Skip to content

mixtral

mindnlp.transformers.models.mixtral.modeling_mixtral

MindSpore Mixtral model.

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralAttention

Bases: Module

Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers".

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
class MixtralAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """
    def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
        """
        Initializes an instance of the MixtralAttention class.

        Args:
            self: The object instance.
            config (MixtralConfig): An instance of the MixtralConfig class containing the configuration parameters
                for the attention layer.
            layer_idx (Optional[int]): The index of the layer. Defaults to None. If layer_idx is not provided,
                a warning will be logged, as not passing a `layer_idx` is not recommended and may cause errors
                during the forward call if caching is used.

        Returns:
            None.

        Raises:
            ValueError: If the `hidden_size` is not divisible by `num_heads`.
        """
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True
        self.attention_dropout = config.attention_dropout

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.rotary_emb = MixtralRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def _shape(self, tensor: mindspore.Tensor, seq_len: int, bsz: int):
        """
        This method reshapes the input tensor for the MixtralAttention layer.

        Args:
            self (MixtralAttention): An instance of the MixtralAttention class.
            tensor (mindspore.Tensor): The input tensor to be reshaped.
            seq_len (int): The length of the sequence in the tensor.
            bsz (int): The batch size of the tensor.

        Returns:
            None

        Raises:
            None

        This method reshapes the input tensor by rearranging its dimensions. The tensor is reshaped into a new shape of
        (bsz, seq_len, num_heads, head_dim) by using the view and swapaxes operations. The returned tensor has its
        dimensions rearranged to facilitate further processing in the MixtralAttention layer.
        """
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).swapaxes(1, 2)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        **kwargs,
    ) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
        '''
        Construct method in the MixtralAttention class.

        Args:
            self: The instance of the class.
            hidden_states (mindspore.Tensor): The input tensor of shape (batch_size, sequence_length, hidden_size).
            attention_mask (Optional[mindspore.Tensor]): An optional tensor of shape
                (batch_size, 1, sequence_length, sequence_length) containing the attention mask.
            position_ids (Optional[mindspore.Tensor]): An optional tensor containing the position indices of shape
                (batch_size, sequence_length).
            past_key_value (Optional[Cache]): An optional caching mechanism for previous key and value tensors.
            output_attentions (bool): A boolean flag indicating whether to return the attention weights.

        Returns:
            Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing
                the attention output tensor of shape (batch_size, sequence_length, hidden_size),
            optional attention weights tensor, and optional new key-value cache tuple.

        Raises:
            ValueError: If the cache structure has changed, attention weights or attention mask have invalid shapes,
                or if the attention output has an unexpected shape.
        '''
        bsz, q_len, _ = hidden_states.shape

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).swapaxes(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).swapaxes(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).swapaxes(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = ops.matmul(query_states, key_states.swapaxes(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.shape != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.shape}"
            )

        if attention_mask is not None:
            if attention_mask.shape != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.shape}"
                )

            attn_weights = attn_weights + attention_mask
        # upcast attention to fp32
        attn_weights = ops.softmax(attn_weights, axis=-1, dtype=mindspore.float32).to(query_states.dtype)
        attn_weights = ops.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        attn_output = ops.matmul(attn_weights, value_states)
        if attn_output.shape != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.shape}"
            )

        attn_output = attn_output.swapaxes(1, 2)
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralAttention.__init__(config, layer_idx=None)

Initializes an instance of the MixtralAttention class.

PARAMETER DESCRIPTION
self

The object instance.

config

An instance of the MixtralConfig class containing the configuration parameters for the attention layer.

TYPE: MixtralConfig

layer_idx

The index of the layer. Defaults to None. If layer_idx is not provided, a warning will be logged, as not passing a layer_idx is not recommended and may cause errors during the forward call if caching is used.

TYPE: Optional[int] DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the hidden_size is not divisible by num_heads.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
    """
    Initializes an instance of the MixtralAttention class.

