                                            Tensor())
        return tuple(
            v
            for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForEntityPairClassification.__init__(config)

Initializes a new instance of LukeForEntityPairClassification.

PARAMETER DESCRIPTION
self

The object instance itself.

config

The configuration object containing various parameters.

  • Type: object
  • Purpose: Contains the configuration settings for the Luke model.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/luke/luke.py
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
def __init__(self, config):
    """
    Initializes a new instance of LukeForEntityPairClassification.

    Args:
        self: The object instance itself.
        config:
            The configuration object containing various parameters.

            - Type: object
            - Purpose: Contains the configuration settings for the Luke model.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    self.luke = LukeModel(config)

    self.num_labels = config.num_labels
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, bias=False)

mindnlp.transformers.models.luke.luke.LukeForEntityPairClassification.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

This method 'construct' in the class 'LukeForEntityPairClassification' is responsible for constructing the model and performing entity pair classification.

PARAMETER DESCRIPTION
self

The instance of the class.

input_ids

Input tensor containing token indices. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

Mask tensor for the input, indicating which tokens should be attended to. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

Tensor specifying the type of token (e.g., segment A or B). Default is None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

Tensor specifying the position of tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

Tensor containing entity indices.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

Mask tensor for entity inputs. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

Tensor specifying the type of entity token. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

Tensor specifying the position of entity tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

Mask tensor for attention heads. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

Additional embeddings to be added to the model input embeddings. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

labels

Tensor containing the classification labels. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary as output. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
Tuple

A tuple containing elements that are not None among loss (if labels provided), logits, hidden states, entity hidden states, and attentions. Returns None if all elements are None.

RAISES DESCRIPTION
ValueError

If labels are provided but have an incorrect shape for cross-entropy computation.

TypeError

If the input types are not as expected by the method.

RuntimeError

If there are runtime issues during the execution of the method.

Source code in mindnlp/transformers/models/luke/luke.py
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    This method 'construct' in the class 'LukeForEntityPairClassification' is responsible for constructing
    the model and performing entity pair classification.

    Args:
        self: The instance of the class.
        input_ids (Optional[Tensor]): Input tensor containing token indices. Default is None.
        attention_mask (Optional[Tensor]): Mask tensor for the input, indicating which tokens should be attended to.
            Default is None.
        token_type_ids (Optional[Tensor]): Tensor specifying the type of token (e.g., segment A or B). Default is None.
        position_ids (Optional[Tensor]): Tensor specifying the position of tokens. Default is None.
        entity_ids (Optional[Tensor]): Tensor containing entity indices.
        entity_attention_mask (Optional[Tensor]): Mask tensor for entity inputs. Default is None.
        entity_token_type_ids (Optional[Tensor]): Tensor specifying the type of entity token. Default is None.
        entity_position_ids (Optional[Tensor]): Tensor specifying the position of entity tokens. Default is None.
        head_mask (Optional[Tensor]): Mask tensor for attention heads. Default is None.
        inputs_embeds (Optional[Tensor]): Additional embeddings to be added to the model input embeddings.
            Default is None.
        labels (Optional[Tensor]): Tensor containing the classification labels. Default is None.
        output_attentions (Optional[bool]): Whether to output attentions. Default is None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
        return_dict (Optional[bool]): Whether to return a dictionary as output. Default is None.

    Returns:
        Tuple:
            A tuple containing elements that are not None among loss (if labels provided), logits, hidden states,
            entity hidden states, and attentions. Returns None if all elements are None.

    Raises:
        ValueError: If labels are provided but have an incorrect shape for cross-entropy computation.
        TypeError: If the input types are not as expected by the method.
        RuntimeError: If there are runtime issues during the execution of the method.
    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    feature_vector = ops.cat(
        [outputs['entity_last_hidden_state'][:, 0, :], outputs['entity_last_hidden_state'][:, 1, :]], axis=1
    )
    feature_vector = self.dropout(feature_vector)
    logits = self.classifier(feature_vector)

    loss = None
    if labels is not None:
        if labels.ndim == 1:
            loss = ops.cross_entropy(logits, labels)
        else:
            loss = ops.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits), Tensor(),
                                                        Tensor())
    return tuple(
        v
        for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForEntitySpanClassification

Bases: LukePreTrainedModel

LukeForEntitySpanClassification

Source code in mindnlp/transformers/models/luke/luke.py
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
class LukeForEntitySpanClassification(LukePreTrainedModel):
    """
    LukeForEntitySpanClassification
    """
    def __init__(self, config):
        """
        Initializes an instance of the LukeForEntitySpanClassification class.

        Args:
            self: The instance of the class.
            config: The configuration object containing various settings and parameters for the model.
                It should be an instance of the configuration class specific to LukeForEntitySpanClassification.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of the expected type.
            ValueError: If the configuration provided is invalid or missing required parameters.
            RuntimeError: If there is an issue with the initialization process.
        """
        super().__init__(config)

        self.luke = LukeModel(config)

        self.num_labels = config.num_labels
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask=None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            entity_start_positions: Optional[Tensor] = None,
            entity_end_positions: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Constructs the forward pass of LukeForEntitySpanClassification model.

        Args:
            self (LukeForEntitySpanClassification): The instance of the LukeForEntitySpanClassification class.
            input_ids (Optional[Tensor]): The input tensor of shape (batch_size, sequence_length) containing the
                input tokens indices.
            attention_mask (Tensor): The attention mask tensor of shape (batch_size, sequence_length) containing
                the attention mask values.
            token_type_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the token type ids.
            position_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the position ids.
            entity_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing the entity ids.
            entity_attention_mask (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the entity attention mask values.
            entity_token_type_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the entity token type ids.
            entity_position_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the entity position ids.
            entity_start_positions (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the start positions of the entities.
            entity_end_positions (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
                the end positions of the entities.
            head_mask (Optional[Tensor]): The tensor of shape (batch_size, num_heads) containing the head mask values.
            inputs_embeds (Optional[Tensor]): The tensor of shape (batch_size, sequence_length, hidden_size) containing
                the input embeddings.
            labels (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing the labels.
            output_attentions (Optional[bool]): Whether to output the attentions.
            output_hidden_states (Optional[bool]): Whether to output the hidden states.
            return_dict (Optional[bool]): Whether to return a dictionary instead of a tuple.

        Returns:
            tuple: Tuple of values containing the loss (Tensor), logits (Tensor), hidden states (Tensor),
                entity hidden states (Tensor), and attentions (Tensor) if not None.

        Raises:
            None.
        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_size = outputs['last_hidden_state'].shape[-1]
        entity_start_positions = ops.BroadcastTo(shape=(-1, -1, hidden_size))(entity_start_positions.unsqueeze(-1))
        start_states = ops.gather_elements(outputs['last_hidden_state'], -2, entity_start_positions)

        entity_end_positions = ops.BroadcastTo(shape=(-1, -1, hidden_size))(entity_end_positions.unsqueeze(-1))
        end_states = ops.gather_elements(outputs['last_hidden_state'], -2, entity_end_positions)

        feature_vector = ops.cat([start_states, end_states, outputs['entity_last_hidden_state']], axis=2)
        feature_vector = self.dropout(feature_vector)
        logits = self.classifier(feature_vector)

        loss = None
        if labels is not None:
            if labels.ndim == 2:
                loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            else:
                loss = ops.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits),
                                                            weight=None, pos_weight=None)

        return tuple(
            v
            for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForEntitySpanClassification.__init__(config)

Initializes an instance of the LukeForEntitySpanClassification class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing various settings and parameters for the model. It should be an instance of the configuration class specific to LukeForEntitySpanClassification.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of the expected type.

ValueError

If the configuration provided is invalid or missing required parameters.

RuntimeError

If there is an issue with the initialization process.

Source code in mindnlp/transformers/models/luke/luke.py
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
def __init__(self, config):
    """
    Initializes an instance of the LukeForEntitySpanClassification class.

    Args:
        self: The instance of the class.
        config: The configuration object containing various settings and parameters for the model.
            It should be an instance of the configuration class specific to LukeForEntitySpanClassification.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of the expected type.
        ValueError: If the configuration provided is invalid or missing required parameters.
        RuntimeError: If there is an issue with the initialization process.
    """
    super().__init__(config)

    self.luke = LukeModel(config)

    self.num_labels = config.num_labels
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)

mindnlp.transformers.models.luke.luke.LukeForEntitySpanClassification.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, entity_start_positions=None, entity_end_positions=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the forward pass of LukeForEntitySpanClassification model.

PARAMETER DESCRIPTION
self

The instance of the LukeForEntitySpanClassification class.

TYPE: LukeForEntitySpanClassification

input_ids

The input tensor of shape (batch_size, sequence_length) containing the input tokens indices.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask tensor of shape (batch_size, sequence_length) containing the attention mask values.

TYPE: Tensor DEFAULT: None

token_type_ids

The tensor of shape (batch_size, sequence_length) containing the token type ids.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The tensor of shape (batch_size, sequence_length) containing the position ids.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

The tensor of shape (batch_size, sequence_length) containing the entity ids.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

The tensor of shape (batch_size, sequence_length) containing the entity attention mask values.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

The tensor of shape (batch_size, sequence_length) containing the entity token type ids.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

The tensor of shape (batch_size, sequence_length) containing the entity position ids.

TYPE: Optional[Tensor] DEFAULT: None

entity_start_positions

The tensor of shape (batch_size, sequence_length) containing the start positions of the entities.

TYPE: Optional[Tensor] DEFAULT: None

entity_end_positions

The tensor of shape (batch_size, sequence_length) containing the end positions of the entities.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The tensor of shape (batch_size, num_heads) containing the head mask values.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The tensor of shape (batch_size, sequence_length, hidden_size) containing the input embeddings.

TYPE: Optional[Tensor] DEFAULT: None

labels

The tensor of shape (batch_size, sequence_length) containing the labels.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output the attentions.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output the hidden states.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary instead of a tuple.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
tuple

Tuple of values containing the loss (Tensor), logits (Tensor), hidden states (Tensor), entity hidden states (Tensor), and attentions (Tensor) if not None.

Source code in mindnlp/transformers/models/luke/luke.py
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask=None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        entity_start_positions: Optional[Tensor] = None,
        entity_end_positions: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Constructs the forward pass of LukeForEntitySpanClassification model.

