mistral
mindnlp.transformers.models.mistral.modeling_mistral
¶
MindSpore Mistral model.
mindnlp.transformers.models.mistral.modeling_mistral.MistralAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers".
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralAttention.__init__(config, layer_idx=None)
¶
Initializes an instance of the MistralAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The MistralAttention instance.
|
config |
The configuration object for the MistralAttention model.
TYPE:
|
layer_idx |
The index of the layer. If not provided,
it will issue a warning and may cause errors during the forward call if caching is used.
It is recommended to always provide a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, **kwargs)
¶
Constructs the MistralAttention.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MistralAttention class.
TYPE:
|
hidden_states |
The input hidden states of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
The attention mask of shape (batch_size, 1, sequence_length, key_value_sequence_length). If provided, it masks the attention scores.
TYPE:
|
position_ids |
The position IDs of shape (batch_size, sequence_length).
TYPE:
|
past_key_value |
The cached key and value states for auto-regressive decoding. This is used to speed up decoding by reusing the key and value states from previous time steps.
TYPE:
|
output_attentions |
Whether to return attention weights. Default is False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output of shape (batch_size, sequence_length, hidden_size), the attention weights of shape (batch_size, num_heads, sequence_length, key_value_sequence_length) if output_attentions is True, and the updated past key and value states if past_key_value is not None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the attention weights are not of shape (batch_size, num_heads, sequence_length, key_value_sequence_length). |
ValueError
|
If the attention mask is not of shape (batch_size, 1, sequence_length, key_value_sequence_length). |
ValueError
|
If the attention output is not of shape (batch_size, num_heads, sequence_length, hidden_size). |
ValueError
|
If the cache structure has changed since version v4.36 and past_key_value is not None. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralDecoderLayer
¶
Bases: Module
MistralDecoderLayer represents a single layer of the Mistral decoder model. This class implements the logic for processing input hidden states through self-attention mechanism and multi-layer perceptron (MLP) in a decoder layer.
Inherits From
nn.Module
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden states.
TYPE:
|
self_attn |
The self-attention mechanism used in the layer.
TYPE:
|
mlp |
The multi-layer perceptron used in the layer.
TYPE:
|
input_layernorm |
Layer normalization applied to the input hidden states.
TYPE:
|
post_attention_layernorm |
Layer normalization applied after the self-attention mechanism.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MistralDecoderLayer with the given configuration and layer index. |
forward |
Processes the input hidden states through self-attention and MLP mechanisms in the decoder layer, optionally returning additional tensors based on the arguments provided. |
PARAMETER | DESCRIPTION |
---|---|
config |
Configuration object containing model hyperparameters.
TYPE:
|
layer_idx |
Index of the layer within the decoder model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]]]: Tuple containing the output hidden states and additional tensors based on the method arguments. |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If any specific requirements are not met. |
Example
Instantiate MistralDecoderLayer:
>>> config = MistralConfig(hidden_size=512)
>>> layer = MistralDecoderLayer(config, layer_idx=1)
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralDecoderLayer.__init__(config, layer_idx)
¶
Initializes a MistralDecoderLayer object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralDecoderLayer class.
TYPE:
|
config |
An object containing configuration parameters for the layer.
TYPE:
|
layer_idx |
The index of the layer within the decoder.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not of type MistralConfig. |
ValueError
|
If the layer_idx parameter is not an integer. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM
¶
Bases: MistralPreTrainedModel
The MistralForCausalLM class represents a causal language model for Mistral. It inherits from MistralPreTrainedModel and includes methods for initializing the model, setting and getting input and output embeddings, setting the decoder, forwarding the model, and preparing inputs for generation. The class also includes a method for reordering cache during generation. The forward method handles the model's forward pass, while the prepare_inputs_for_generation method prepares inputs for generation. The class provides functionality for generating text based on input prompts.
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.__init__(config)
¶
Initializes an instance of MistralForCausalLM.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralForCausalLM class.
|
config |
A dictionary containing configuration parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not of type dict. |
ValueError
|
If the config parameter does not contain the required keys for model initialization. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast] |
Example
>>> from transformers import AutoTokenizer, MistralForCausalLM
...
>>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.get_decoder()
¶
Description: This method returns the decoder model for MistralForCausalLM.
PARAMETER | DESCRIPTION |
---|---|
self |
MistralForCausalLM
|
RETURNS | DESCRIPTION |
---|---|
model
|
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.get_input_embeddings()
¶
Method to retrieve the input embeddings from the MistralForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MistralForCausalLM class. Represents the current MistralForCausalLM model object.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns None as it simply retrieves and returns the input embeddings from the model. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.get_output_embeddings()
¶
This method returns the output embeddings for the MistralForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of MistralForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns the output embeddings (lm_head) for the MistralForCausalLM model. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepare inputs for generation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralForCausalLM class.