    Args:
        self: The object instance.
        config (MixtralConfig): An instance of the MixtralConfig class containing the configuration parameters
            for the attention layer.
        layer_idx (Optional[int]): The index of the layer. Defaults to None. If layer_idx is not provided,
            a warning will be logged, as not passing a `layer_idx` is not recommended and may cause errors
            during the forward call if caching is used.

    Returns:
        None.

    Raises:
        ValueError: If the `hidden_size` is not divisible by `num_heads`.
    """
    super().__init__()
    self.config = config
    self.layer_idx = layer_idx
    if layer_idx is None:
        logger.warning_once(
            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
            "when creating this class."
        )

    self.hidden_size = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.hidden_size // self.num_heads
    self.num_key_value_heads = config.num_key_value_heads
    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
    self.max_position_embeddings = config.max_position_embeddings
    self.rope_theta = config.rope_theta
    self.is_causal = True
    self.attention_dropout = config.attention_dropout

    if (self.head_dim * self.num_heads) != self.hidden_size:
        raise ValueError(
            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
            f" and `num_heads`: {self.num_heads})."
        )
    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

    self.rotary_emb = MixtralRotaryEmbedding(
        self.head_dim,
        max_position_embeddings=self.max_position_embeddings,
        base=self.rope_theta,
    )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, **kwargs)

Construct method in the MixtralAttention class.

PARAMETER DESCRIPTION
self

The instance of the class.

hidden_states

The input tensor of shape (batch_size, sequence_length, hidden_size).

TYPE: Tensor

attention_mask

An optional tensor of shape (batch_size, 1, sequence_length, sequence_length) containing the attention mask.

TYPE: Optional[Tensor] DEFAULT: None

position_ids

An optional tensor containing the position indices of shape (batch_size, sequence_length).

TYPE: Optional[Tensor] DEFAULT: None

past_key_value

An optional caching mechanism for previous key and value tensors.

TYPE: Optional[Cache] DEFAULT: None

output_attentions

A boolean flag indicating whether to return the attention weights.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
Tensor

Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size),

Optional[Tensor]

optional attention weights tensor, and optional new key-value cache tuple.

RAISES DESCRIPTION
ValueError

If the cache structure has changed, attention weights or attention mask have invalid shapes, or if the attention output has an unexpected shape.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def forward(
    self,
    hidden_states: mindspore.Tensor,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    **kwargs,
) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
    '''
    Construct method in the MixtralAttention class.

    Args:
        self: The instance of the class.
        hidden_states (mindspore.Tensor): The input tensor of shape (batch_size, sequence_length, hidden_size).
        attention_mask (Optional[mindspore.Tensor]): An optional tensor of shape
            (batch_size, 1, sequence_length, sequence_length) containing the attention mask.
        position_ids (Optional[mindspore.Tensor]): An optional tensor containing the position indices of shape
            (batch_size, sequence_length).
        past_key_value (Optional[Cache]): An optional caching mechanism for previous key and value tensors.
        output_attentions (bool): A boolean flag indicating whether to return the attention weights.

    Returns:
        Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing
            the attention output tensor of shape (batch_size, sequence_length, hidden_size),
        optional attention weights tensor, and optional new key-value cache tuple.

    Raises:
        ValueError: If the cache structure has changed, attention weights or attention mask have invalid shapes,
            or if the attention output has an unexpected shape.
    '''
    bsz, q_len, _ = hidden_states.shape

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).swapaxes(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).swapaxes(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).swapaxes(1, 2)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        if self.layer_idx is None:
            raise ValueError(
                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                "with a layer index."
            )
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

    if past_key_value is not None:
        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

