minicpm
mindnlp.transformers.models.minicpm.modeling_minicpm
¶
MindSpore MiniCPM model.
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMAttention.__init__(config, layer_idx=None)
¶
Initializes an instance of the MiniCPMAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object for MiniCPMAttention.
TYPE:
|
layer_idx |
The index of the layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If
|
Warning
|
If
|
Note
The method initializes the MiniCPMAttention instance by assigning values to various attributes.
It performs several checks to ensure the correctness of the provided configuration.
The method also initializes the projection layers and sets up the required variables
for the attention mechanism.
Additionally, it initializes the rope mechanism by calling the _init_rope
method.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
This method forwards the MiniCPMAttention layer.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
hidden_states |
The input hidden states with shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
Optional tensor with shape (batch_size, 1, sequence_length, sequence_length) representing the attention mask.
TYPE:
|
position_ids |
Optional tensor with shape (batch_size, sequence_length) representing the position indices of input tokens.
TYPE:
|
past_key_value |
Optional cache for past key-value pairs.
TYPE:
|
output_attentions |
Flag indicating whether to return the attention weights.
TYPE:
|
use_cache |
Flag indicating whether to use cache for key-value pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the output tensor of shape (batch_size, sequence_length, hidden_size), optional attention weights tensor, and optional updated past key-value pairs. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the attention weights or attention mask have invalid shapes. |
ValueError
|
If the output tensor 'attn_output' has an unexpected shape. |
ValueError
|
If the cache structure has changed since version v4.36 and the layer index is not initialized for auto-regressive decoding. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMDecoderLayer
¶
Bases: Module
MiniCPMDecoderLayer represents a single layer of the MiniCPM (Minimalist Conditional Pretrained Model) decoder. This class is responsible for processing input hidden states through self-attention mechanism and MLP (Multi-Layer Perceptron) for decoding tasks.
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
Size of the hidden states.
TYPE:
|
self_attn |
Instance of the attention mechanism used in the layer.
TYPE:
|
mlp |
Instance of the MLP network.
TYPE:
|
input_layernorm |
Layer normalization applied to the input hidden states.
TYPE:
|
post_attention_layernorm |
Layer normalization applied after the self-attention mechanism.
TYPE:
|
scale_depth |
Scaling factor applied to the hidden states.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the model.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Processes the input hidden states through the layer. Args:
Returns:
|
Note
If 'padding_mask' is passed as a keyword argument in kwargs, a deprecation warning will be issued. It is recommended to use 'attention_mask' instead.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMDecoderLayer.__init__(config, layer_idx)
¶
Initializes a new instance of MiniCPMDecoderLayer.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
config |
An instance of MiniCPMConfig containing the configuration settings for the decoder layer.
TYPE:
|
layer_idx |
The index of the layer within the decoder.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not of type MiniCPMConfig. |
ValueError
|
If the layer_idx parameter is not a non-negative integer. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMDynamicNTKScalingRotaryEmbedding
¶
Bases: MiniCPMRotaryEmbedding
MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMDynamicNTKScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes a new instance of the MiniCPMDynamicNTKScalingRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimensionality of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value. Defaults to 10000.
TYPE:
|
scaling_factor |
The scaling factor. Defaults to 1.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM
¶
Bases: MiniCPMPreTrainedModel
This class represents the MiniCPM model for causal language modeling. It is specifically designed for generating text based on given input prompts. The model is initialized with a configuration and consists of a MiniCPM model, an embedding layer, and a linear layer for predicting the next token in the sequence.
ATTRIBUTE | DESCRIPTION |
---|---|
model |
The underlying MiniCPM model.
TYPE:
|
vocab_size |
The size of the vocabulary.
TYPE:
|
lm_head |
The linear layer for predicting the next token.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MiniCPMForCausalLM model. |
get_input_embeddings |
Returns the input embeddings of the model. |
set_input_embeddings |
Sets the input embeddings of the model. |
get_output_embeddings |
Returns the output embeddings of the model. |
set_output_embeddings |
Sets the output embeddings of the model. |
set_decoder |
Sets the decoder of the model. |
get_decoder |
Returns the decoder of the model. |
forward |
Constructs the MiniCPM model and computes the language modeling loss. |
prepare_inputs_for_generation |
Prepares the inputs for text generation. |
_reorder_cache |
Reorders the cache for beam search. |
chat |
Generates a response to a given query using the MiniCPM model. |
Example
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM
...
>>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.__init__(config)
¶
Initializes an instance of the MiniCPMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
TYPE:
|
config |
The configuration object containing the model's settings.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.chat(tokenizer, query, history=None, role='user', max_length=4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None, **kwargs)
¶
Chat method for MiniCPMForCausalLM class.
