megatron_bert
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert
¶
MindSpore MegatronBERT model.
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertAttention
¶
Bases: Module
This class represents the attention mechanism used in Megatron-BERT models. It is a part of the Megatron-BERT architecture and is responsible for performing self-attention operations.
The MegatronBertAttention class inherits from the nn.Module class.
ATTRIBUTE | DESCRIPTION |
---|---|
ln |
Layer normalization module used in the attention mechanism.
TYPE:
|
self |
Self-attention module responsible for computing attention scores. |
output |
Output module that combines attention output with the input hidden states.
TYPE:
|
pruned_heads |
A set of pruned attention heads.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MegatronBertAttention instance. |
prune_heads |
Prunes the specified attention heads. |
forward |
Performs the attention mechanism computation. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertAttention.__init__(config)
¶
Initializes an instance of the MegatronBertAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the class.
TYPE:
|
config |
The configuration object containing the hyperparameters for the attention mechanism.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertAttention.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertAttention class.
|
hidden_states |
The input hidden states for the attention mechanism.
TYPE:
|
attention_mask |
Optional tensor specifying which elements should be attended to.
TYPE:
|
head_mask |
Optional tensor for masking individual attention heads.
TYPE:
|
encoder_hidden_states |
Optional tensor representing the hidden states of the encoder.
TYPE:
|
encoder_attention_mask |
Optional tensor specifying which elements of the encoder hidden states should be attended to.
TYPE:
|
past_key_value |
Optional tuple of past key and value tensors for fast decoding.
TYPE:
|
output_attentions |
Optional flag indicating whether to return attentions.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the attention output and additional outputs from the attention mechanism. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input tensors have incompatible shapes or types. |
TypeError
|
If the input parameters are not of the expected types. |
RuntimeError
|
If there is an issue during the attention computation process. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertAttention.prune_heads(heads)
¶
This method 'prune_heads' is defined within the 'MegatronBertAttention' class. It prunes specific attention heads from the self-attention mechanism based on the provided 'heads' parameter.
PARAMETER | DESCRIPTION |
---|---|
self |
Represents the instance of the MegatronBertAttention class. It is used to access the attributes and methods of the class.
|
heads |
A list that contains the indices of the attention heads to be pruned. These indices correspond to the specific attention heads that should be removed from the self-attention mechanism.
|
RETURNS | DESCRIPTION |
---|---|
None
|
However, it modifies the internal state of the MegatronBertAttention instance by pruning the specified attention heads from the self-attention mechanism. |
RAISES | DESCRIPTION |
---|---|
None
|
However, potential exceptions that might occur during the execution could include:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertEmbeddings
¶
Bases: Module
Construct the embeddings from word, position and token_type embeddings.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertEmbeddings.__init__(config)
¶
Initialize the MegatronBertEmbeddings class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object containing configuration parameters for the embeddings.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertEmbeddings.forward(input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0)
¶
Construct embeddings for the MegatronBertEmbeddings class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertEmbeddings class.
|
input_ids |
The input token IDs. Default is None.
TYPE:
|
token_type_ids |
The token type IDs. Default is None.
TYPE:
|
position_ids |
The position IDs. Default is None.
TYPE:
|
inputs_embeds |
The embedded input tokens. Default is None.
TYPE:
|
past_key_values_length |
The length of past key values. Default is 0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The forwarded embeddings. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertEncoder
¶
Bases: Module
The MegatronBertEncoder class represents a transformer encoder for Megatron-BERT. It inherits from nn.Module and is responsible for encoding input sequences using multiple layers of transformer blocks. The class provides methods for forwarding the encoder and performing forward pass computations, including handling gradient checkpointing and caching for efficient training and inference.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration parameters for the encoder.
|
layer |
A list of MegatronBertLayer instances representing the stacked transformer layers in the encoder.
|
ln |
A LayerNorm instance for layer normalization.
|
gradient_checkpointing |
A boolean indicating whether gradient checkpointing is enabled.
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MegatronBertEncoder with the provided configuration. |
forward |
Constructs the encoder and performs forward pass computations, optionally returning hidden states, attentions, and cross-attentions based on the specified parameters. |
The forward method handles the processing of input hidden states, attention masks, head masks, encoder hidden states, encoder attention masks, past key values, and caching options. It iterates through the stacked transformer layers, applying gradient checkpointing if enabled, and computes the final hidden states with layer normalization. Additionally, it returns the output as a BaseModelOutputWithPastAndCrossAttentions object if return_dict is True.