    Args:
        self (LukeForEntitySpanClassification): The instance of the LukeForEntitySpanClassification class.
        input_ids (Optional[Tensor]): The input tensor of shape (batch_size, sequence_length) containing the
            input tokens indices.
        attention_mask (Tensor): The attention mask tensor of shape (batch_size, sequence_length) containing
            the attention mask values.
        token_type_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the token type ids.
        position_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the position ids.
        entity_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing the entity ids.
        entity_attention_mask (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the entity attention mask values.
        entity_token_type_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the entity token type ids.
        entity_position_ids (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the entity position ids.
        entity_start_positions (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the start positions of the entities.
        entity_end_positions (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing
            the end positions of the entities.
        head_mask (Optional[Tensor]): The tensor of shape (batch_size, num_heads) containing the head mask values.
        inputs_embeds (Optional[Tensor]): The tensor of shape (batch_size, sequence_length, hidden_size) containing
            the input embeddings.
        labels (Optional[Tensor]): The tensor of shape (batch_size, sequence_length) containing the labels.
        output_attentions (Optional[bool]): Whether to output the attentions.
        output_hidden_states (Optional[bool]): Whether to output the hidden states.
        return_dict (Optional[bool]): Whether to return a dictionary instead of a tuple.

    Returns:
        tuple: Tuple of values containing the loss (Tensor), logits (Tensor), hidden states (Tensor),
            entity hidden states (Tensor), and attentions (Tensor) if not None.

    Raises:
        None.
    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_size = outputs['last_hidden_state'].shape[-1]
    entity_start_positions = ops.BroadcastTo(shape=(-1, -1, hidden_size))(entity_start_positions.unsqueeze(-1))
    start_states = ops.gather_elements(outputs['last_hidden_state'], -2, entity_start_positions)

    entity_end_positions = ops.BroadcastTo(shape=(-1, -1, hidden_size))(entity_end_positions.unsqueeze(-1))
    end_states = ops.gather_elements(outputs['last_hidden_state'], -2, entity_end_positions)

    feature_vector = ops.cat([start_states, end_states, outputs['entity_last_hidden_state']], axis=2)
    feature_vector = self.dropout(feature_vector)
    logits = self.classifier(feature_vector)

    loss = None
    if labels is not None:
        if labels.ndim == 2:
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        else:
            loss = ops.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits),
                                                        weight=None, pos_weight=None)

    return tuple(
        v
        for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForMaskedLM

Bases: LukePreTrainedModel

LukeForMaskedLM

Source code in mindnlp/transformers/models/luke/luke.py
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
class LukeForMaskedLM(LukePreTrainedModel):
    """
    LukeForMaskedLM
    """
    _keys_to_ignore_on_save = [
        r"lm_head.decoder.weight",
        r"lm_head.decoder.bias",
        r"entity_predictions.decoder.weight",
    ]
    _keys_to_ignore_on_load_missing = [
        r"position_ids",
        r"lm_head.decoder.weight",
        r"lm_head.decoder.bias",
        r"entity_predictions.decoder.weight",
    ]

    def __init__(self, config):
        """
        Initializes an instance of the 'LukeForMaskedLM' class.

        Args:
            self: The current instance of the 'LukeForMaskedLM' class.
            config: An object of type 'ConfigBase' containing the configuration parameters for the model.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.luke = LukeModel(config)

        self.lm_head = LukeLMHead(config)
        self.entity_predictions = EntityPredictionHead(config)

        self.loss_fn = nn.CrossEntropyLoss(ignore_index=-1)

    def tie_weights(self):
        """tie_weight"""
        super().tie_weights()
        self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings)

    def get_output_embeddings(self):
        """get_output_embeddings"""
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        """set_output_embeddings"""
        self.lm_head.decoder = new_embeddings

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            entity_labels: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Constructs the outputs for the LukeForMaskedLM model.

        Args:
            self (LukeForMaskedLM): The instance of the LukeForMaskedLM class.
            input_ids (Optional[Tensor]): The input token IDs. Default: None.
            attention_mask (Optional[Tensor]): The attention mask. Default: None.
            token_type_ids (Optional[Tensor]): The token type IDs. Default: None.
            position_ids (Optional[Tensor]): The position IDs. Default: None.
            entity_ids (Optional[Tensor]): The entity IDs. Default: None.
            entity_attention_mask (Optional[Tensor]): The entity attention mask. Default: None.
            entity_token_type_ids (Optional[Tensor]): The entity token type IDs. Default: None.
            entity_position_ids (Optional[Tensor]): The entity position IDs. Default: None.
            labels (Optional[Tensor]): The labels for masked language modeling. Default: None.
            entity_labels (Optional[Tensor]): The labels for entity prediction. Default: None.
            head_mask (Optional[Tensor]): The head mask. Default: None.
            inputs_embeds (Optional[Tensor]): The input embeddings. Default: None.
            output_attentions (Optional[bool]): Whether to output attentions. Default: None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default: None.
            return_dict (Optional[bool]): Whether to return a dictionary output. Default: None.

        Returns:
            Tuple of (loss, mlm_loss, mep_loss, logits, entity_logits, hidden_states, entity_hidden_states, attentions):

                - loss (Tensor or None): The total loss. None if no loss is calculated.
                - mlm_loss (Tensor or None): The loss for masked language modeling.
                None if no loss is calculated.
                - mep_loss (Tensor or None): The loss for entity prediction. None if no loss is calculated.
                - logits (Tensor or None): The logits for masked language modeling.
                - entity_logits (Tensor or None): The logits for entity prediction.
                - hidden_states (Tuple[Tensor] or None): The hidden states of the model. None if not returned.
                - entity_hidden_states (Tuple[Tensor] or None): The hidden states for entity prediction.
                None if not returned.
                - attentions (Tuple[Tensor] or None): The attentions of the model. None if not returned.

        Raises:
            None.
        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        loss = None
        mlm_loss = None
        logits = self.lm_head(outputs['last_hidden_state'])
        if labels is not None:
            mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1))
            if loss is None:
                loss = mlm_loss

        mep_loss = None
        entity_logits = None
        if outputs['entity_last_hidden_state'] is not None:
            entity_logits = self.entity_predictions(outputs['entity_last_hidden_state'])
            if entity_labels is not None:
                mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1))
                if loss is None:
                    loss = mep_loss
                else:
                    loss = loss + mep_loss
        return tuple(
            v
            for v in [
                loss,
                mlm_loss,
                mep_loss,
                logits,
                entity_logits,
                outputs['hidden_states'],
                outputs['entity_hidden_states'],
                outputs['attentions'],
            ]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForMaskedLM.__init__(config)

Initializes an instance of the 'LukeForMaskedLM' class.

PARAMETER DESCRIPTION
self

The current instance of the 'LukeForMaskedLM' class.

config

An object of type 'ConfigBase' containing the configuration parameters for the model.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/luke/luke.py
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
def __init__(self, config):
    """
    Initializes an instance of the 'LukeForMaskedLM' class.

    Args:
        self: The current instance of the 'LukeForMaskedLM' class.
        config: An object of type 'ConfigBase' containing the configuration parameters for the model.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    self.luke = LukeModel(config)

    self.lm_head = LukeLMHead(config)
    self.entity_predictions = EntityPredictionHead(config)

    self.loss_fn = nn.CrossEntropyLoss(ignore_index=-1)

mindnlp.transformers.models.luke.luke.LukeForMaskedLM.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, labels=None, entity_labels=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the outputs for the LukeForMaskedLM model.

PARAMETER DESCRIPTION
self

The instance of the LukeForMaskedLM class.

TYPE: LukeForMaskedLM

input_ids

The input token IDs. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The token type IDs. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The position IDs. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

The entity IDs. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

The entity attention mask. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

The entity token type IDs. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

The entity position IDs. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

labels

The labels for masked language modeling. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

entity_labels

The labels for entity prediction. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The head mask. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The input embeddings. Default: None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions. Default: None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default: None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary output. Default: None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION

Tuple of (loss, mlm_loss, mep_loss, logits, entity_logits, hidden_states, entity_hidden_states, attentions):

  • loss (Tensor or None): The total loss. None if no loss is calculated.
  • mlm_loss (Tensor or None): The loss for masked language modeling. None if no loss is calculated.
  • mep_loss (Tensor or None): The loss for entity prediction. None if no loss is calculated.
  • logits (Tensor or None): The logits for masked language modeling.
  • entity_logits (Tensor or None): The logits for entity prediction.
  • hidden_states (Tuple[Tensor] or None): The hidden states of the model. None if not returned.
  • entity_hidden_states (Tuple[Tensor] or None): The hidden states for entity prediction. None if not returned.
  • attentions (Tuple[Tensor] or None): The attentions of the model. None if not returned.
Source code in mindnlp/transformers/models/luke/luke.py
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        entity_labels: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Constructs the outputs for the LukeForMaskedLM model.

    Args:
        self (LukeForMaskedLM): The instance of the LukeForMaskedLM class.
        input_ids (Optional[Tensor]): The input token IDs. Default: None.
        attention_mask (Optional[Tensor]): The attention mask. Default: None.
        token_type_ids (Optional[Tensor]): The token type IDs. Default: None.
        position_ids (Optional[Tensor]): The position IDs. Default: None.
        entity_ids (Optional[Tensor]): The entity IDs. Default: None.
        entity_attention_mask (Optional[Tensor]): The entity attention mask. Default: None.
        entity_token_type_ids (Optional[Tensor]): The entity token type IDs. Default: None.
        entity_position_ids (Optional[Tensor]): The entity position IDs. Default: None.
        labels (Optional[Tensor]): The labels for masked language modeling. Default: None.
        entity_labels (Optional[Tensor]): The labels for entity prediction. Default: None.
        head_mask (Optional[Tensor]): The head mask. Default: None.
        inputs_embeds (Optional[Tensor]): The input embeddings. Default: None.
        output_attentions (Optional[bool]): Whether to output attentions. Default: None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default: None.
        return_dict (Optional[bool]): Whether to return a dictionary output. Default: None.

    Returns:
        Tuple of (loss, mlm_loss, mep_loss, logits, entity_logits, hidden_states, entity_hidden_states, attentions):

            - loss (Tensor or None): The total loss. None if no loss is calculated.
            - mlm_loss (Tensor or None): The loss for masked language modeling.
            None if no loss is calculated.
            - mep_loss (Tensor or None): The loss for entity prediction. None if no loss is calculated.
            - logits (Tensor or None): The logits for masked language modeling.
            - entity_logits (Tensor or None): The logits for entity prediction.
            - hidden_states (Tuple[Tensor] or None): The hidden states of the model. None if not returned.
            - entity_hidden_states (Tuple[Tensor] or None): The hidden states for entity prediction.
            None if not returned.
            - attentions (Tuple[Tensor] or None): The attentions of the model. None if not returned.