This method facilitates a conversation by generating responses based on the given query and history. It utilizes a tokenizer to convert text into tokens and a language model to generate responses.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MiniCPMForCausalLM class.
TYPE:
|
tokenizer |
The tokenizer object used to tokenize the input text.
|
query |
The user's query as a string.
TYPE:
|
history |
A list of dictionaries representing the conversation history. Each dictionary contains the role (e.g., 'user' or 'assistant') and the content of the message. Defaults to None.
TYPE:
|
role |
The role of the current message. Defaults to 'user'.
TYPE:
|
max_length |
The maximum length of the generated response. Defaults to 4096.
TYPE:
|
num_beams |
The number of beams to be used during generation. Defaults to 1.
TYPE:
|
do_sample |
Whether to use sampling during generation. Defaults to True.
TYPE:
|
top_p |
The cumulative probability for top-p sampling. Defaults to 0.8.
TYPE:
|
temperature |
The temperature value for generation. Defaults to 0.3.
TYPE:
|
logits_processor |
An optional logits_processor object to be used during generation. Defaults to None.
DEFAULT:
|
**kwargs |
Additional keyword arguments for generation.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
tuple
|
A tuple containing the generated response (str) and the updated conversation history (List[Dict]). |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
|
Example
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM
...
>>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.get_decoder()
¶
Retrieves the decoder model used for the MiniCPMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MiniCPMForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
The decoder model object. |
This method returns the decoder model object associated with the MiniCPMForCausalLM instance. The decoder model is an essential component of the MiniCPMForCausalLM class and is used for generating predictions based on the input data. The decoder model object is returned as the result of this method.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.get_input_embeddings()
¶
This method returns the input embeddings from the MiniCPMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
The input embeddings from the model. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.get_output_embeddings()
¶
Returns the output embeddings of the MiniCPMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method retrieves the output embeddings of the MiniCPMForCausalLM model. The output embeddings are computed by the 'lm_head' layer of the model.
Note
The 'lm_head' layer is a linear transformation layer that maps the final hidden states of the model to the vocabulary size. It is responsible for generating the output probabilities for each token in the sequence.
Example
>>> model = MiniCPMForCausalLM()
>>> embeddings = model.get_output_embeddings()
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepare inputs for generation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMForCausalLM class.
TYPE:
|
input_ids |
The input tensor of token indices. Shape: [batch_size, sequence_length].
TYPE:
|
past_key_values |
The past key values used for efficient generation. If Cache object or Tuple is provided, it contains the cached key and value tensors. If None, no past key values are used.
TYPE:
|
attention_mask |
The attention mask tensor to mask padded tokens. Shape: [batch_size, sequence_length].
TYPE:
|
inputs_embeds |
The tensor of embeddings for input tokens. Shape: [batch_size, sequence_length, embedding_dim].
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the model inputs including either 'input_ids' or 'inputs_embeds', 'position_ids', 'past_key_values', 'use_cache', and 'attention_mask'. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input_ids, past_key_values, attention_mask, or inputs_embeds have invalid types. |
ValueError
|
If the input_ids and attention_mask shapes are incompatible or if cache_length + input_ids.shape[1] > max_cache_length. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.set_decoder(decoder)
¶
This method sets the decoder for the MiniCPMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMForCausalLM class.
TYPE:
|
decoder |
The decoder object to be set for the model. It should be an instance of a decoder class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.set_input_embeddings(new_embeddings)
¶
Method to set new input embeddings for the MiniCPMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of MiniCPMForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the model. Should be compatible with the model's embed_tokens attribute.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
The input embeddings for the model. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForCausalLM.set_output_embeddings(new_embeddings)
¶
Method to set new embeddings for the output layer of the MiniCPMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMForCausalLM class. This parameter is used to reference the current instance of the MiniCPMForCausalLM model.
TYPE:
|
new_embeddings |
The new embeddings to be set as the output embeddings. This parameter represents the new embeddings that will replace the current output embeddings. It can be of any data type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. It sets the 'lm_head' attribute of the MiniCPMForCausalLM instance to the new_embeddings. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForSequenceClassification
¶
Bases: MiniCPMPreTrainedModel
MiniCPMForSequenceClassification is a Python class that represents a fine-tuning model for sequence classification tasks based on the MiniCPM architecture. It inherits from the MiniCPMPreTrainedModel class and provides methods for initializing the model, getting and setting input embeddings, and forwarding the sequence classification model.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for sequence classification.
TYPE:
|
model |
The MiniCPM model used for sequence classification.