Note
The MegatronBertEncoder class is designed for use in the Megatron-BERT architecture and is designed to work in conjunction with other components such as MegatronBertLayer and LayerNorm for efficient transformer-based encoding.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertEncoder.__init__(config)
¶
Initializes a new instance of the MegatronBertEncoder class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertEncoder class.
|
config |
An object containing the configuration parameters for the MegatronBertEncoder. It should include the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertEncoder.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True)
¶
Constructs the MegatronBertEncoder.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of MegatronBertEncoder.
TYPE:
|
hidden_states |
The hidden states of the input sequence. Shape: (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
The attention mask tensor. Shape: (batch_size, sequence_length) or (batch_size, sequence_length, sequence_length). Defaults to None.
TYPE:
|
head_mask |
The head mask tensor. Shape: (num_heads,) or (num_layers, num_heads) or (batch_size, num_layers, num_heads) or (batch_size, num_heads, sequence_length, sequence_length). Defaults to None.
TYPE:
|
encoder_hidden_states |
The hidden states of the encoder sequence. Shape: (batch_size, encoder_sequence_length, hidden_size). Defaults to None.
TYPE:
|
encoder_attention_mask |
The attention mask tensor for the encoder. Shape: (batch_size, encoder_sequence_length) or (batch_size, encoder_sequence_length, encoder_sequence_length). Defaults to None.
TYPE:
|
past_key_values |
The past key value tensors. Defaults to None.
TYPE:
|
use_cache |
Whether to use cache. Defaults to None.
TYPE:
|
output_attentions |
Whether to output attentions. Defaults to False.
TYPE:
|
output_hidden_states |
Whether to output hidden states. Defaults to False.
TYPE:
|
return_dict |
Whether to return a dictionary as the output. Defaults to True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]
|
Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: The output of the MegatronBertEncoder. It can be either a tuple of tensors or an instance of BaseModelOutputWithPastAndCrossAttentions. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForCausalLM
¶
Bases: MegatronBertPreTrainedModel
A class that represents the MegatronBERT model for Causal Language Modeling. This class inherits from MegatronBertPreTrainedModel and provides methods for model initialization, output embeddings, input preparation for generation, cache reordering, and model forwardion. It also includes detailed explanations for the model's input and output parameters, as well as usage examples. The methods within the class enable fine-tuning and using the model for causal language modeling tasks.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForCausalLM.__init__(config)
¶
Initializes an instance of MegatronBertForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of MegatronBertForCausalLM class.
|
config |
A configuration object containing settings for the model initialization.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForCausalLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in
TYPE:
|
labels |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
TYPE:
|
use_cache |
If set to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithCrossAttentions]
|
Union[Tuple, CausalLMOutputWithCrossAttentions] |
Example
>>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig
...
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True)
...
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
...
>>> prediction_logits = outputs.logits
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForCausalLM.get_output_embeddings()
¶
Method to retrieve the output embeddings from MegatronBertForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertForCausalLM class. It represents the model for which the output embeddings are being retrieved.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, **model_kwargs)
¶
Prepare inputs for generation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
input_ids |
The input tensor containing the token ids. Its shape should be (batch_size, sequence_length).
TYPE:
|
past_key_values |
The past key values if available for autoregressive generation. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor. If not provided, it is initialized with ones of the same shape as input_ids.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the prepared input ids, attention mask, and past key values. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids shape is invalid for past_key_values removal. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForCausalLM.set_output_embeddings(new_embeddings)
¶
Set the output embeddings for the MegatronBertForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertForCausalLM class.
TYPE:
|
new_embeddings |
The new output embeddings to be set for the model. It could be a tensor, array, or any object representing the new embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMaskedLM
¶
Bases: MegatronBertPreTrainedModel
This class represents a MegatronBert model for Masked Language Modeling (MLM). It inherits from the MegatronBertPreTrainedModel and includes methods for initializing the model, getting and setting output embeddings, forwarding the model, and preparing inputs for generation. The class provides functionality for performing masked language modeling tasks using the MegatronBert model.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration for the MegatronBert model.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MegatronBertForMaskedLM model with the given configuration. |
get_output_embeddings |
Retrieves the output embeddings of the model. |
set_output_embeddings |
Sets the output embeddings of the model to the specified new embeddings. |
forward |
Constructs the model with the given input and optional arguments, and returns the MaskedLMOutput. |
prepare_inputs_for_generation |
Prepares the input for generation by updating the input_ids and attention_mask for the model. |
Note
For consistency, always use triple double quotes around docstrings.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMaskedLM.__init__(config)
¶
Initializes an instance of MegatronBertForMaskedLM.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
A configuration object containing settings for the MegatronBertForMaskedLM model. It must have attributes like 'is_decoder', which is a boolean indicating if the model is a decoder. The configuration object is used to configure the model's behavior.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
Warning
|
If the 'is_decoder' attribute in the config is set to True, a warning message is logged. |
AttributeError
|
If the config object does not have the required attributes, an AttributeError may be raised. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMaskedLM.get_output_embeddings()
¶
Returns the output embeddings of the MegatronBertForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertForMaskedLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMaskedLM.prepare_inputs_for_generation(input_ids, attention_mask=None, **model_kwargs)
¶
Prepare inputs for generation.