    Raises:
        None.
    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    loss = None
    mlm_loss = None
    logits = self.lm_head(outputs['last_hidden_state'])
    if labels is not None:
        mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1))
        if loss is None:
            loss = mlm_loss

    mep_loss = None
    entity_logits = None
    if outputs['entity_last_hidden_state'] is not None:
        entity_logits = self.entity_predictions(outputs['entity_last_hidden_state'])
        if entity_labels is not None:
            mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1))
            if loss is None:
                loss = mep_loss
            else:
                loss = loss + mep_loss
    return tuple(
        v
        for v in [
            loss,
            mlm_loss,
            mep_loss,
            logits,
            entity_logits,
            outputs['hidden_states'],
            outputs['entity_hidden_states'],
            outputs['attentions'],
        ]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForMaskedLM.get_output_embeddings()

get_output_embeddings

Source code in mindnlp/transformers/models/luke/luke.py
1518
1519
1520
def get_output_embeddings(self):
    """get_output_embeddings"""
    return self.lm_head.decoder

mindnlp.transformers.models.luke.luke.LukeForMaskedLM.set_output_embeddings(new_embeddings)

set_output_embeddings

Source code in mindnlp/transformers/models/luke/luke.py
1522
1523
1524
def set_output_embeddings(self, new_embeddings):
    """set_output_embeddings"""
    self.lm_head.decoder = new_embeddings

mindnlp.transformers.models.luke.luke.LukeForMaskedLM.tie_weights()

tie_weight

Source code in mindnlp/transformers/models/luke/luke.py
1513
1514
1515
1516
def tie_weights(self):
    """tie_weight"""
    super().tie_weights()
    self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings)

mindnlp.transformers.models.luke.luke.LukeForMultipleChoice

Bases: LukePreTrainedModel

LukeForMultipleChoice

Source code in mindnlp/transformers/models/luke/luke.py
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
class LukeForMultipleChoice(LukePreTrainedModel):
    """
    LukeForMultipleChoice
    """
    def __init__(self, config):
        """
        Initializes an instance of the LukeForMultipleChoice class.

        Args:
            self: The instance of the class.
            config: An object containing the configuration settings for the model (type: <class 'config'>).

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.luke = LukeModel(config)
        self.dropout = nn.Dropout(p=
                                  config.classifier_dropout
                                  if config.classifier_dropout is not None
                                  else config.hidden_dropout_prob
                                  )
        self.classifier = nn.Linear(config.hidden_size, 1)

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Constructs the LukeForMultipleChoice model.

        Args:
            self (LukeForMultipleChoice): The instance of the LukeForMultipleChoice class.
            input_ids (Optional[Tensor]): The input sequence token IDs of shape [batch_size, num_choices, sequence_length].
                (default: None)
            attention_mask (Optional[Tensor]): The attention mask tensor of shape [batch_size, num_choices, sequence_length].
                (default: None)
            token_type_ids (Optional[Tensor]): The token type IDs tensor of shape [batch_size, num_choices, sequence_length].
                (default: None)
            position_ids (Optional[Tensor]): The position IDs tensor of shape [batch_size, num_choices, sequence_length].
                (default: None)
            entity_ids (Optional[Tensor]): The entity token IDs tensor of shape [batch_size, num_choices, entity_length].
                (default: None)
            entity_attention_mask (Optional[Tensor]): The entity attention mask tensor of
                shape [batch_size, num_choices, entity_length]. (default: None)
            entity_token_type_ids (Optional[Tensor]): The entity token type IDs tensor of
                shape [batch_size, num_choices, entity_length]. (default: None)
            entity_position_ids (Optional[Tensor]): The entity position IDs tensor of
                shape [batch_size, num_choices, entity_length]. (default: None)
            head_mask (Optional[Tensor]): The head mask tensor of shape [num_hidden_layers, num_attention_heads].
                (default: None)
            inputs_embeds (Optional[Tensor]): The input embeddings tensor of shape
                [batch_size, num_choices, sequence_length, hidden_size]. (default: None)
            labels (Optional[Tensor]): The labels tensor of shape [batch_size]. (default: None)
            output_attentions (Optional[bool]): Whether to output attentions. (default: None)
            output_hidden_states (Optional[bool]): Whether to output hidden states. (default: None)
            return_dict (Optional[bool]): Whether to return a dictionary instead of a tuple of outputs. (default: None)

        Returns:
            tuple:
                Tuple of (loss, reshaped_logits, hidden_states, entity_hidden_states, attentions):

                - loss (Optional[Tensor]): The training loss tensor. Returns None if labels are not provided.
                - reshaped_logits (Tensor): The reshaped logits tensor of shape [batch_size * num_choices, num_choices].
                - hidden_states (Optional[List[Tensor]]): The hidden states of the model at the output of each layer.
                Returns None if output_hidden_states is set to False.
                - entity_hidden_states (Optional[List[Tensor]]): The hidden states of the model for the entity
                embeddings at the output of each layer. Returns None if output_hidden_states is set to False or
                entity embeddings are not provided.
                - attentions (Optional[List[Tensor]]): The attention weights of the model at the output of each layer.
                Returns None if output_attentions is set to False.

        Raises:
            None.
        """
        return_dict = True
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1])
            if inputs_embeds is not None
            else None
        )

        entity_ids = entity_ids.view(-1, entity_ids.shape[-1]) if entity_ids is not None else None
        entity_attention_mask = (
            entity_attention_mask.view(-1, entity_attention_mask.shape[-1])
            if entity_attention_mask is not None
            else None
        )
        entity_token_type_ids = (
            entity_token_type_ids.view(-1, entity_token_type_ids.shape[-1])
            if entity_token_type_ids is not None
            else None
        )
        entity_position_ids = (
            entity_position_ids.view(-1, entity_position_ids.shape[-2], entity_position_ids.shape[-1])
            if entity_position_ids is not None
            else None
        )

        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs['pooler_output']

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        return tuple(
            v
            for v in [
                loss,
                reshaped_logits,
                outputs['hidden_states'],
                outputs['entity_hidden_states'],
                outputs['attentions'],
            ]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForMultipleChoice.__init__(config)

Initializes an instance of the LukeForMultipleChoice class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object containing the configuration settings for the model (type: ).

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/luke/luke.py
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
def __init__(self, config):
    """
    Initializes an instance of the LukeForMultipleChoice class.

    Args:
        self: The instance of the class.
        config: An object containing the configuration settings for the model (type: <class 'config'>).

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    self.luke = LukeModel(config)
    self.dropout = nn.Dropout(p=
                              config.classifier_dropout
                              if config.classifier_dropout is not None
                              else config.hidden_dropout_prob
                              )
    self.classifier = nn.Linear(config.hidden_size, 1)

mindnlp.transformers.models.luke.luke.LukeForMultipleChoice.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the LukeForMultipleChoice model.

PARAMETER DESCRIPTION
self

The instance of the LukeForMultipleChoice class.

TYPE: LukeForMultipleChoice

input_ids

The input sequence token IDs of shape [batch_size, num_choices, sequence_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask tensor of shape [batch_size, num_choices, sequence_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The token type IDs tensor of shape [batch_size, num_choices, sequence_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The position IDs tensor of shape [batch_size, num_choices, sequence_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

The entity token IDs tensor of shape [batch_size, num_choices, entity_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

The entity attention mask tensor of shape [batch_size, num_choices, entity_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

The entity token type IDs tensor of shape [batch_size, num_choices, entity_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

The entity position IDs tensor of shape [batch_size, num_choices, entity_length]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The head mask tensor of shape [num_hidden_layers, num_attention_heads]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The input embeddings tensor of shape [batch_size, num_choices, sequence_length, hidden_size]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

labels

The labels tensor of shape [batch_size]. (default: None)

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions. (default: None)

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. (default: None)

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary instead of a tuple of outputs. (default: None)

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
tuple

Tuple of (loss, reshaped_logits, hidden_states, entity_hidden_states, attentions):

  • loss (Optional[Tensor]): The training loss tensor. Returns None if labels are not provided.
  • reshaped_logits (Tensor): The reshaped logits tensor of shape [batch_size * num_choices, num_choices].
  • hidden_states (Optional[List[Tensor]]): The hidden states of the model at the output of each layer. Returns None if output_hidden_states is set to False.
  • entity_hidden_states (Optional[List[Tensor]]): The hidden states of the model for the entity embeddings at the output of each layer. Returns None if output_hidden_states is set to False or entity embeddings are not provided.
  • attentions (Optional[List[Tensor]]): The attention weights of the model at the output of each layer. Returns None if output_attentions is set to False.
Source code in mindnlp/transformers/models/luke/luke.py
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Constructs the LukeForMultipleChoice model.

    Args:
        self (LukeForMultipleChoice): The instance of the LukeForMultipleChoice class.
        input_ids (Optional[Tensor]): The input sequence token IDs of shape [batch_size, num_choices, sequence_length].
            (default: None)
        attention_mask (Optional[Tensor]): The attention mask tensor of shape [batch_size, num_choices, sequence_length].
            (default: None)
        token_type_ids (Optional[Tensor]): The token type IDs tensor of shape [batch_size, num_choices, sequence_length].
            (default: None)
        position_ids (Optional[Tensor]): The position IDs tensor of shape [batch_size, num_choices, sequence_length].
            (default: None)
        entity_ids (Optional[Tensor]): The entity token IDs tensor of shape [batch_size, num_choices, entity_length].
            (default: None)
        entity_attention_mask (Optional[Tensor]): The entity attention mask tensor of
            shape [batch_size, num_choices, entity_length]. (default: None)
        entity_token_type_ids (Optional[Tensor]): The entity token type IDs tensor of
            shape [batch_size, num_choices, entity_length]. (default: None)
        entity_position_ids (Optional[Tensor]): The entity position IDs tensor of
            shape [batch_size, num_choices, entity_length]. (default: None)
        head_mask (Optional[Tensor]): The head mask tensor of shape [num_hidden_layers, num_attention_heads].
            (default: None)
        inputs_embeds (Optional[Tensor]): The input embeddings tensor of shape
            [batch_size, num_choices, sequence_length, hidden_size]. (default: None)
        labels (Optional[Tensor]): The labels tensor of shape [batch_size]. (default: None)
        output_attentions (Optional[bool]): Whether to output attentions. (default: None)
        output_hidden_states (Optional[bool]): Whether to output hidden states. (default: None)
        return_dict (Optional[bool]): Whether to return a dictionary instead of a tuple of outputs. (default: None)

    Returns:
        tuple:
            Tuple of (loss, reshaped_logits, hidden_states, entity_hidden_states, attentions):

            - loss (Optional[Tensor]): The training loss tensor. Returns None if labels are not provided.
            - reshaped_logits (Tensor): The reshaped logits tensor of shape [batch_size * num_choices, num_choices].
            - hidden_states (Optional[List[Tensor]]): The hidden states of the model at the output of each layer.
            Returns None if output_hidden_states is set to False.
            - entity_hidden_states (Optional[List[Tensor]]): The hidden states of the model for the entity
            embeddings at the output of each layer. Returns None if output_hidden_states is set to False or
            entity embeddings are not provided.
            - attentions (Optional[List[Tensor]]): The attention weights of the model at the output of each layer.
            Returns None if output_attentions is set to False.