TYPE:
|
input_ids |
The input tensor of token IDs with shape (batch_size, sequence_length).
TYPE:
|
past_key_values |
The tuple of past key values for efficient generation. Defaults to None.
TYPE:
|
attention_mask |
The attention mask tensor with shape (batch_size, sequence_length). It indicates which tokens should be attended to (1 for tokens to attend, 0 for tokens to ignore). Defaults to None.
TYPE:
|
inputs_embeds |
The tensor of input embeddings with shape (batch_size, sequence_length, hidden_size). Defaults to None.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing model inputs for generation. It includes the following keys:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.set_decoder(decoder)
¶
Sets the decoder for the MistralForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The MistralForCausalLM instance.
TYPE:
|
decoder |
The decoder that will be set for the model. It should be an object that implements the decoding logic for the MistralForCausalLM model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.set_input_embeddings(value)
¶
Sets the input embeddings for the MistralForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance of MistralForCausalLM.
TYPE:
|
value |
The input embeddings to be set for the model. It should be a tensor of shape (vocab_size, embed_dim).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the MistralForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralForCausalLM class.
TYPE:
|
new_embeddings |
The new output embeddings to be set for the model. It should be a tensor of the same shape as the existing output embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of the new_embeddings tensor does not match the shape of the existing output embeddings. |
TypeError
|
If the new_embeddings parameter is not of type Tensor. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForSequenceClassification
¶
Bases: MistralPreTrainedModel
This class represents a Mistral model for sequence classification. It inherits from MistralPreTrainedModel and provides functionality for sequence classification tasks.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels in the classification task.
TYPE:
|
model |
The Mistral model used for the sequence classification task.
TYPE:
|
score |
The dense layer for scoring the classification logits.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MistralForSequenceClassification instance with the given configuration. |
get_input_embeddings |
Retrieves the input embeddings from the Mistral model. |
set_input_embeddings |
Sets the input embeddings for the Mistral model. |
forward |
Performs the sequence classification task and returns the classification output. Args:
Returns:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForSequenceClassification.__init__(config)
¶
Initializes an instance of the MistralForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
config |
A configuration object that holds various parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForSequenceClassification.get_input_embeddings()
¶
This method retrieves the input embeddings from the MistralForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralForSequenceClassification class.
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns None as it directly retrieves the input embeddings from the model. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralForSequenceClassification.set_input_embeddings(value)
¶
Sets the input embeddings for the MistralForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the MistralForSequenceClassification class. |
value |
The input embeddings to be set for the model. This should be a tensor of shape (vocab_size, embedding_dim).
|
RETURNS | DESCRIPTION |
---|---|
None. The method modifies the 'embed_tokens' attribute of the model in-place. |
Note
The 'embed_tokens' attribute of the MistralForSequenceClassification model is used to store the input embeddings. By setting this attribute, the user can customize the input embeddings used by the model.
Example
>>> model = MistralForSequenceClassification()
>>> embeddings = torch.randn((vocab_size, embedding_dim))
>>> model.set_input_embeddings(embeddings)
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralMLP
¶
Bases: Module
MistralMLP
This class represents a multi-layer perceptron (MLP) model for Mistral, a deep learning framework. It inherits from the nn.Module class and is designed for processing sequential data.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration object containing various parameters for the MLP.
TYPE:
|
hidden_size |
The size of the hidden layer in the MLP.
TYPE:
|
intermediate_size |
The size of the intermediate layer in the MLP.
TYPE:
|
gate_proj |
The dense layer used for projecting the input data to the intermediate size in the MLP.
TYPE:
|
up_proj |
The dense layer used for projecting the input data to the hidden size in the MLP.
TYPE:
|
down_proj |
The dense layer used for projecting the intermediate data back to the hidden size in the MLP.
TYPE:
|
act_fn |
The activation function used in the MLP.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Constructs the forward pass of the MistralMLP model. Args:
Returns:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralMLP.__init__(config)
¶
Initializes a MistralMLP object with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The MistralMLP object itself.
TYPE:
|
config |
The configuration object containing parameters for the model. It should include the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
KeyError
|
If the 'hidden_act' attribute in the config object does not match any predefined activation function. |
AttributeError
|
If the config object is missing any of the required attributes (hidden_size, intermediate_size, hidden_act). |
ValueError
|
If any of the provided attributes have invalid values or types. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralMLP.forward(x)
¶
Constructs a new instance of the MistralMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the MistralMLP class.