TYPE:
|
score |
The layer for scoring sequence classification logits.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MiniCPMForSequenceClassification instance with the provided configuration. |
get_input_embeddings |
Returns the input embeddings from the MiniCPM model. |
set_input_embeddings |
Sets new input embeddings for the MiniCPM model. |
forward |
Constructs the sequence classification model based on the provided input arguments. |
PARAMETER | DESCRIPTION |
---|---|
input_ids |
The input token IDs for the sequence.
TYPE:
|
attention_mask |
The attention mask for the input sequence.
TYPE:
|
position_ids |
The position IDs for the input tokens.
TYPE:
|
past_key_values |
The past key values for autoregressive decoding.
TYPE:
|
inputs_embeds |
The input embeddings for the sequence.
TYPE:
|
labels |
The labels for computing the sequence classification/regression loss.
TYPE:
|
use_cache |
Whether to use cache for autoregressive decoding.
TYPE:
|
output_attentions |
Whether to output attentions in the model.
TYPE:
|
output_hidden_states |
Whether to output hidden states in the model.
TYPE:
|
return_dict |
Whether to return the model outputs as a dictionary.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, SequenceClassifierOutputWithPast]: The forwarded model outputs, including the loss, logits, past key values, hidden states, and attentions. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the batch size is greater than 1 and no padding token is defined. |
Note
This class inherits from MiniCPMPreTrainedModel and extends its functionality to support sequence classification tasks.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForSequenceClassification.__init__(config)
¶
Initializes a new instance of the MiniCPMForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the class. |
config |
An instance of the configuration class specifying the model's hyperparameters and settings.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForSequenceClassification.get_input_embeddings()
¶
Method to retrieve the input embeddings from the model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMForSequenceClassification class. This parameter is used to access the model's embed_tokens attribute. |
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns None as it simply retrieves the input embeddings from the model. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMForSequenceClassification.set_input_embeddings(new_embeddings)
¶
Method to set new input embeddings for the MiniCPMForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
Instance of the MiniCPMForSequenceClassification class. |
new_embeddings |
New embeddings to be set for the model. Should be compatible with the model's input embedding format.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMLinearScalingRotaryEmbedding
¶
Bases: MiniCPMRotaryEmbedding
MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMLinearScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes an instance of MiniCPMLinearScalingRotaryEmbedding.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings.
TYPE:
|
base |
The base value used in calculations.
TYPE:
|
scaling_factor |
The scaling factor applied to the embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMMLP
¶
Bases: Module
MiniCPMMLP is a neural network model that implements a specific variant of a Multi-Layer Perceptron (MLP) architecture for deep learning tasks. This class inherits from nn.Module and includes methods for initializing the model's parameters and forwarding the forward pass computation.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
A configuration object containing parameters such as hidden_size, intermediate_size, hidden activation function, and pretraining_tp.
|
hidden_size |
The size of the hidden layers in the MLP.
|
intermediate_size |
The size of the intermediate layers in the MLP.
|
gate_proj |
A dense layer for projecting input to intermediate size with no bias.
|
up_proj |
A dense layer for projecting input to intermediate size with no bias.
|
down_proj |
A dense layer for projecting intermediate size to hidden size with no bias.
|
act_fn |
The activation function applied to the hidden layers based on the specified configuration.
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MiniCPMMLP instance with the provided configuration. |
forward |
Constructs the forward pass computation of the MiniCPMMLP model based on the input tensor x. If pretraining_tp > 1, it performs a segmented computation using the specified number of segments. Otherwise, it computes the forward pass in a single step. |
RETURNS | DESCRIPTION |
---|---|
down_proj
|
The output tensor resulting from the forward pass computation of the MiniCPMMLP model. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMMLP.__init__(config)
¶
Initializes a MiniCPMMLP object with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The MiniCPMMLP object instance.
TYPE:
|
config |
Configuration object containing parameters for the MiniCPMMLP model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMMLP.forward(x)
¶
Constructs the intermediate states of the MiniCPMMLP model based on the input tensor x.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MiniCPMMLP class.
TYPE:
|
x |
The input tensor for forwarding the intermediate states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. The method forwards the intermediate states of the model. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMModel
¶
Bases: MiniCPMPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [MiniCPMDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
MiniCPMConfig
TYPE:
|
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMModel.__init__(config)
¶
Initializes a MiniCPMModel instance with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of MiniCPMModel.
TYPE:
|
config |
The configuration object containing various settings for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the configuration object is missing required attributes. |
TypeError
|
If the configuration attributes are of incorrect types. |
RuntimeError
|
If there is an issue during the initialization process. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
Constructs the MiniCPMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMModel class.