    Raises:
        None.
    """
    return_dict = True
    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
    input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
    attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
    token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
    position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
    inputs_embeds = (
        inputs_embeds.view(-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1])
        if inputs_embeds is not None
        else None
    )

    entity_ids = entity_ids.view(-1, entity_ids.shape[-1]) if entity_ids is not None else None
    entity_attention_mask = (
        entity_attention_mask.view(-1, entity_attention_mask.shape[-1])
        if entity_attention_mask is not None
        else None
    )
    entity_token_type_ids = (
        entity_token_type_ids.view(-1, entity_token_type_ids.shape[-1])
        if entity_token_type_ids is not None
        else None
    )
    entity_position_ids = (
        entity_position_ids.view(-1, entity_position_ids.shape[-2], entity_position_ids.shape[-1])
        if entity_position_ids is not None
        else None
    )

    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    pooled_output = outputs['pooler_output']

    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)
    reshaped_logits = logits.view(-1, num_choices)

    loss = None
    if labels is not None:
        loss_fct = nn.CrossEntropyLoss()
        loss = loss_fct(reshaped_logits, labels)

    return tuple(
        v
        for v in [
            loss,
            reshaped_logits,
            outputs['hidden_states'],
            outputs['entity_hidden_states'],
            outputs['attentions'],
        ]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForQuestionAnswering

Bases: LukePreTrainedModel

LukeForQuestionAnswering

Source code in mindnlp/transformers/models/luke/luke.py
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
class LukeForQuestionAnswering(LukePreTrainedModel):
    """
    LukeForQuestionAnswering
    """
    def __init__(self, config):
        """
        Initializes the LukeForQuestionAnswering class.

        Args:
            self (LukeForQuestionAnswering): The instance of the LukeForQuestionAnswering class.
            config: The configuration object containing the settings for the Luke model.
                This parameter is required and should be an instance of the configuration class for Luke models.
                It must include the following attributes:

                - num_labels (int): The number of labels for the question answering task.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not provided or is of an incorrect type.
            ValueError: If the num_labels attribute is not specified in the config object.
        """
        super().__init__(config)

        self.num_labels = config.num_labels

        self.luke = LukeModel(config, add_pooling_layer=False)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            start_positions: Optional[Tensor] = None,
            end_positions: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Constructs the forward pass of the LukeForQuestionAnswering model.

        Args:
            self (LukeForQuestionAnswering): An instance of the LukeForQuestionAnswering class.
            input_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the input token IDs.
            attention_mask (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the attention mask.
            token_type_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the token type IDs.
            position_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the position IDs.
            entity_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the entity IDs.
            entity_attention_mask (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length)
                containing the entity attention mask.
            entity_token_type_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length)
                containing the entity token type IDs.
            entity_position_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length)
                containing the entity position IDs.
            head_mask (Optional[Tensor]): Input tensor of shape (batch_size, num_heads) containing the head mask.
            inputs_embeds (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length, hidden_size)
                containing the embedded inputs.
            start_positions (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the
                start positions for answer span prediction.
            end_positions (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the
                end positions for answer span prediction.
            output_attentions (Optional[bool]): Whether to output attentions weights. Default: None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default: None.
            return_dict (Optional[bool]): Whether to return a dictionary as output. Default: None.

        Returns:
            tuple:
                A tuple containing the following elements:

                - total_loss (Optional[Tensor]): The total loss if start_positions and end_positions are provided.
                None otherwise.
                - start_logits (Optional[Tensor]): Tensor of shape (batch_size, sequence_length) containing
                the predicted start logits.
                - end_logits (Optional[Tensor]): Tensor of shape (batch_size, sequence_length) containing
                the predicted end logits.
                - hidden_states (Optional[List[Tensor]]): List of tensors containing the hidden states of
                the model at each layer.
                - entity_hidden_states (Optional[List[Tensor]]): List of tensors containing the hidden states of
                the entity encoder at each layer.
                - attentions (Optional[List[Tensor]]): List of tensors containing the attention weights of
                the model at each layer.

        Raises:
            None.
        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs['last_hidden_state']

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        return tuple(
            v
            for v in [
                total_loss,
                start_logits,
                end_logits,
                outputs['hidden_states'],
                outputs['entity_hidden_states'],
                outputs['attentions'],
            ]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForQuestionAnswering.__init__(config)

Initializes the LukeForQuestionAnswering class.

PARAMETER DESCRIPTION
self

The instance of the LukeForQuestionAnswering class.

TYPE: LukeForQuestionAnswering

config

The configuration object containing the settings for the Luke model. This parameter is required and should be an instance of the configuration class for Luke models. It must include the following attributes:

  • num_labels (int): The number of labels for the question answering task.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not provided or is of an incorrect type.

ValueError

If the num_labels attribute is not specified in the config object.

Source code in mindnlp/transformers/models/luke/luke.py
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
def __init__(self, config):
    """
    Initializes the LukeForQuestionAnswering class.

    Args:
        self (LukeForQuestionAnswering): The instance of the LukeForQuestionAnswering class.
        config: The configuration object containing the settings for the Luke model.
            This parameter is required and should be an instance of the configuration class for Luke models.
            It must include the following attributes:

            - num_labels (int): The number of labels for the question answering task.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not provided or is of an incorrect type.
        ValueError: If the num_labels attribute is not specified in the config object.
    """
    super().__init__(config)

    self.num_labels = config.num_labels

    self.luke = LukeModel(config, add_pooling_layer=False)
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

mindnlp.transformers.models.luke.luke.LukeForQuestionAnswering.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the forward pass of the LukeForQuestionAnswering model.

PARAMETER DESCRIPTION
self

An instance of the LukeForQuestionAnswering class.

TYPE: LukeForQuestionAnswering

input_ids

Input tensor of shape (batch_size, sequence_length) containing the input token IDs.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

Input tensor of shape (batch_size, sequence_length) containing the attention mask.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

Input tensor of shape (batch_size, sequence_length) containing the token type IDs.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

Input tensor of shape (batch_size, sequence_length) containing the position IDs.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

Input tensor of shape (batch_size, sequence_length) containing the entity IDs.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

Input tensor of shape (batch_size, sequence_length) containing the entity attention mask.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

Input tensor of shape (batch_size, sequence_length) containing the entity token type IDs.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

Input tensor of shape (batch_size, sequence_length) containing the entity position IDs.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

Input tensor of shape (batch_size, num_heads) containing the head mask.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

Input tensor of shape (batch_size, sequence_length, hidden_size) containing the embedded inputs.

TYPE: Optional[Tensor] DEFAULT: None

start_positions

Input tensor of shape (batch_size, sequence_length) containing the start positions for answer span prediction.

TYPE: Optional[Tensor] DEFAULT: None

end_positions

Input tensor of shape (batch_size, sequence_length) containing the end positions for answer span prediction.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions weights. Default: None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default: None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary as output. Default: None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
tuple

A tuple containing the following elements:

  • total_loss (Optional[Tensor]): The total loss if start_positions and end_positions are provided. None otherwise.
  • start_logits (Optional[Tensor]): Tensor of shape (batch_size, sequence_length) containing the predicted start logits.
  • end_logits (Optional[Tensor]): Tensor of shape (batch_size, sequence_length) containing the predicted end logits.
  • hidden_states (Optional[List[Tensor]]): List of tensors containing the hidden states of the model at each layer.
  • entity_hidden_states (Optional[List[Tensor]]): List of tensors containing the hidden states of the entity encoder at each layer.
  • attentions (Optional[List[Tensor]]): List of tensors containing the attention weights of the model at each layer.
Source code in mindnlp/transformers/models/luke/luke.py
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        start_positions: Optional[Tensor] = None,
        end_positions: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Constructs the forward pass of the LukeForQuestionAnswering model.

    Args:
        self (LukeForQuestionAnswering): An instance of the LukeForQuestionAnswering class.
        input_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the input token IDs.
        attention_mask (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the attention mask.
        token_type_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the token type IDs.
        position_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the position IDs.
        entity_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the entity IDs.
        entity_attention_mask (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length)
            containing the entity attention mask.
        entity_token_type_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length)
            containing the entity token type IDs.
        entity_position_ids (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length)
            containing the entity position IDs.
        head_mask (Optional[Tensor]): Input tensor of shape (batch_size, num_heads) containing the head mask.
        inputs_embeds (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length, hidden_size)
            containing the embedded inputs.
        start_positions (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the
            start positions for answer span prediction.
        end_positions (Optional[Tensor]): Input tensor of shape (batch_size, sequence_length) containing the
            end positions for answer span prediction.
        output_attentions (Optional[bool]): Whether to output attentions weights. Default: None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default: None.
        return_dict (Optional[bool]): Whether to return a dictionary as output. Default: None.

    Returns:
        tuple:
            A tuple containing the following elements:

            - total_loss (Optional[Tensor]): The total loss if start_positions and end_positions are provided.
            None otherwise.
            - start_logits (Optional[Tensor]): Tensor of shape (batch_size, sequence_length) containing
            the predicted start logits.
            - end_logits (Optional[Tensor]): Tensor of shape (batch_size, sequence_length) containing
            the predicted end logits.
            - hidden_states (Optional[List[Tensor]]): List of tensors containing the hidden states of
            the model at each layer.
            - entity_hidden_states (Optional[List[Tensor]]): List of tensors containing the hidden states of
            the entity encoder at each layer.
            - attentions (Optional[List[Tensor]]): List of tensors containing the attention weights of
            the model at each layer.