This method prepares input tensors for generation in the MegatronBertForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
(object) The instance of the MegatronBertForMaskedLM class.
|
input_ids |
(Tensor) The input token IDs. Shape [batch_size, sequence_length].
|
attention_mask |
(Tensor, optional) The attention mask tensor. Shape [batch_size, sequence_length].
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the prepared input tensors for generation:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the PAD token is not defined for generation. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMaskedLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the MegatronBertForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertForMaskedLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the model's output.
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method modifies the model in-place. |
This method is used to set the output embeddings for the MegatronBertForMaskedLM model. The new embeddings are assigned to the model's predictions.decoder attribute, which represents the decoder layer responsible for generating output embeddings during inference. The method does not return any value and modifies the model directly.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMultipleChoice
¶
Bases: MegatronBertPreTrainedModel
A Python class representing the MegatronBertForMultipleChoice model, which is designed for multiple choice classification tasks. It is a subclass of the MegatronBertPreTrainedModel.
The MegatronBertForMultipleChoice model consists of a MegatronBertModel, a dropout layer, and a classifier. The MegatronBertModel encodes the input sequence using the BERT architecture, while the dropout layer helps prevent overfitting. The classifier then produces logits for each choice in the multiple choice question.
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MegatronBertForMultipleChoice model with the given configuration. |
forward |
Constructs the model and performs forward pass given the input tensors. It returns the logits for each choice and optionally computes the loss. |
ATTRIBUTE | DESCRIPTION |
---|---|
bert |
The MegatronBertModel used for encoding the input sequence.
|
dropout |
The dropout layer for regularization.
|
classifier |
The linear layer for producing logits.
|
Note
- The input tensors should be either
mindspore.Tensor
objects orNone
if not applicable. - The
labels
tensor should have shape(batch_size,)
and contain indices in[0, ..., num_choices-1]
. - The
return_dict
argument is optional and defaults to theuse_return_dict
value from the model configuration.
Example
>>> config = MegatronBertConfig(...)
>>> model = MegatronBertForMultipleChoice(config)
>>> input_ids = ...
>>> attention_mask = ...
>>> token_type_ids = ...
>>> position_ids = ...
>>> head_mask = ...
>>> inputs_embeds = ...
>>> labels = ...
>>> output_attentions = ...
>>> output_hidden_states = ...
>>> return_dict = ...
>>> logits, loss = model.forward(input_ids, attention_mask, token_type_ids, position_ids, head_mask,
... inputs_embeds, labels, output_attentions, output_hidden_states, return_dict)
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMultipleChoice.__init__(config)
¶
Initializes an instance of the MegatronBertForMultipleChoice class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class itself.
TYPE:
|
config |
The configuration object containing parameters for model initialization. It should have attributes like hidden_dropout_prob, hidden_size, etc. This parameter is required for configuring the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForMultipleChoice.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForNextSentencePrediction
¶
Bases: MegatronBertPreTrainedModel
Represents a MegatronBert model for next sentence prediction.
This class inherits from the MegatronBertPreTrainedModel and provides next sentence prediction functionality using the Megatron BERT model.
The class forwardor initializes the MegatronBertForNextSentencePrediction model with the given configuration.
The forward
method takes input tensors and computes the next sentence prediction loss.
It returns the next sentence predictor output.
PARAMETER | DESCRIPTION |
---|---|
input_ids |
The input tensor containing the indices of input sequence tokens in the vocabulary. Defaults to None.
TYPE:
|
attention_mask |
The input tensor containing indices specifying which tokens should be attended to. Defaults to None.
TYPE:
|
token_type_ids |
The input tensor containing the segment token indices to differentiate the sequences. Defaults to None.