    # repeat k/v heads if n_kv_heads < n_heads
    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    attn_weights = ops.matmul(query_states, key_states.swapaxes(2, 3)) / math.sqrt(self.head_dim)

    if attn_weights.shape != (bsz, self.num_heads, q_len, kv_seq_len):
        raise ValueError(
            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
            f" {attn_weights.shape}"
        )

    if attention_mask is not None:
        if attention_mask.shape != (bsz, 1, q_len, kv_seq_len):
            raise ValueError(
                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.shape}"
            )

        attn_weights = attn_weights + attention_mask
    # upcast attention to fp32
    attn_weights = ops.softmax(attn_weights, axis=-1, dtype=mindspore.float32).to(query_states.dtype)
    attn_weights = ops.dropout(attn_weights, p=self.attention_dropout, training=self.training)
    attn_output = ops.matmul(attn_weights, value_states)
    if attn_output.shape != (bsz, self.num_heads, q_len, self.head_dim):
        raise ValueError(
            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
            f" {attn_output.shape}"
        )

    attn_output = attn_output.swapaxes(1, 2)
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralBlockSparseTop2MLP

Bases: Module

The MixtralBlockSparseTop2MLP class represents a neural network block that utilizes sparse top-2 multi-layer perceptron (MLP) for processing hidden states. It inherits from nn.Module and includes methods for initialization and forwardion of the MLP layers.

ATTRIBUTE DESCRIPTION
ffn_dim

The dimension of the feed-forward network.

TYPE: int

hidden_dim

The dimension of the hidden layer in the network.

TYPE: int

w1

The first dense layer in the MLP with hidden_dim input and ffn_dim output.

TYPE: Linear

w2

The second dense layer in the MLP with ffn_dim input and hidden_dim output.

TYPE: Linear

w3

The third dense layer in the MLP with hidden_dim input and ffn_dim output.

TYPE: Linear

act_fn

The activation function to be applied on the hidden states.

TYPE: function

METHOD DESCRIPTION
__init__

Initializes the MixtralBlockSparseTop2MLP instance with the provided configuration.

forward

Constructs the sparse top-2 MLP using the provided hidden states and returns the processed hidden states.

Note

The code provided in the class is an example and may not fully represent the functionality of the MixtralBlockSparseTop2MLP class.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
class MixtralBlockSparseTop2MLP(nn.Module):

    """
    The MixtralBlockSparseTop2MLP class represents a neural network block that utilizes sparse top-2 multi-layer
    perceptron (MLP) for processing hidden states. It inherits from nn.Module and includes methods for initialization
    and forwardion of the MLP layers.

    Attributes:
        ffn_dim (int): The dimension of the feed-forward network.
        hidden_dim (int): The dimension of the hidden layer in the network.
        w1 (nn.Linear): The first dense layer in the MLP with hidden_dim input and ffn_dim output.
        w2 (nn.Linear): The second dense layer in the MLP with ffn_dim input and hidden_dim output.
        w3 (nn.Linear): The third dense layer in the MLP with hidden_dim input and ffn_dim output.
        act_fn (function): The activation function to be applied on the hidden states.

    Methods:
        __init__: Initializes the MixtralBlockSparseTop2MLP instance with the provided configuration.
        forward: Constructs the sparse top-2 MLP using the provided hidden states and returns the processed
            hidden states.

    Note:
        The code provided in the class is an example and may not fully represent the functionality of the
        MixtralBlockSparseTop2MLP class.
    """
    def __init__(self, config: MixtralConfig):
        '''
        Initializes a MixtralBlockSparseTop2MLP instance.

        Args:
            self: The instance itself.
            config (MixtralConfig): An instance of MixtralConfig containing the configuration settings
                for the MixtralBlockSparseTop2MLP.

        Returns:
            None.

        Raises:
            None.
        '''
        super().__init__()
        self.ffn_dim = config.intermediate_size
        self.hidden_dim = config.hidden_size

        self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
        self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)

        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        """
        Constructs the current hidden states using the provided hidden states.

        Args:
            self (MixtralBlockSparseTop2MLP): The instance of the MixtralBlockSparseTop2MLP class.
            hidden_states (tensor): The input hidden states to be used for forwarding the current hidden states.

        Returns:
            tensor: The current hidden states forwarded based on the input hidden states.