    Raises:
        None.
    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs['last_hidden_state']

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions.clamp_(0, ignored_index)
        end_positions.clamp_(0, ignored_index)

        loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
        start_loss = loss_fct(start_logits, start_positions)
        end_loss = loss_fct(end_logits, end_positions)
        total_loss = (start_loss + end_loss) / 2

    return tuple(
        v
        for v in [
            total_loss,
            start_logits,
            end_logits,
            outputs['hidden_states'],
            outputs['entity_hidden_states'],
            outputs['attentions'],
        ]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForSequenceClassification

Bases: LukePreTrainedModel

LukeForSequenceClassification

Source code in mindnlp/transformers/models/luke/luke.py
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
class LukeForSequenceClassification(LukePreTrainedModel):
    """
    LukeForSequenceClassification
    """
    def __init__(self, config):
        """
        Initializes a LukeForSequenceClassification instance.

        Args:
            self (LukeForSequenceClassification): The current instance of the LukeForSequenceClassification class.
            config (LukeConfig): The configuration object containing various settings for the Luke model.
                It must include the number of labels (num_labels) for classification tasks.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of type LukeConfig.
            ValueError: If the num_labels attribute is missing in the config object.
        """
        super().__init__(config)
        self.num_labels = config.num_labels
        self.luke = LukeModel(config)
        self.dropout = nn.Dropout(p=
                                  config.classifier_dropout
                                  if config.classifier_dropout is not None
                                  else config.hidden_dropout_prob
                                  )
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.post_init()

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Method 'construct' in the class 'LukeForSequenceClassification'.

        Args:
            self: The object instance.
            input_ids (Optional[Tensor]): Input IDs for the model. Default is None.
            attention_mask (Optional[Tensor]): Mask to avoid performing attention on padding tokens. Default is None.
            token_type_ids (Optional[Tensor]): Segment token indices to differentiate between two sequences.
                Default is None.
            position_ids (Optional[Tensor]): Position indices for the input tokens. Default is None.
            entity_ids (Optional[Tensor]): Entity IDs for the input. Default is None.
            entity_attention_mask (Optional[Tensor]): Mask for entity attention. Default is None.
            entity_token_type_ids (Optional[Tensor]): Segment token indices for entities. Default is None.
            entity_position_ids (Optional[Tensor]): Position indices for entity tokens. Default is None.
            head_mask (Optional[Tensor]): Mask to nullify specific heads of the model. Default is None.
            inputs_embeds (Optional[Tensor]): Optional input embeddings. Default is None.
            labels (Optional[Tensor]): Labels for the input. Default is None.
            output_attentions (Optional[bool]): Whether to output attentions. Default is None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
            return_dict (Optional[bool]): Whether to return as a dictionary. Default is None.

        Returns:
            tuple: A tuple containing loss, logits, hidden states, entity hidden states, and attentions
                if they are not None. Otherwise, returns None.

        Raises:
            ValueError: If the configuration problem type is not recognized.
            RuntimeError: If an unexpected error occurs during the computation.
            TypeError: If the input types are incorrect.
        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs['pooler_output']

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        return tuple(
            v
            for v in
            [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForSequenceClassification.__init__(config)

Initializes a LukeForSequenceClassification instance.

PARAMETER DESCRIPTION
self

The current instance of the LukeForSequenceClassification class.

TYPE: LukeForSequenceClassification

config

The configuration object containing various settings for the Luke model. It must include the number of labels (num_labels) for classification tasks.

TYPE: LukeConfig

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of type LukeConfig.

ValueError

If the num_labels attribute is missing in the config object.

Source code in mindnlp/transformers/models/luke/luke.py
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
def __init__(self, config):
    """
    Initializes a LukeForSequenceClassification instance.

    Args:
        self (LukeForSequenceClassification): The current instance of the LukeForSequenceClassification class.
        config (LukeConfig): The configuration object containing various settings for the Luke model.
            It must include the number of labels (num_labels) for classification tasks.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of type LukeConfig.
        ValueError: If the num_labels attribute is missing in the config object.
    """
    super().__init__(config)
    self.num_labels = config.num_labels
    self.luke = LukeModel(config)
    self.dropout = nn.Dropout(p=
                              config.classifier_dropout
                              if config.classifier_dropout is not None
                              else config.hidden_dropout_prob
                              )
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    self.post_init()

mindnlp.transformers.models.luke.luke.LukeForSequenceClassification.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Method 'construct' in the class 'LukeForSequenceClassification'.

PARAMETER DESCRIPTION
self

The object instance.

input_ids

Input IDs for the model. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

Mask to avoid performing attention on padding tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

Segment token indices to differentiate between two sequences. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

Position indices for the input tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

Entity IDs for the input. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

Mask for entity attention. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

Segment token indices for entities. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

Position indices for entity tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

Mask to nullify specific heads of the model. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

Optional input embeddings. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

labels

Labels for the input. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return as a dictionary. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION
tuple

A tuple containing loss, logits, hidden states, entity hidden states, and attentions if they are not None. Otherwise, returns None.

RAISES DESCRIPTION
ValueError

If the configuration problem type is not recognized.

RuntimeError

If an unexpected error occurs during the computation.

TypeError

If the input types are incorrect.

Source code in mindnlp/transformers/models/luke/luke.py
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Method 'construct' in the class 'LukeForSequenceClassification'.

    Args:
        self: The object instance.
        input_ids (Optional[Tensor]): Input IDs for the model. Default is None.
        attention_mask (Optional[Tensor]): Mask to avoid performing attention on padding tokens. Default is None.
        token_type_ids (Optional[Tensor]): Segment token indices to differentiate between two sequences.
            Default is None.
        position_ids (Optional[Tensor]): Position indices for the input tokens. Default is None.
        entity_ids (Optional[Tensor]): Entity IDs for the input. Default is None.
        entity_attention_mask (Optional[Tensor]): Mask for entity attention. Default is None.
        entity_token_type_ids (Optional[Tensor]): Segment token indices for entities. Default is None.
        entity_position_ids (Optional[Tensor]): Position indices for entity tokens. Default is None.
        head_mask (Optional[Tensor]): Mask to nullify specific heads of the model. Default is None.
        inputs_embeds (Optional[Tensor]): Optional input embeddings. Default is None.
        labels (Optional[Tensor]): Labels for the input. Default is None.
        output_attentions (Optional[bool]): Whether to output attentions. Default is None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
        return_dict (Optional[bool]): Whether to return as a dictionary. Default is None.

    Returns:
        tuple: A tuple containing loss, logits, hidden states, entity hidden states, and attentions
            if they are not None. Otherwise, returns None.

    Raises:
        ValueError: If the configuration problem type is not recognized.
        RuntimeError: If an unexpected error occurs during the computation.
        TypeError: If the input types are incorrect.
    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    pooled_output = outputs['pooler_output']

    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            loss_fct = nn.MSELoss()
            if self.num_labels == 1:
                loss = loss_fct(logits.squeeze(), labels.squeeze())
            else:
                loss = loss_fct(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss_fct = nn.BCEWithLogitsLoss()
            loss = loss_fct(logits, labels)

    return tuple(
        v
        for v in
        [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeForTokenClassification

Bases: LukePreTrainedModel

LukeForTokenClassification

Source code in mindnlp/transformers/models/luke/luke.py
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
class LukeForTokenClassification(LukePreTrainedModel):
    """
    LukeForTokenClassification
    """
    def __init__(self, config):
        """
        Initializes a new instance of the LukeForTokenClassification class.

        Args:
            self: The object itself.
            config: An instance of class 'LukeConfig' containing the configuration parameters for the
                LukeForTokenClassification model.

                - Type: LukeConfig
                - Purpose: This parameter specifies the configuration settings for the model.
                - Restrictions: None

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.luke = LukeModel(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(p=
                                  config.classifier_dropout
                                  if config.classifier_dropout is not None
                                  else config.hidden_dropout_prob
                                  )
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            labels: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        """
        Constructs the model for token classification using the Luke architecture.

        Args:
            self: The object instance.
            input_ids (Optional[Tensor]): The input tensor of token indices. Default is None.
            attention_mask (Optional[Tensor]): The attention mask tensor. Default is None.
            token_type_ids (Optional[Tensor]): The tensor indicating token types. Default is None.
            position_ids (Optional[Tensor]): The tensor indicating token positions. Default is None.
            entity_ids (Optional[Tensor]): The tensor representing entity indices. Default is None.
            entity_attention_mask (Optional[Tensor]): The attention mask for entity tokens. Default is None.
            entity_token_type_ids (Optional[Tensor]): The tensor indicating entity token types. Default is None.
            entity_position_ids (Optional[Tensor]): The tensor indicating entity token positions. Default is None.
            head_mask (Optional[Tensor]): The tensor for masking heads. Default is None.
            inputs_embeds (Optional[Tensor]): The embedded input tensor. Default is None.
            labels (Optional[Tensor]): The tensor of labels for token classification. Default is None.
            output_attentions (Optional[bool]): Whether to output attentions. Default is None.
            output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
            return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

        Returns:
            Tuple[Optional[Tensor], Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
                A tuple containing the loss, logits, hidden states, entity hidden states, and attentions.
                Any element that is not None is included in the tuple.

        Raises:
            None
        """
        return_dict = True
        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs['last_hidden_state']
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        return tuple(
            v
            for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
            if v is not None
        )

mindnlp.transformers.models.luke.luke.LukeForTokenClassification.__init__(config)

Initializes a new instance of the LukeForTokenClassification class.

PARAMETER DESCRIPTION
self

The object itself.

config

An instance of class 'LukeConfig' containing the configuration parameters for the LukeForTokenClassification model.

  • Type: LukeConfig
  • Purpose: This parameter specifies the configuration settings for the model.
  • Restrictions: None

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/luke/luke.py
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
def __init__(self, config):
    """
    Initializes a new instance of the LukeForTokenClassification class.

    Args:
        self: The object itself.
        config: An instance of class 'LukeConfig' containing the configuration parameters for the
            LukeForTokenClassification model.

            - Type: LukeConfig
            - Purpose: This parameter specifies the configuration settings for the model.
            - Restrictions: None

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.luke = LukeModel(config, add_pooling_layer=False)
    self.dropout = nn.Dropout(p=
                              config.classifier_dropout
                              if config.classifier_dropout is not None
                              else config.hidden_dropout_prob
                              )
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

mindnlp.transformers.models.luke.luke.LukeForTokenClassification.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the model for token classification using the Luke architecture.