TYPE:
|
position_ids |
The input tensor containing the position indices of each input token. Defaults to None.
TYPE:
|
head_mask |
The input tensor containing the mask for the attention heads. Defaults to None.
TYPE:
|
inputs_embeds |
The input tensor containing the embedded inputs. Defaults to None.
TYPE:
|
labels |
The tensor containing the labels for computing the next sequence prediction loss. Defaults to None.
TYPE:
|
output_attentions |
Whether to return attentions. Defaults to None.
TYPE:
|
output_hidden_states |
Whether to return hidden states. Defaults to None.
TYPE:
|
return_dict |
Whether to return a dictionary. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, NextSentencePredictorOutput]: A tuple containing the next sentence prediction loss and the next sentence predictor output. |
RAISES | DESCRIPTION |
---|---|
FutureWarning
|
If the |
Example
>>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction
...
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m")
...
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
...
>>> outputs = model(**encoding, labels=mindspore.Tensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForNextSentencePrediction.__init__(config)
¶
Initializes an instance of the MegatronBertForNextSentencePrediction class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class. |
config |
The configuration object containing the settings for the model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForNextSentencePrediction.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, NextSentencePredictorOutput]
|
Union[Tuple, NextSentencePredictorOutput] |
Example
>>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction
...
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m")
...
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
...
>>> outputs = model(**encoding, labels=mindspore.Tensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTraining
¶
Bases: MegatronBertPreTrainedModel
The MegatronBertForPreTraining
class represents a pre-trained Megatron-BERT model for pre-training tasks.
It inherits from the MegatronBertPreTrainedModel
class and provides methods for forwarding
the model, retrieving and setting output embeddings, and performing pre-training tasks such as masked
language modeling and next sentence prediction.
The forward
method takes input tensors for various model inputs and optional labels, and returns pre-training
outputs including loss, prediction logits, sequence relationship logits, hidden states, and attentions.
This method supports both batch and sequence-level losses for masked language modeling and next sentence prediction.
The get_output_embeddings
method returns the decoder for predictions, while the set_output_embeddings
method
allows for updating the decoder with new embeddings.
This class is designed to work with the Megatron-BERT model and is intended to be used for pre-training tasks in natural language processing applications.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTraining.__init__(config, add_binary_head=True)
¶
Initializes a new instance of the MegatronBertForPreTraining class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class. |
config |
The configuration object containing the model's settings.
TYPE:
|
add_binary_head |
Indicates whether to add a binary head to the model. Defaults to True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTraining.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
next_sentence_label |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see
TYPE:
|
kwargs |
Used to hide legacy arguments that have been deprecated.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, MegatronBertForPreTrainingOutput]
|
Union[Tuple, MegatronBertForPreTrainingOutput] |
Example
>>> from transformers import AutoTokenizer, MegatronBertForPreTraining
...
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m")
...
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
...
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTraining.get_output_embeddings()
¶
Returns the output embeddings of the MegatronBertForPreTraining model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertForPreTraining class. |
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTraining.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings of the MegatronBertForPreTraining model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertForPreTraining class. |
new_embeddings |
The new embeddings to be set for the model's output. This should be a tensor of the same shape as the previous embeddings.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput
dataclass
¶
Bases: ModelOutput
Output type of [MegatronBertForPreTraining
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
TYPE:
|
prediction_logits |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
TYPE:
|
seq_relationship_logits |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForQuestionAnswering
¶
Bases: MegatronBertPreTrainedModel
A class representing a Megatron-BERT model for question answering.
This class inherits from the MegatronBertPreTrainedModel class and is specifically designed for question answering tasks. It includes methods for forwarding the model and generating predictions.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for token classification.
TYPE:
|
bert |
The Megatron-BERT model.
TYPE:
|
qa_outputs |
The dense layer for question answering outputs.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MegatronBertForQuestionAnswering instance. |
forward |
Constructs the Megatron-BERT model and generates predictions for question answering tasks. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForQuestionAnswering.__init__(config)
¶
Initialize the MegatronBertForQuestionAnswering class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
The configuration object containing the settings for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForSequenceClassification
¶
Bases: MegatronBertPreTrainedModel
This class represents a MegatronBERT model for sequence classification tasks. It inherits from the MegatronBertPreTrainedModel class and includes methods for initializing the model and generating classification outputs.
The forward
method takes various input tensors and computes the sequence classification/regression loss based
on the configured problem type. It returns the classification logits and optionally the loss, hidden states, and
attentions.