        Raises:
            ValueError: If the input hidden_states is not in the expected format.
            RuntimeError: If there is an issue with the execution of the method.
        """
        current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
        current_hidden_states = self.w2(current_hidden_states)
        return current_hidden_states

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralBlockSparseTop2MLP.__init__(config)

Initializes a MixtralBlockSparseTop2MLP instance.

PARAMETER DESCRIPTION
self

The instance itself.

config

An instance of MixtralConfig containing the configuration settings for the MixtralBlockSparseTop2MLP.

TYPE: MixtralConfig

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
def __init__(self, config: MixtralConfig):
    '''
    Initializes a MixtralBlockSparseTop2MLP instance.

    Args:
        self: The instance itself.
        config (MixtralConfig): An instance of MixtralConfig containing the configuration settings
            for the MixtralBlockSparseTop2MLP.

    Returns:
        None.

    Raises:
        None.
    '''
    super().__init__()
    self.ffn_dim = config.intermediate_size
    self.hidden_dim = config.hidden_size

    self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
    self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
    self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)

    self.act_fn = ACT2FN[config.hidden_act]

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralBlockSparseTop2MLP.forward(hidden_states)

Constructs the current hidden states using the provided hidden states.

PARAMETER DESCRIPTION
self

The instance of the MixtralBlockSparseTop2MLP class.

TYPE: MixtralBlockSparseTop2MLP

hidden_states

The input hidden states to be used for forwarding the current hidden states.

TYPE: tensor

RETURNS DESCRIPTION
tensor

The current hidden states forwarded based on the input hidden states.

RAISES DESCRIPTION
ValueError

If the input hidden_states is not in the expected format.

RuntimeError

If there is an issue with the execution of the method.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
def forward(self, hidden_states):
    """
    Constructs the current hidden states using the provided hidden states.

    Args:
        self (MixtralBlockSparseTop2MLP): The instance of the MixtralBlockSparseTop2MLP class.
        hidden_states (tensor): The input hidden states to be used for forwarding the current hidden states.

    Returns:
        tensor: The current hidden states forwarded based on the input hidden states.

    Raises:
        ValueError: If the input hidden_states is not in the expected format.
        RuntimeError: If there is an issue with the execution of the method.
    """
    current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
    current_hidden_states = self.w2(current_hidden_states)
    return current_hidden_states

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralDecoderLayer

Bases: Module

This class represents a decoder layer for the Mixtral model, used for processing input sequences in neural network models. It includes functionality for self-attention, block sparse mixture of experts, layer normalization, and other operations specific to the Mixtral architecture.

The MixtralDecoderLayer class inherits from nn.Module and contains methods for initialization and processing input data through the decoder layer. The init method initializes the layer with configuration settings and creates necessary components such as self-attention mechanism, block sparse mixture of experts, and layer normalization.

The forward method processes the input hidden states along with optional arguments like attention mask, position ids, past key values, and various output flags. It applies layer normalization, self-attention mechanism, block sparse mixture of experts, and additional layer normalization before returning the processed hidden states. Output can include attentions weights, present key values, and router logits based on the specified output flags.

Please refer to the class code for detailed implementation and usage of the MixtralDecoderLayer.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
class MixtralDecoderLayer(nn.Module):

    """
    This class represents a decoder layer for the Mixtral model, used for processing input sequences in
    neural network models. It includes functionality for self-attention, block sparse mixture of experts,
    layer normalization, and other operations specific to the Mixtral architecture.

    The MixtralDecoderLayer class inherits from nn.Module and contains methods for initialization and processing input
    data through the decoder layer. The __init__ method initializes the layer with configuration settings and creates
    necessary components such as self-attention mechanism, block sparse mixture of experts, and layer normalization.

    The forward method processes the input hidden states along with optional arguments like attention mask,
    position ids, past key values, and various output flags. It applies layer normalization, self-attention mechanism,
    block sparse mixture of experts, and additional layer normalization before returning the processed hidden states.
    Output can include attentions weights, present key values, and router logits based on the specified output flags.