PARAMETER DESCRIPTION
self

The object instance.

input_ids

The input tensor of token indices. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The tensor indicating token types. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The tensor indicating token positions. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

The tensor representing entity indices. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

The attention mask for entity tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

The tensor indicating entity token types. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

The tensor indicating entity token positions. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The tensor for masking heads. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The embedded input tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

labels

The tensor of labels for token classification. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to output attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION

Tuple[Optional[Tensor], Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor]]: A tuple containing the loss, logits, hidden states, entity hidden states, and attentions. Any element that is not None is included in the tuple.

Source code in mindnlp/transformers/models/luke/luke.py
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        labels: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    """
    Constructs the model for token classification using the Luke architecture.

    Args:
        self: The object instance.
        input_ids (Optional[Tensor]): The input tensor of token indices. Default is None.
        attention_mask (Optional[Tensor]): The attention mask tensor. Default is None.
        token_type_ids (Optional[Tensor]): The tensor indicating token types. Default is None.
        position_ids (Optional[Tensor]): The tensor indicating token positions. Default is None.
        entity_ids (Optional[Tensor]): The tensor representing entity indices. Default is None.
        entity_attention_mask (Optional[Tensor]): The attention mask for entity tokens. Default is None.
        entity_token_type_ids (Optional[Tensor]): The tensor indicating entity token types. Default is None.
        entity_position_ids (Optional[Tensor]): The tensor indicating entity token positions. Default is None.
        head_mask (Optional[Tensor]): The tensor for masking heads. Default is None.
        inputs_embeds (Optional[Tensor]): The embedded input tensor. Default is None.
        labels (Optional[Tensor]): The tensor of labels for token classification. Default is None.
        output_attentions (Optional[bool]): Whether to output attentions. Default is None.
        output_hidden_states (Optional[bool]): Whether to output hidden states. Default is None.
        return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

    Returns:
        Tuple[Optional[Tensor], Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
            A tuple containing the loss, logits, hidden states, entity hidden states, and attentions.
            Any element that is not None is included in the tuple.

    Raises:
        None
    """
    return_dict = True
    outputs = self.luke(
        input_ids=input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        entity_ids=entity_ids,
        entity_attention_mask=entity_attention_mask,
        entity_token_type_ids=entity_token_type_ids,
        entity_position_ids=entity_position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs['last_hidden_state']
    sequence_output = self.dropout(sequence_output)
    logits = self.classifier(sequence_output)
    loss = None
    if labels is not None:
        loss_fct = nn.CrossEntropyLoss()
        loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
    return tuple(
        v
        for v in [loss, logits, outputs['hidden_states'], outputs['entity_hidden_states'], outputs['attentions']]
        if v is not None
    )

mindnlp.transformers.models.luke.luke.LukeIntermediate

Bases: Module

LukeIntermediate

Source code in mindnlp/transformers/models/luke/luke.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
class LukeIntermediate(nn.Module):
    """
    LukeIntermediate
    """
    def __init__(self, config):
        """
        Initializes an instance of the LukeIntermediate class.

        Args:
            self: The instance of the LukeIntermediate class.
            config:
                A configuration object that contains parameters for initializing the instance.

                - Type: object
                - Purpose: Specifies the configuration settings for the instance.
                - Restrictions: Must be a valid configuration object.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not provided.
            ValueError: If the config parameter is provided but is not in the correct format.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def construct(self, hidden_states: Tensor) -> Tensor:
        """
        Constructs the intermediate hidden states in the LukeIntermediate class.

        Args:
            self: The instance of the LukeIntermediate class.
            hidden_states (Tensor): The input hidden states.

        Returns:
            Tensor: The intermediate hidden states after applying the dense layer and intermediate activation function.

        Raises:
            None.

        This method takes in the instance of the LukeIntermediate class and the input hidden states.
        It applies a dense layer to the hidden states and then applies the intermediate activation function.
        The resulting intermediate hidden states are returned as a Tensor.

        No exceptions are raised by this method.
        """
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states

mindnlp.transformers.models.luke.luke.LukeIntermediate.__init__(config)

Initializes an instance of the LukeIntermediate class.

PARAMETER DESCRIPTION
self

The instance of the LukeIntermediate class.

config

A configuration object that contains parameters for initializing the instance.

  • Type: object
  • Purpose: Specifies the configuration settings for the instance.
  • Restrictions: Must be a valid configuration object.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not provided.

ValueError

If the config parameter is provided but is not in the correct format.

Source code in mindnlp/transformers/models/luke/luke.py
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def __init__(self, config):
    """
    Initializes an instance of the LukeIntermediate class.

    Args:
        self: The instance of the LukeIntermediate class.
        config:
            A configuration object that contains parameters for initializing the instance.

            - Type: object
            - Purpose: Specifies the configuration settings for the instance.
            - Restrictions: Must be a valid configuration object.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not provided.
        ValueError: If the config parameter is provided but is not in the correct format.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
    if isinstance(config.hidden_act, str):
        self.intermediate_act_fn = ACT2FN[config.hidden_act]
    else:
        self.intermediate_act_fn = config.hidden_act

mindnlp.transformers.models.luke.luke.LukeIntermediate.construct(hidden_states)

Constructs the intermediate hidden states in the LukeIntermediate class.

PARAMETER DESCRIPTION
self

The instance of the LukeIntermediate class.

hidden_states

The input hidden states.

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

The intermediate hidden states after applying the dense layer and intermediate activation function.

TYPE: Tensor

This method takes in the instance of the LukeIntermediate class and the input hidden states. It applies a dense layer to the hidden states and then applies the intermediate activation function. The resulting intermediate hidden states are returned as a Tensor.

No exceptions are raised by this method.

Source code in mindnlp/transformers/models/luke/luke.py
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
def construct(self, hidden_states: Tensor) -> Tensor:
    """
    Constructs the intermediate hidden states in the LukeIntermediate class.

    Args:
        self: The instance of the LukeIntermediate class.
        hidden_states (Tensor): The input hidden states.

    Returns:
        Tensor: The intermediate hidden states after applying the dense layer and intermediate activation function.

    Raises:
        None.

    This method takes in the instance of the LukeIntermediate class and the input hidden states.
    It applies a dense layer to the hidden states and then applies the intermediate activation function.
    The resulting intermediate hidden states are returned as a Tensor.

    No exceptions are raised by this method.
    """
    hidden_states = self.dense(hidden_states)
    hidden_states = self.intermediate_act_fn(hidden_states)
    return hidden_states

mindnlp.transformers.models.luke.luke.LukeLMHead

Bases: Module

LukeLMead

Source code in mindnlp/transformers/models/luke/luke.py
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
class LukeLMHead(nn.Module):
    """LukeLMead"""
    def __init__(self, config):
        """
        Initializes the LukeLMHead class.

        Args:
            self (object): The instance of the LukeLMHead class.
            config (object):
                An instance of the configuration class containing the following attributes:

                - hidden_size (int): The size of the hidden layers.
                - vocab_size (int): The size of the vocabulary.
                - layer_norm_eps (float): The epsilon value for layer normalization.

        Returns:
            None.

        Raises:
            TypeError: If the provided config parameter is not of the correct type.
            ValueError: If the hidden_size or vocab_size attributes in the config are not positive integers.
        """
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm([config.hidden_size, ], eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
        self.bias = mindspore.Parameter(ops.zeros(config.vocab_size))
        self.decoder.bias = self.bias

    def construct(self, features, **kwargs):
        """
        Constructs the output of the LukeLMHead model by performing a series of operations on the input features.

        Args:
            self (LukeLMHead): The instance of the LukeLMHead class.
            features (tensor): The input features to be processed by the model.

        Returns:
            tensor: The output tensor after processing the input features through the model.

        Raises:
            None.
        """
        # hidden
        x = self.dense(features)
        x = ops.gelu(x)
        x = self.layer_norm(x)
        # project back to size of vocabulary with bias
        # endecoded
        x = self.decoder(x)

        return x

    def _tie_weights(self):
        '''
        This method ties the weights of the LukeLMHead model's decoder with its bias.

        Args:
            self (object): The instance of the LukeLMHead class.

        Returns:
            None.

        Raises:
            None.
        '''
        # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
        # For accelerate compatibility and to not break backward compatibility
        if self.decoder.bias.device.type == "meta":
            self.decoder.bias = self.bias
        else:
            self.bias = self.decoder.bias

mindnlp.transformers.models.luke.luke.LukeLMHead.__init__(config)

Initializes the LukeLMHead class.

PARAMETER DESCRIPTION
self

The instance of the LukeLMHead class.

TYPE: object

config

An instance of the configuration class containing the following attributes:

  • hidden_size (int): The size of the hidden layers.
  • vocab_size (int): The size of the vocabulary.
  • layer_norm_eps (float): The epsilon value for layer normalization.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided config parameter is not of the correct type.

ValueError

If the hidden_size or vocab_size attributes in the config are not positive integers.

Source code in mindnlp/transformers/models/luke/luke.py
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
def __init__(self, config):
    """
    Initializes the LukeLMHead class.

    Args:
        self (object): The instance of the LukeLMHead class.
        config (object):
            An instance of the configuration class containing the following attributes:

            - hidden_size (int): The size of the hidden layers.
            - vocab_size (int): The size of the vocabulary.
            - layer_norm_eps (float): The epsilon value for layer normalization.

    Returns:
        None.

    Raises:
        TypeError: If the provided config parameter is not of the correct type.
        ValueError: If the hidden_size or vocab_size attributes in the config are not positive integers.
    """
    super().__init__()
    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
    self.layer_norm = nn.LayerNorm([config.hidden_size, ], eps=config.layer_norm_eps)

    self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
    self.bias = mindspore.Parameter(ops.zeros(config.vocab_size))
    self.decoder.bias = self.bias

mindnlp.transformers.models.luke.luke.LukeLMHead.construct(features, **kwargs)

Constructs the output of the LukeLMHead model by performing a series of operations on the input features.

PARAMETER DESCRIPTION
self

The instance of the LukeLMHead class.

TYPE: LukeLMHead

features

The input features to be processed by the model.

TYPE: tensor

RETURNS DESCRIPTION
tensor

The output tensor after processing the input features through the model.

Source code in mindnlp/transformers/models/luke/luke.py
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
def construct(self, features, **kwargs):
    """
    Constructs the output of the LukeLMHead model by performing a series of operations on the input features.