The __init__
method initializes the model with the provided configuration and sets up the BERT model, dropout layer,
and classifier for sequence classification.
The class also provides detailed documentation for the forward
method, including information about the input and
output tensors, as well as the optional labels for computing the classification/regression loss.
For complete method signatures and code, please refer to the source code.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForSequenceClassification.__init__(config)
¶
Initializes an instance of the MegatronBertForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
config |
An object of type 'Config' containing the configuration settings for the model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForTokenClassification
¶
Bases: MegatronBertPreTrainedModel
This class represents a token classification model based on the Megatron BERT architecture. It inherits from the MegatronBertPreTrainedModel class and includes functionality for token classification tasks.
The init method initializes the MegatronBertForTokenClassification instance with the provided configuration. It sets the number of labels, initializes the BERT model without a pooling layer, sets the dropout probability, and initializes the classifier.
The forward method takes input tensors for token classification, such as input_ids, attention_mask, token_type_ids, position_ids, head_mask, and inputs_embeds. It also supports optional arguments for labels, output_attentions, output_hidden_states, and return_dict. The method returns TokenClassifierOutput containing the loss, logits, hidden states, and attentions. If labels are provided, it computes the token classification loss using cross-entropy.
The class provides detailed docstrings for each method, including parameter descriptions and return types for improved documentation and understanding.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForTokenClassification.__init__(config)
¶
Initializes an instance of the MegatronBertForTokenClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object containing configuration parameters for the model. It should include the following attributes:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not provided or is not of the correct type. |
ValueError
|
If the num_labels attribute in the config is not provided or is not a positive integer. |
ValueError
|
If the hidden_dropout_prob attribute in the config is not provided or is not a valid probability value (0 <= hidden_dropout_prob <= 1). |
RuntimeError
|
If an error occurs during the initialization process. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the token classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertIntermediate
¶
Bases: Module
Represents an intermediate layer of a Megatron-style BERT model for processing hidden states.
This class inherits from nn.Module and contains methods for initializing the intermediate layer and processing hidden states through dense and activation functions.
ATTRIBUTE | DESCRIPTION |
---|---|
dense |
The dense layer used for processing hidden states.
TYPE:
|
intermediate_act_fn |
The activation function applied to the hidden states.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MegatronBertIntermediate instance with the provided configuration. |
forward |
Processes the input hidden states through the dense layer and activation function, returning the transformed hidden states. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertIntermediate.__init__(config)
¶
Initializes an instance of the MegatronBertIntermediate class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing the settings for the MegatronBertIntermediate. It should have the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertIntermediate.forward(hidden_states)
¶
Constructs the intermediate layer of the Megatron BERT model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertIntermediate class.
TYPE:
|
hidden_states |
The input hidden states tensor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The output hidden states tensor after applying the intermediate layer. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLMPredictionHead
¶
Bases: Module
MegatronBertLMPredictionHead
This class represents the prediction head for the Megatron-BERT language model. It is responsible for transforming the hidden states and generating predictions for the next token in a sequence.
This class inherits from the nn.Module class.
ATTRIBUTE | DESCRIPTION |
---|---|
transform |
An instance of the MegatronBertPredictionHeadTransform class, used to transform the hidden states. |
decoder |
A fully connected layer that maps the transformed hidden states to the vocabulary size.
TYPE:
|
bias |
A learnable bias parameter used in the decoder layer.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Transforms the input hidden states and generates predictions for the next token in the sequence. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLMPredictionHead.__init__(config)
¶
Initialize the MegatronBertLMPredictionHead object with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
An object containing configuration parameters for the prediction head. It is expected to have attributes like 'hidden_size' and 'vocab_size' required for initialization.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLMPredictionHead.forward(hidden_states)
¶
Constructs the MegatronBertLMPredictionHead.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertLMPredictionHead class. |
hidden_states |
The input hidden states to be processed. It should be a tensor of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
hidden_states
|
The processed hidden states. It is a tensor of shape (batch_size, sequence_length, hidden_size) after applying the transformation and decoding.
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLayer
¶
Bases: Module
This class represents a layer of the Megatron-Bert model. It is used to perform attention and feed-forward operations on input hidden states.
ATTRIBUTE | DESCRIPTION |
---|---|
chunk_size_feed_forward |
The chunk size used for chunking the feed-forward operation.
TYPE:
|
seq_len_dim |
The dimension of the sequence length.
TYPE:
|
attention |
The attention module used for self-attention.