    Please refer to the class code for detailed implementation and usage of the MixtralDecoderLayer.
    """
    def __init__(self, config: MixtralConfig, layer_idx: int):
        """
        Initializes an instance of MixtralDecoderLayer.

        Args:
            self (MixtralDecoderLayer): The instance of MixtralDecoderLayer.
            config (MixtralConfig): An instance of MixtralConfig containing configuration parameters for the layer.
            layer_idx (int): An integer representing the index of the layer.

        Returns:
            None.

        Raises:
            TypeError: If config is not an instance of MixtralConfig or if layer_idx is not an integer.
        """
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = MIXTRAL_ATTENTION_CLASSES["eager"](config, layer_idx)

        self.block_sparse_moe = MixtralSparseMoeBlock(config)
        self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        past_key_value: Optional[Tuple[mindspore.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]]]:
        """
        Args:
            hidden_states (`mindspore.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`mindspore.Tensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            past_key_value (`Tuple(mindspore.Tensor)`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
                should not be returned during inference.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """
        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states, router_logits = self.block_sparse_moe(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if output_router_logits:
            outputs += (router_logits,)

        return outputs

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralDecoderLayer.__init__(config, layer_idx)

Initializes an instance of MixtralDecoderLayer.

PARAMETER DESCRIPTION
self

The instance of MixtralDecoderLayer.

TYPE: MixtralDecoderLayer

config

An instance of MixtralConfig containing configuration parameters for the layer.

TYPE: MixtralConfig

layer_idx

An integer representing the index of the layer.

TYPE: int

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If config is not an instance of MixtralConfig or if layer_idx is not an integer.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
def __init__(self, config: MixtralConfig, layer_idx: int):
    """
    Initializes an instance of MixtralDecoderLayer.

    Args:
        self (MixtralDecoderLayer): The instance of MixtralDecoderLayer.
        config (MixtralConfig): An instance of MixtralConfig containing configuration parameters for the layer.
        layer_idx (int): An integer representing the index of the layer.

    Returns:
        None.

    Raises:
        TypeError: If config is not an instance of MixtralConfig or if layer_idx is not an integer.
    """
    super().__init__()
    self.hidden_size = config.hidden_size

    self.self_attn = MIXTRAL_ATTENTION_CLASSES["eager"](config, layer_idx)

    self.block_sparse_moe = MixtralSparseMoeBlock(config)
    self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, output_router_logits=False, use_cache=False)

PARAMETER DESCRIPTION
hidden_states

input to the layer of shape (batch, seq_len, embed_dim)

TYPE: `mindspore.Tensor`

attention_mask

attention mask of size (batch, sequence_length) where padding elements are indicated by 0.

TYPE: `mindspore.Tensor`, *optional* DEFAULT: None

past_key_value

cached past key and value projection states

TYPE: `Tuple(mindspore.Tensor)`, *optional* DEFAULT: None

output_attentions

Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

TYPE: `bool`, *optional* DEFAULT: False

output_router_logits

Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference.

TYPE: `bool`, *optional* DEFAULT: False

use_cache

If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

TYPE: `bool`, *optional* DEFAULT: False

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
def forward(
    self,
    hidden_states: mindspore.Tensor,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    past_key_value: Optional[Tuple[mindspore.Tensor]] = None,
    output_attentions: Optional[bool] = False,
    output_router_logits: Optional[bool] = False,
    use_cache: Optional[bool] = False,
) -> Tuple[mindspore.Tensor, Optional[Tuple[mindspore.Tensor, mindspore.Tensor]]]:
    """
    Args:
        hidden_states (`mindspore.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
        attention_mask (`mindspore.Tensor`, *optional*): attention mask of size
            `(batch, sequence_length)` where padding elements are indicated by 0.
        past_key_value (`Tuple(mindspore.Tensor)`, *optional*): cached past key and value projection states
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
            returned tensors for more detail.
        output_router_logits (`bool`, *optional*):
            Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
            should not be returned during inference.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
            (see `past_key_values`).
    """
    residual = hidden_states

    hidden_states = self.input_layernorm(hidden_states)