TYPE:
|
x |
The input data to be processed. It can be of any type.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralModel
¶
Bases: MistralPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [MistralDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
MistralConfig
TYPE:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralModel.__init__(config)
¶
init
Initialize MistralModel with the specified configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralModel class.
|
config |
An instance of MistralConfig containing the configuration settings for the MistralModel. It includes the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
This method forwards the MistralModel. It takes the following parameters:
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
input_ids |
The input tensor of shape (batch_size, seq_length) representing input IDs.
TYPE:
|
attention_mask |
An optional tensor of shape (batch_size, seq_length) representing attention mask.
TYPE:
|
position_ids |
An optional tensor representing the position IDs.
TYPE:
|
past_key_values |
An optional list of tensors representing past key values.
TYPE:
|
inputs_embeds |
An optional tensor representing input embeddings.
TYPE:
|
use_cache |
An optional boolean flag indicating whether to use cache.
TYPE:
|
output_attentions |
An optional boolean flag indicating whether to output attentions.
TYPE:
|
output_hidden_states |
An optional boolean flag indicating whether to output hidden states.
TYPE:
|
return_dict |
An optional boolean flag indicating whether to return a dictionary.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: A tuple or BaseModelOutputWithPast object containing the last hidden state, past key values, hidden states, and attentions. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified, if neither input_ids nor inputs_embeds are specified, or if an invalid argument combination is provided. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralModel.get_input_embeddings()
¶
Description: This method retrieves the input embeddings from the MistralModel instance.
PARAMETER | DESCRIPTION |
---|---|
self |
MistralModel instance The self parameter refers to the current MistralModel instance.
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns None as it simply retrieves the input embeddings from the MistralModel instance. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralModel.set_input_embeddings(value)
¶
Set the input embeddings for the MistralModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralModel class.
TYPE:
|
value |
The input embeddings value to be set for the model. Should be of type 'object'.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralPreTrainedModel
¶
Bases: PreTrainedModel
This class represents the Mistral pre-trained model for natural language processing tasks. It is a subclass of the PreTrainedModel class.
The MistralPreTrainedModel class provides methods for initializing the weights of the model's cells. The _init_weights method is used to initialize the weights of the cells in the model.
PARAMETER | DESCRIPTION |
---|---|
cell |
The cell for which the weights need to be initialized.
|
The _init_weights method initializes the weights of the given cell based on its type. If the cell is of type nn.Linear, the weights are set using a normal distribution with a range specified by the 'initializer_range' attribute in the configuration. If the cell has a bias, it is initialized with zeros. If the cell is of type nn.Embedding, the weights are initialized using a normal distribution with a range specified by the 'initializer_range' attribute in the configuration. If the cell has a padding index, the weight corresponding to the padding index is set to zero.
Note
The MistralPreTrainedModel class assumes that the cell's weight and bias attributes are accessible using the 'weight' and 'bias' properties, respectively.
Example
>>> model = MistralPreTrainedModel()
>>> model._init_weights(cell)
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralRMSNorm
¶
Bases: Module
MistralRMSNorm is a normalization layer equivalent to T5LayerNorm, designed to normalize hidden states in deep learning models. It inherits from nn.Module and provides methods for normalizing and scaling input hidden states based on the given parameters.
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden states.
TYPE:
|
eps |
The epsilon value used for numerical stability in variance calculation.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the MistralRMSNorm layer with the specified hidden_size and epsilon value. |
forward |
Normalizes the input hidden_states by calculating the variance and applying scaling. |
Example
>>> # Initialize MistralRMSNorm layer
>>> norm_layer = MistralRMSNorm(hidden_size=768, eps=1e-06)
...
>>> # Normalize hidden states
>>> normalized_states = norm_layer.forward(input_hidden_states)
Note
- This implementation assumes the use of the MindSpore deep learning framework.
- The class utilizes the Parameter and ops modules for efficient computation.
- Make sure to convert input hidden states to the appropriate data type before passing to the forward method.
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralRMSNorm.__init__(hidden_size, eps=1e-06)
¶
MistralRMSNorm is equivalent to T5LayerNorm
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
105 106 107 108 109 110 111 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralRMSNorm.forward(hidden_states)
¶
Constructs the RMS normalization of the hidden states.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralRMSNorm class.
TYPE:
|
hidden_states |
The input tensor containing the hidden states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. The normalization is applied in-place to the hidden_states tensor. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input_dtype of hidden_states is not supported. |
ValueError
|
If variance_epsilon is not a valid value. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding
¶
Bases: Module
The MistralRotaryEmbedding class represents a rotary positional embedding for sequences. It inherits from the nn.Module class and provides methods for setting up the rotary embedding and forwarding the embeddings for input sequences.