TYPE:
|
is_decoder |
Indicates whether the layer is used as a decoder model.
TYPE:
|
add_cross_attention |
Indicates whether cross-attention is added.
TYPE:
|
crossattention |
The attention module used for cross-attention if add_cross_attention is True.
TYPE:
|
ln |
The layer normalization module.
TYPE:
|
intermediate |
The intermediate module used for the feed-forward operation.
TYPE:
|
output |
The output module used for the feed-forward operation.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
feed_forward_chunk |
Applies the feed-forward operation to the attention output. Args:
Returns:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLayer.__init__(config)
¶
Initializes an instance of the MegatronBertLayer class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertLayer class.
|
config |
A configuration object containing the following attributes:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If add_cross_attention is True and is_decoder is False. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLayer.feed_forward_chunk(attention_output)
¶
Feed forward chunk of the MegatronBertLayer class.
This method applies feed forward operations to the attention_output tensor.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertLayer class.
TYPE:
|
attention_output |
The input tensor to be processed. It represents the attention output.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertLayer.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)
¶
Constructs a MegatronBertLayer.
This method performs the forward pass of a MegatronBertLayer. It takes in various input tensors and returns the outputs after applying self-attention and cross-attention mechanisms, as well as feed-forward layers.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MegatronBertLayer class.
TYPE:
|
hidden_states |
The input hidden states tensor of shape (batch_size, seq_length, hidden_size).
TYPE:
|
attention_mask |
An optional attention mask tensor of shape (batch_size, seq_length) where 1s indicate tokens to attend to and 0s indicate tokens to mask.
TYPE:
|
head_mask |
An optional head mask tensor of shape (num_heads,) or (num_layers, num_heads) where 1s indicate heads to keep and 0s indicate heads to mask.
TYPE:
|
encoder_hidden_states |
An optional tensor of shape (batch_size, seq_length, hidden_size) representing the hidden states of the encoder.
TYPE:
|
encoder_attention_mask |
An optional attention mask tensor of shape (batch_size, seq_length) for the encoder.
TYPE:
|
past_key_value |
An optional tuple of past key-value tensors for self-attention and cross-attention.
TYPE:
|
output_attentions |
An optional flag indicating whether to output attentions.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the outputs of the MegatronBertLayer. The first element is the layer output tensor of shape (batch_size, seq_length, hidden_size). If the layer is a decoder, the tuple also contains the present key-value tensor of shape (2, batch_size, num_heads, seq_length, hidden_size). |
RAISES | DESCRIPTION |
---|---|
AttributeError
|
If |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertModel
¶
Bases: MegatronBertPreTrainedModel
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the is_decoder
argument of the configuration set
to True
. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder
argument and
add_cross_attention
set to True
; an encoder_hidden_states
is then expected as an input to the forward pass.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertModel.__init__(config, add_pooling_layer=True)
¶
init method in the MegatronBertModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
A dictionary containing configuration parameters for the MegatronBertModel. It is used to initialize the model's embeddings, encoder, and pooler.
|
add_pooling_layer |
A boolean flag indicating whether to add a pooling layer to the model. Default is True.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertModel.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in
TYPE:
|
use_cache |
If set to
TYPE:
|
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertModel.get_input_embeddings()
¶
Description: This method returns the word embeddings used for input in a MegatronBertModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertModel.set_input_embeddings(value)
¶
Sets the input embeddings for the MegatronBertModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MegatronBertModel class.
TYPE:
|
value |
The new input embeddings to be set for the model. Should be of type torch.Tensor.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertOnlyMLMHead
¶
Bases: Module
Represents a Megatron-style MLM head for BERT models, which includes only the MLM prediction head without the rest of the model.
This class inherits from nn.Module and is designed to be used in conjunction with a BERT model for masked language modeling tasks. It contains methods for initializing the prediction head and generating prediction scores based on the input sequence output.
The class includes an init method to initialize the prediction head with the provided configuration, and a forward method to generate prediction scores using the sequence output tensor. The prediction scores are obtained by passing the sequence output through the prediction head.
Note
This class assumes that the MegatronBertLMPredictionHead class is available for use in creating the MLM prediction head.
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 |
|
mindnlp.transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertOnlyMLMHead.__init__(config)
¶
Initialize the MegatronBertOnlyMLMHead class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
An object containing configuration settings for the MegatronBertOnlyMLMHead class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/megatron_bert/modeling_megatron_bert.py
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 |
|