TYPE:
|
input_ids |
The input tensor containing the token IDs. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor. Default is None.
TYPE:
|
position_ids |
The tensor containing the position IDs. Default is None.
TYPE:
|
past_key_values |
List of tensors representing past key values. Default is None.
TYPE:
|
inputs_embeds |
The tensor containing the embeddings of input tokens. Default is None.
TYPE:
|
use_cache |
Flag indicating whether to use cache. Default is None.
TYPE:
|
output_attentions |
Flag indicating whether to output attentions. Default is None.
TYPE:
|
output_hidden_states |
Flag indicating whether to output hidden states. Default is None.
TYPE:
|
return_dict |
Flag indicating whether to return a dictionary. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: A tuple containing the hidden states, next_cache, all_hidden_states, and all_self_attns if not None; or a BaseModelOutputWithPast instance containing the last hidden state, past key values, hidden states, and attentions. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified simultaneously, or if neither input_ids nor inputs_embeds are specified. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMModel.get_input_embeddings()
¶
Get the input embeddings for the MiniCPMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MiniCPMModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMModel.set_input_embeddings(new_embeddings)
¶
Set the input embeddings for the MiniCPMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMModel class.
TYPE:
|
new_embeddings |
The new embeddings to be set for self.embed_tokens.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method allows the user to set the input embeddings for the MiniCPMModel by replacing the current embeddings with the provided new_embeddings. The new_embeddings can be of any type or format, as long as it is compatible with the self.embed_tokens attribute. After calling this method, the MiniCPMModel instance will use the new embeddings for further processing.
Note
The new_embeddings should be compatible with the existing self.embed_tokens attribute to ensure proper functioning of the MiniCPMModel.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMPreTrainedModel
¶
Bases: PreTrainedModel
Represents a pre-trained mini version of CPM (Code-PM) model for various NLP tasks. This class inherits from PreTrainedModel and provides functionality to initialize weights for different types of cells.
The _init_weights method initializes the weights of the given cell based on the specified configuration. It sets the weights using either a normal distribution with the specified standard deviation or zeros for bias, depending on the type of the cell. For Dense cells, it initializes both weights and biases, while for Embedding cells, it initializes weights with random values and sets a specific padding index to zero if provided.
PARAMETER | DESCRIPTION |
---|---|
cell |
The cell for which weights need to be initialized.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMRMSNorm
¶
Bases: Module
MiniCPMRMSNorm is a custom layer normalization module designed to mimic the functionality of T5LayerNorm. It performs RMS-based layer normalization on the input hidden states using the provided weight and epsilon value.
PARAMETER | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden states being normalized.
TYPE:
|
eps |
A small value added to the variance to prevent division by zero. Default is 1e-06.
TYPE:
|
Inherits From
nn.Module
ATTRIBUTE | DESCRIPTION |
---|---|
weight |
The weight parameter used for normalization.
TYPE:
|
variance_epsilon |
The epsilon value added to the variance.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MiniCPMRMSNorm instance with the given hidden size and epsilon. |
forward |
Applies RMS-based layer normalization on the input hidden states using the weight and epsilon. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMRMSNorm.__init__(hidden_size, eps=1e-06)
¶
MiniCPMRMSNorm is equivalent to T5LayerNorm
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
89 90 91 92 93 94 95 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMRMSNorm.forward(hidden_states)
¶
Constructs a MiniCPMRMSNorm object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMRMSNorm class.
TYPE:
|
hidden_states |
The input hidden states to be normalized.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input hidden_states is not a valid tensor. |
ValueError
|
If the weight or variance_epsilon attributes are not set in the MiniCPMRMSNorm object. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMRotaryEmbedding
¶
Bases: Module
MiniCPMRotaryEmbedding is a class that represents a rotary positional embedding layer for neural networks. It inherits from nn.Module and provides methods for initializing the embedding layer, setting cosine and sine cache, and forwarding the embeddings based on input data. The class allows for dynamic caching of positional embeddings up to a specified maximum sequence length. The rotary embeddings are computed based on the provided dimensions, maximum position embeddings, and base values. The forwardor initializes the necessary attributes, while the _set_cos_sin_cache method precomputes and caches cosine and sine values for positional embeddings. The forward method generates the positional embeddings based on the input data and the specified sequence length.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
Initializes a new instance of the MiniCPMRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value used for calculating the inverse frequency. Defaults to 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.MiniCPMRotaryEmbedding.forward(x, seq_len=None)
¶
Construct a rotary embedding for a MiniCPM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMRotaryEmbedding class.