ATTRIBUTE | DESCRIPTION |
---|---|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum position for which embeddings are cached.
TYPE:
|
base |
The base value for calculating the inverse frequency.
TYPE:
|
inv_freq |
The inverse frequency values used in the embedding calculation.
TYPE:
|
max_seq_len_cached |
The maximum sequence length for which embeddings are cached.
TYPE:
|
cos_cached |
Cached cosine embeddings for positional sequences.
TYPE:
|
sin_cached |
Cached sine embeddings for positional sequences.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
_set_cos_sin_cache |
Sets up the cosine and sine cache for a given sequence length and data type. |
forward |
Constructs the embeddings for the input sequence, optionally updating the cache if the sequence length exceeds the cached values. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
Initializes a new instance of the MistralRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
dim |
The dimensionality of the embedding vectors.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value used for calculating inverse frequencies. Defaults to 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
mindnlp.transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.forward(x, seq_len=None)
¶
Constructs the MistralRotaryEmbedding.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the MistralRotaryEmbedding class.
TYPE:
|
x |
The input tensor of shape (batch_size, input_dim).
|
seq_len |
The length of the sequence. If not provided, the default value is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If seq_len is greater than the maximum sequence length cached. |
TypeError
|
If the data type of the input tensor is not supported for cosine and sine cache. |
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
mindnlp.transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
mindnlp.transformers.models.mistral.modeling_mistral.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
352 353 354 355 356 357 358 359 360 361 |
|
mindnlp.transformers.models.mistral.modeling_mistral.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/mistral/modeling_mistral.py
238 239 240 241 |
|
mindnlp.transformers.models.mistral.configuration_mistral
¶
Mistral model configuration
mindnlp.transformers.models.mistral.configuration_mistral.MistralConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [MistralModel
]. It is used to instantiate an
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
mistralai/Mistral-7B-v0.1 mistralai/Mistral-7B-Instruct-v0.1
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer encoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention allows sequence of up to 4096*32 tokens.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
rms_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
pad_token_id |
The id of the padding token.
TYPE:
|
bos_token_id |
The id of the "beginning-of-sequence" token.
TYPE:
|
eos_token_id |
The id of the "end-of-sequence" token.
TYPE:
|
tie_word_embeddings |
Whether the model's input and output word embeddings should be tied.
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
sliding_window |
Sliding window attention window size. If not specified, will default to
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
Example
>>> from transformers import MistralModel, MistralConfig
...
>>> # Initializing a Mistral 7B style configuration
>>> configuration = MistralConfig()
...
>>> # Initializing a model from the Mistral 7B style configuration
>>> model = MistralModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/mistral/configuration_mistral.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
mindnlp.transformers.models.mistral.configuration_mistral.MistralConfig.__init__(vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act='silu', max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=4096, attention_dropout=0.0, **kwargs)
¶
Initializes a MistralConfig object.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
The size of the vocabulary. Defaults to 32000.
TYPE:
|
hidden_size |
The size of the hidden states. Defaults to 4096.
TYPE:
|
intermediate_size |
The size of the intermediate layers. Defaults to 14336.
TYPE:
|
num_hidden_layers |
The number of hidden layers. Defaults to 32.
TYPE:
|
num_attention_heads |
The number of attention heads. Defaults to 32.
TYPE:
|
num_key_value_heads |
The number of key-value heads. Defaults to
TYPE:
|
hidden_act |
The activation function for the hidden layers. Defaults to 'silu'.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to
TYPE:
|
initializer_range |
The range of the initializer. Defaults to 0.02.
TYPE:
|
rms_norm_eps |
The epsilon value for RMS normalization. Defaults to 1e-06.
TYPE:
|
use_cache |
Whether to use caching. Defaults to True.
TYPE:
|
pad_token_id |
The token ID for padding. Defaults to None.
TYPE:
|
bos_token_id |
The token ID for the beginning of sentence. Defaults to 1.
TYPE:
|
eos_token_id |
The token ID for the end of sentence. Defaults to 2.
TYPE:
|
tie_word_embeddings |
Whether to tie word embeddings. Defaults to False.
TYPE:
|
rope_theta |
The theta value for rope normalization. Defaults to 10000.0.
TYPE:
|
sliding_window |
The size of the sliding window. Defaults to 4096.
TYPE:
|
attention_dropout |
The dropout rate for attention layers. Defaults to 0.0.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/mistral/configuration_mistral.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|