    Args:
        self (LukeLMHead): The instance of the LukeLMHead class.
        features (tensor): The input features to be processed by the model.

    Returns:
        tensor: The output tensor after processing the input features through the model.

    Raises:
        None.
    """
    # hidden
    x = self.dense(features)
    x = ops.gelu(x)
    x = self.layer_norm(x)
    # project back to size of vocabulary with bias
    # endecoded
    x = self.decoder(x)

    return x

mindnlp.transformers.models.luke.luke.LukeLayer

Bases: Module

LukeOutput

Source code in mindnlp/transformers/models/luke/luke.py
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
class LukeLayer(nn.Module):
    """
    LukeOutput
    """
    def __init__(self, config):
        """
        Initializes a new instance of the LukeLayer class.

        Args:
            self: The object itself.
            config:
                An instance of the configuration class containing the following attributes:

                - chunk_size_feed_forward (int): The size of chunks to feed forward through the layer.
                - seq_len_dim (int): The dimension of the sequence length.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = LukeAttention(config)
        self.intermediate = LukeIntermediate(config)
        self.output = LukeOutput(config)

    def construct(
            self,
            word_hidden_states,
            entity_hidden_states,
            attention_mask=None,
            head_mask=None,
            output_attentions=False,
    ):
        """
        Constructs the LukeLayer.

        Args:
            self (LukeLayer): The instance of the LukeLayer class.
            word_hidden_states (Tensor): The hidden states of the word inputs.
                It has shape [batch_size, seq_length, hidden_size].
            entity_hidden_states (Tensor): The hidden states of the entity inputs.
                It has shape [batch_size, seq_length, hidden_size].
            attention_mask (Tensor, optional): The attention mask to avoid performing attention on padding tokens.
                It has shape [batch_size, seq_length]. Defaults to None.
            head_mask (Tensor, optional): The mask to nullify selected heads of the self-attention modules.
                It has shape [num_heads, seq_length, seq_length]. Defaults to None.
            output_attentions (bool, optional): Whether to output attention weights. Defaults to False.

        Returns:
            Tuple[Tensor, Tensor, Tuple]:
                A tuple containing:

                - word_layer_output (Tensor): The layer output for word inputs.
                    It has shape [batch_size, word_size, hidden_size].
                - entity_layer_output (Tensor): The layer output for entity inputs.
                    It has shape [batch_size, entity_size, hidden_size].
                - outputs (Tuple): Additional outputs from the attention layer.

        Raises:
            None.
        """
        word_size = word_hidden_states.shape[1]

        self_attention_outputs = self.attention(
            word_hidden_states,
            entity_hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        if entity_hidden_states is None:
            concat_attention_output = self_attention_outputs[0]
        else:
            concat_attention_output = ops.cat(self_attention_outputs[:2], axis=1)

        outputs = self_attention_outputs[2:]  # add self attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output
        )
        word_layer_output = layer_output[:, :word_size, :]
        if entity_hidden_states is None:
            entity_layer_output = None
        else:
            entity_layer_output = layer_output[:, word_size:, :]

        outputs = (word_layer_output, entity_layer_output) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        """
        This function applies transformations to an input tensor
        using two other layers  to produce an output tensor.
        """
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output

mindnlp.transformers.models.luke.luke.LukeLayer.__init__(config)

Initializes a new instance of the LukeLayer class.

PARAMETER DESCRIPTION
self

The object itself.

config

An instance of the configuration class containing the following attributes:

  • chunk_size_feed_forward (int): The size of chunks to feed forward through the layer.
  • seq_len_dim (int): The dimension of the sequence length.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/luke/luke.py
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
def __init__(self, config):
    """
    Initializes a new instance of the LukeLayer class.

    Args:
        self: The object itself.
        config:
            An instance of the configuration class containing the following attributes:

            - chunk_size_feed_forward (int): The size of chunks to feed forward through the layer.
            - seq_len_dim (int): The dimension of the sequence length.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.chunk_size_feed_forward = config.chunk_size_feed_forward
    self.seq_len_dim = 1
    self.attention = LukeAttention(config)
    self.intermediate = LukeIntermediate(config)
    self.output = LukeOutput(config)

mindnlp.transformers.models.luke.luke.LukeLayer.construct(word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False)

Constructs the LukeLayer.

PARAMETER DESCRIPTION
self

The instance of the LukeLayer class.

TYPE: LukeLayer

word_hidden_states

The hidden states of the word inputs. It has shape [batch_size, seq_length, hidden_size].

TYPE: Tensor

entity_hidden_states

The hidden states of the entity inputs. It has shape [batch_size, seq_length, hidden_size].

TYPE: Tensor

attention_mask

The attention mask to avoid performing attention on padding tokens. It has shape [batch_size, seq_length]. Defaults to None.

TYPE: Tensor DEFAULT: None

head_mask

The mask to nullify selected heads of the self-attention modules. It has shape [num_heads, seq_length, seq_length]. Defaults to None.

TYPE: Tensor DEFAULT: None

output_attentions

Whether to output attention weights. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

Tuple[Tensor, Tensor, Tuple]: A tuple containing:

  • word_layer_output (Tensor): The layer output for word inputs. It has shape [batch_size, word_size, hidden_size].
  • entity_layer_output (Tensor): The layer output for entity inputs. It has shape [batch_size, entity_size, hidden_size].
  • outputs (Tuple): Additional outputs from the attention layer.
Source code in mindnlp/transformers/models/luke/luke.py
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
def construct(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
):
    """
    Constructs the LukeLayer.

    Args:
        self (LukeLayer): The instance of the LukeLayer class.
        word_hidden_states (Tensor): The hidden states of the word inputs.
            It has shape [batch_size, seq_length, hidden_size].
        entity_hidden_states (Tensor): The hidden states of the entity inputs.
            It has shape [batch_size, seq_length, hidden_size].
        attention_mask (Tensor, optional): The attention mask to avoid performing attention on padding tokens.
            It has shape [batch_size, seq_length]. Defaults to None.
        head_mask (Tensor, optional): The mask to nullify selected heads of the self-attention modules.
            It has shape [num_heads, seq_length, seq_length]. Defaults to None.
        output_attentions (bool, optional): Whether to output attention weights. Defaults to False.

    Returns:
        Tuple[Tensor, Tensor, Tuple]:
            A tuple containing:

            - word_layer_output (Tensor): The layer output for word inputs.
                It has shape [batch_size, word_size, hidden_size].
            - entity_layer_output (Tensor): The layer output for entity inputs.
                It has shape [batch_size, entity_size, hidden_size].
            - outputs (Tuple): Additional outputs from the attention layer.

    Raises:
        None.
    """
    word_size = word_hidden_states.shape[1]

    self_attention_outputs = self.attention(
        word_hidden_states,
        entity_hidden_states,
        attention_mask,
        head_mask,
        output_attentions=output_attentions,
    )
    if entity_hidden_states is None:
        concat_attention_output = self_attention_outputs[0]
    else:
        concat_attention_output = ops.cat(self_attention_outputs[:2], axis=1)

    outputs = self_attention_outputs[2:]  # add self attentions if we output attention weights

    layer_output = apply_chunking_to_forward(
        self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output
    )
    word_layer_output = layer_output[:, :word_size, :]
    if entity_hidden_states is None:
        entity_layer_output = None
    else:
        entity_layer_output = layer_output[:, word_size:, :]

    outputs = (word_layer_output, entity_layer_output) + outputs

    return outputs

mindnlp.transformers.models.luke.luke.LukeLayer.feed_forward_chunk(attention_output)

This function applies transformations to an input tensor using two other layers to produce an output tensor.

Source code in mindnlp/transformers/models/luke/luke.py
759
760
761
762
763
764
765
766
def feed_forward_chunk(self, attention_output):
    """
    This function applies transformations to an input tensor
    using two other layers  to produce an output tensor.
    """
    intermediate_output = self.intermediate(attention_output)
    layer_output = self.output(intermediate_output, attention_output)
    return layer_output

mindnlp.transformers.models.luke.luke.LukeModel

Bases: LukePreTrainedModel

LukeModel

Source code in mindnlp/transformers/models/luke/luke.py
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
class LukeModel(LukePreTrainedModel):
    """
    LukeModel
    """
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def __init__(self, config: LukeConfig, add_pooling_layer: bool = True):
        """
        Initializes a new LukeModel instance.

        Args:
            self: The instance of the LukeModel class.
            config (LukeConfig): An instance of LukeConfig containing the configuration for the model.
            add_pooling_layer (bool, optional): A boolean indicating whether to add a pooling layer. Defaults to True.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not an instance of LukeConfig.
            ValueError: If the add_pooling_layer parameter is not a boolean.
        """
        super().__init__(config)
        self.config = config

        self.embeddings = LukeEmbeddings(config)
        self.entity_embeddings = LukeEntityEmbeddings(config)
        self.encoder = LukeEncoder(config)

        self.pooler = LukePooler(config) if add_pooling_layer else None

    def get_input_embeddings(self):
        """
        This method retrieves the input embeddings from the LukeModel class.

        Args:
            self: The instance of the LukeModel class.

        Returns:
            The word embeddings for the input.

        Raises:
            None.
        """
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        """
        Sets the input embeddings of the LukeModel.

        Args:
            self (LukeModel): The LukeModel instance to which the input embeddings will be set.
            new_embeddings (any): New embeddings to be set as input embeddings for the LukeModel.

        Returns:
            None.

        Raises:
            None.
        """
        self.embeddings.word_embeddings = new_embeddings

    def get_entity_embeddings(self):
        """get_entity_embeddings"""
        return self.entity_embeddings.entity_embeddings

    def set_entity_embeddings(self, new_embeddings):
        """set_entity_embeddings"""
        self.entity_embeddings.entity_embeddings = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Method to prune attention heads in a LUKE model.

        Args:
            self (LukeModel): The instance of LukeModel.
            heads_to_prune (int): The number of attention heads to prune from the model.
                It specifies which attention heads should be pruned.

        Returns:
            None.