TYPE:
|
x |
The input tensor for which the rotary embedding needs to be forwarded.
TYPE:
|
seq_len |
The length of the sequence. If not provided, the default value is None. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Tensor]: A tuple containing two tensors, cosine and sine values of the rotary embedding, both of the same dtype as input tensor x. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If seq_len is greater than the maximum sequence length cached in the instance. |
TypeError
|
If the input dtype is not supported for the cosine and sine caches. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
446 447 448 449 450 451 452 453 454 455 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.rms_layernorm(hidden, weight, eps)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden |
The input tensor to be normalized.
TYPE:
|
weight |
The weight tensor applied to the normalized input.
TYPE:
|
eps |
A small value added to the variance to avoid division by zero.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This function does not return a value. It operates in place on the 'hidden' tensor. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the 'hidden' tensor or 'weight' tensor is not of type mindspore.Tensor. |
TypeError
|
If the 'eps' parameter is not of type float. |
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
mindnlp.transformers.models.minicpm.modeling_minicpm.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/minicpm/modeling_minicpm.py
318 319 320 321 322 323 |
|
mindnlp.transformers.models.minicpm.configuration_minicpm
¶
MiniCPM model configuration
mindnlp.transformers.models.minicpm.configuration_minicpm.MiniCPMConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [MiniCPMModel
]. It is used to instantiate an MiniCPM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MiniCPM-7B.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens, MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
rms_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
pad_token_id |
Padding token id.
TYPE:
|
bos_token_id |
Beginning of stream token id.
TYPE:
|
eos_token_id |
End of stream token id.
TYPE:
|
pretraining_tp |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to this document to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to this issue.
TYPE:
|
tie_word_embeddings |
Whether to tie weight embeddings
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
rope_scaling |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
TYPE:
|
attention_bias |
Whether to use a bias in the query, key, value and output projection layers during self-attention.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
Example
>>> from transformers import MiniCPMModel, MiniCPMConfig
...
>>> # Initializing a MiniCPM minicpm-7b style configuration
>>> configuration = MiniCPMConfig()
...
>>> # Initializing a model from the minicpm-7b style configuration
>>> model = MiniCPMModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/minicpm/configuration_minicpm.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
mindnlp.transformers.models.minicpm.configuration_minicpm.MiniCPMConfig.__init__(vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=True, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, scale_emb=1, dim_model_base=1, scale_depth=1, **kwargs)
¶
Initializes an instance of the MiniCPMConfig class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MiniCPMConfig class.
|
vocab_size |
The size of the vocabulary. Defaults to 32000.
TYPE:
|
hidden_size |
The size of the hidden layers. Defaults to 4096.
TYPE:
|
intermediate_size |
The size of the intermediate layers. Defaults to 11008.
TYPE:
|
num_hidden_layers |
The number of hidden layers. Defaults to 32.
TYPE:
|
num_attention_heads |
The number of attention heads. Defaults to 32.
TYPE:
|
num_key_value_heads |
The number of key-value heads. Defaults to None. If not provided, it will default to the value of num_attention_heads.
TYPE:
|
hidden_act |
The activation function for the hidden layers. Defaults to 'silu'.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
initializer_range |
The range for initializer values. Defaults to 0.02.
TYPE:
|
rms_norm_eps |
The epsilon value for RMS normalization. Defaults to 1e-06.
TYPE:
|
use_cache |
Flag to indicate whether to use cache or not. Defaults to True.
TYPE:
|
pad_token_id |
The ID of the padding token. Defaults to None.
TYPE:
|
bos_token_id |
The ID of the beginning-of-sentence token. Defaults to 1.
TYPE:
|
eos_token_id |
The ID of the end-of-sentence token. Defaults to 2.
TYPE:
|
pretraining_tp |
The pretraining TP value. Defaults to 1.
TYPE:
|
tie_word_embeddings |
Flag to indicate whether to tie word embeddings or not. Defaults to True.
TYPE:
|
rope_theta |
The theta value for the rope. Defaults to 10000.0.
TYPE:
|
rope_scaling |
The scaling value for the rope. Defaults to None.
TYPE:
|
attention_bias |
Flag to indicate whether to use attention bias or not. Defaults to False.
TYPE:
|
attention_dropout |
The dropout rate for attention layers. Defaults to 0.0.
TYPE:
|
scale_emb |
The scaling factor for embeddings. Defaults to 1.
TYPE:
|
dim_model_base |
The base dimension for the model. Defaults to 1.
TYPE:
|
scale_depth |
The scaling factor for the depth of the model. Defaults to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/minicpm/configuration_minicpm.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|