        Raises:
            NotImplementedError: Raised when an attempt is made to prune attention heads in a LUKE model.
                LUKE does not support the pruning of attention heads, so this operation is not allowed.
        """
        raise NotImplementedError("LUKE does not support the pruning of attention heads")

    def construct(
            self,
            input_ids: Optional[Tensor] = None,
            attention_mask: Optional[Tensor] = None,
            token_type_ids: Optional[Tensor] = None,
            position_ids: Optional[Tensor] = None,
            entity_ids: Optional[Tensor] = None,
            entity_attention_mask: Optional[Tensor] = None,
            entity_token_type_ids: Optional[Tensor] = None,
            entity_position_ids: Optional[Tensor] = None,
            head_mask: Optional[Tensor] = None,
            inputs_embeds: Optional[Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        '''
        The 'construct' method in the 'LukeModel' class is responsible for constructing the model
        based on the provided inputs and configuration.

        Args:
            self: The instance of the class.
            input_ids (Optional[Tensor]): The input tensor representing the token ids. Default is None.
            attention_mask (Optional[Tensor]): The attention mask tensor indicating the positions of the padded tokens.
                Default is None.
            token_type_ids (Optional[Tensor]): The tensor representing the token type ids. Default is None.
            position_ids (Optional[Tensor]): The tensor representing the position ids. Default is None.
            entity_ids (Optional[Tensor]): The tensor representing the entity ids. Default is None.
            entity_attention_mask (Optional[Tensor]): The attention mask tensor for entity tokens. Default is None.
            entity_token_type_ids (Optional[Tensor]): The tensor representing the token type ids for entities.
                Default is None.
            entity_position_ids (Optional[Tensor]): The tensor representing the position ids for entities.
                Default is None.
            head_mask (Optional[Tensor]): The tensor representing the head mask. Default is None.
            inputs_embeds (Optional[Tensor]): The embedded inputs tensor. Default is None.
            output_attentions (Optional[bool]): Whether to return attentions. Default is None.
            output_hidden_states (Optional[bool]): Whether to return hidden states. Default is None.
            return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

        Returns:
            None.

        Raises:
            ValueError:
                - If both input_ids and inputs_embeds are specified simultaneously.
                - If neither input_ids nor inputs_embeds is specified.

        '''
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if input_ids is not None and inputs_embeds is None:
            input_shape = input_ids.shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape

        if attention_mask is None:
            attention_mask = ops.ones((batch_size, seq_length))
        if token_type_ids is None:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)
        if entity_ids is not None:
            entity_seq_length = entity_ids.shape[1]
            if entity_attention_mask is None:
                entity_attention_mask = ops.ones((batch_size, entity_seq_length))
            if entity_token_type_ids is None:
                entity_token_type_ids = ops.zeros((batch_size, entity_seq_length), dtype=mindspore.int64)

        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        # First, compute word embeddings
        word_embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        # Second, compute extended attention mask
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask)

        # Third, compute entity embeddings and concatenate with word embeddings
        if entity_ids is None:
            entity_embedding_output = None
        else:
            entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids)

        encoder_outputs = self.encoder(
            word_embedding_output,
            entity_embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = encoder_outputs[0] if not return_dict else tuple(
            i for i in encoder_outputs.values() if i is not None)[0]

        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return {
            'last_hidden_state': sequence_output,
            'pooler_output': pooled_output,
            'hidden_states': encoder_outputs['hidden_states'],
            'attentions': encoder_outputs['attentions'],
            'entity_last_hidden_state': encoder_outputs['entity_last_hidden_state'],
            'entity_hidden_states': encoder_outputs['entity_hidden_states']
        }

    def get_extended_attention_mask(
            self, attention_mask: Tensor, input_shape: Tuple[int], dtype=None
    ):
        """
        This method 'get_extended_attention_mask' in the class 'LukeModel' takes 4 parameters:

        Args:
            self: Represents the instance of the class.
            attention_mask (Tensor): A 2D or 3D tensor representing the attention mask.
                This tensor is concatenated with 'input_shape' if provided.
            input_shape (Tuple[int]): A tuple containing the shape information to be concatenated with 'attention_mask'.
                Set to None if not provided.
            dtype: Data type for the extended attention mask. Default is None.

        Returns:
            None.

        Raises:
            ValueError: Raised when the shape of the 'attention_mask' is incorrect.
        """
        if input_shape is not None:
            attention_mask = ops.cat([attention_mask, input_shape], axis=-1)

        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})")

        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * Tensor(
            np.finfo(mindspore.dtype_to_nptype(self.dtype)).min)

        return extended_attention_mask

mindnlp.transformers.models.luke.luke.LukeModel.__init__(config, add_pooling_layer=True)

Initializes a new LukeModel instance.

PARAMETER DESCRIPTION
self

The instance of the LukeModel class.

config

An instance of LukeConfig containing the configuration for the model.

TYPE: LukeConfig

add_pooling_layer

A boolean indicating whether to add a pooling layer. Defaults to True.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not an instance of LukeConfig.

ValueError

If the add_pooling_layer parameter is not a boolean.

Source code in mindnlp/transformers/models/luke/luke.py
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
def __init__(self, config: LukeConfig, add_pooling_layer: bool = True):
    """
    Initializes a new LukeModel instance.

    Args:
        self: The instance of the LukeModel class.
        config (LukeConfig): An instance of LukeConfig containing the configuration for the model.
        add_pooling_layer (bool, optional): A boolean indicating whether to add a pooling layer. Defaults to True.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not an instance of LukeConfig.
        ValueError: If the add_pooling_layer parameter is not a boolean.
    """
    super().__init__(config)
    self.config = config

    self.embeddings = LukeEmbeddings(config)
    self.entity_embeddings = LukeEntityEmbeddings(config)
    self.encoder = LukeEncoder(config)

    self.pooler = LukePooler(config) if add_pooling_layer else None

mindnlp.transformers.models.luke.luke.LukeModel.construct(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

The 'construct' method in the 'LukeModel' class is responsible for constructing the model based on the provided inputs and configuration.

PARAMETER DESCRIPTION
self

The instance of the class.

input_ids

The input tensor representing the token ids. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

The attention mask tensor indicating the positions of the padded tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

token_type_ids

The tensor representing the token type ids. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

The tensor representing the position ids. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_ids

The tensor representing the entity ids. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_attention_mask

The attention mask tensor for entity tokens. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_token_type_ids

The tensor representing the token type ids for entities. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

entity_position_ids

The tensor representing the position ids for entities. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The tensor representing the head mask. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

inputs_embeds

The embedded inputs tensor. Default is None.

TYPE: Optional[Tensor] DEFAULT: None

output_attentions

Whether to return attentions. Default is None.

TYPE: Optional[bool] DEFAULT: None

output_hidden_states

Whether to return hidden states. Default is None.

TYPE: Optional[bool] DEFAULT: None

return_dict

Whether to return a dictionary. Default is None.

TYPE: Optional[bool] DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError
  • If both input_ids and inputs_embeds are specified simultaneously.
  • If neither input_ids nor inputs_embeds is specified.
Source code in mindnlp/transformers/models/luke/luke.py
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
def construct(
        self,
        input_ids: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
        token_type_ids: Optional[Tensor] = None,
        position_ids: Optional[Tensor] = None,
        entity_ids: Optional[Tensor] = None,
        entity_attention_mask: Optional[Tensor] = None,
        entity_token_type_ids: Optional[Tensor] = None,
        entity_position_ids: Optional[Tensor] = None,
        head_mask: Optional[Tensor] = None,
        inputs_embeds: Optional[Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
):
    '''
    The 'construct' method in the 'LukeModel' class is responsible for constructing the model
    based on the provided inputs and configuration.

    Args:
        self: The instance of the class.
        input_ids (Optional[Tensor]): The input tensor representing the token ids. Default is None.
        attention_mask (Optional[Tensor]): The attention mask tensor indicating the positions of the padded tokens.
            Default is None.
        token_type_ids (Optional[Tensor]): The tensor representing the token type ids. Default is None.
        position_ids (Optional[Tensor]): The tensor representing the position ids. Default is None.
        entity_ids (Optional[Tensor]): The tensor representing the entity ids. Default is None.
        entity_attention_mask (Optional[Tensor]): The attention mask tensor for entity tokens. Default is None.
        entity_token_type_ids (Optional[Tensor]): The tensor representing the token type ids for entities.
            Default is None.
        entity_position_ids (Optional[Tensor]): The tensor representing the position ids for entities.
            Default is None.
        head_mask (Optional[Tensor]): The tensor representing the head mask. Default is None.
        inputs_embeds (Optional[Tensor]): The embedded inputs tensor. Default is None.
        output_attentions (Optional[bool]): Whether to return attentions. Default is None.
        output_hidden_states (Optional[bool]): Whether to return hidden states. Default is None.
        return_dict (Optional[bool]): Whether to return a dictionary. Default is None.

    Returns:
        None.

    Raises:
        ValueError:
            - If both input_ids and inputs_embeds are specified simultaneously.
            - If neither input_ids nor inputs_embeds is specified.

    '''
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
    if input_ids is not None and inputs_embeds is None:
        input_shape = input_ids.shape
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    batch_size, seq_length = input_shape

    if attention_mask is None:
        attention_mask = ops.ones((batch_size, seq_length))
    if token_type_ids is None:
        token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)
    if entity_ids is not None:
        entity_seq_length = entity_ids.shape[1]
        if entity_attention_mask is None:
            entity_attention_mask = ops.ones((batch_size, entity_seq_length))
        if entity_token_type_ids is None:
            entity_token_type_ids = ops.zeros((batch_size, entity_seq_length), dtype=mindspore.int64)

    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

    # First, compute word embeddings
    word_embedding_output = self.embeddings(
        input_ids=input_ids,
        position_ids=position_ids,
        token_type_ids=token_type_ids,
        inputs_embeds=inputs_embeds,
    )

    # Second, compute extended attention mask
    extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask)

    # Third, compute entity embeddings and concatenate with word embeddings
    if entity_ids is None:
        entity_embedding_output = None
    else:
        entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids)

    encoder_outputs = self.encoder(
        word_embedding_output,
        entity_embedding_output,
        attention_mask=extended_attention_mask,
        head_mask=head_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = encoder_outputs[0] if not return_dict else tuple(
        i for i in encoder_outputs.values() if i is not None)[0]

    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
    if not return_dict:
        return (sequence_output, pooled_output) + encoder_outputs[1:]

    return {
        'last_hidden_state': sequence_output,
        'pooler_output': pooled_output,
        'hidden_states': encoder_outputs['hidden_states'],
        'attentions': encoder_outputs['attentions'],
        'entity_last_hidden_state': encoder_outputs['entity_last_hidden_state'],
        'entity_hidden_states': encoder_outputs['entity_hidden_states']
    }

mindnlp.transformers.models.luke<