    # Self Attention
    hidden_states, self_attn_weights, present_key_value = self.self_attn(
        hidden_states=hidden_states,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_value=past_key_value,
        output_attentions=output_attentions,
        use_cache=use_cache,
    )
    hidden_states = residual + hidden_states

    # Fully Connected
    residual = hidden_states
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states, router_logits = self.block_sparse_moe(hidden_states)
    hidden_states = residual + hidden_states

    outputs = (hidden_states,)

    if output_attentions:
        outputs += (self_attn_weights,)

    if use_cache:
        outputs += (present_key_value,)

    if output_router_logits:
        outputs += (router_logits,)

    return outputs

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM

Bases: MixtralPreTrainedModel

Represents a Mixtral model for causal language modeling.

This class provides methods for initializing the model, setting and getting input and output embeddings, setting and getting the decoder, forwarding the model, preparing inputs for generation, and reordering cache values.

The class inherits from MixtralPreTrainedModel. The class also includes a detailed example demonstrating the usage of the MixtralForCausalLM model for generating text.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
class MixtralForCausalLM(MixtralPreTrainedModel):
    """
    Represents a Mixtral model for causal language modeling.

    This class provides methods for initializing the model, setting and getting input and output embeddings,
    setting and getting the decoder, forwarding the model, preparing inputs for generation, and reordering
    cache values.

    The class inherits from MixtralPreTrainedModel.
    The class also includes a detailed example demonstrating the usage of the MixtralForCausalLM model for
    generating text.
    """
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        """
        Initializes an instance of the MixtralForCausalLM class.

        Args:
            self: The instance of the class.
            config:
                A dictionary containing configuration parameters for the model.

                - Type: dict
                - Purpose: Specifies the configuration settings for the model.
                - Restrictions: Must be a valid dictionary object.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.model = MixtralModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = config.num_local_experts
        self.num_experts_per_tok = config.num_experts_per_tok
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """Retrieve input embeddings from the model.

        Args:
            self (MixtralForCausalLM): The instance of the MixtralForCausalLM class.

        Returns:
            None: This method returns the input embeddings from the model.

        Raises:
            None.
        """
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        """
        Sets the input embeddings of the MixtralForCausalLM model.

        Args:
            self (MixtralForCausalLM): The instance of the MixtralForCausalLM class.
            value (object): The new input embeddings to be set for the model.
                It can be of any compatible type that can be assigned to the 'embed_tokens' attribute of the model.

        Returns:
            None: This method updates the 'embed_tokens' attribute of the model in place.

        Raises:
            None.
        """
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        """
        Retrieve the output embeddings from the MixtralForCausalLM model.

        Args:
            self: An instance of the MixtralForCausalLM class.

        Returns:
            The output embeddings of the model.

        Raises:
            None.

        This method retrieves the output embeddings from the MixtralForCausalLM model.
        The output embeddings represent the learned representations of the model's output tokens.
        These embeddings can be used for downstream tasks such as fine-tuning or further analysis.
        """
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        """
        Set the output embeddings of the MixtralForCausalLM model.

        Args:
            self (MixtralForCausalLM): The instance of the MixtralForCausalLM model.
            new_embeddings (object): The new output embeddings to be set for the model.
                Should be compatible with the model's architecture and dimensions.

        Returns:
            None.

        Raises:
            None.
        """
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        """
        Sets the decoder for MixtralForCausalLM.

        Args:
            self (MixtralForCausalLM): The instance of MixtralForCausalLM.
            decoder: The decoder object to be set for the model.

        Returns:
            None.

        Raises:
            None.
        """
        self.model = decoder

    def get_decoder(self):
        """
        Method to retrieve the decoder from the MixtralForCausalLM model.

        Args:
            self (MixtralForCausalLM): The instance of MixtralForCausalLM class.
                This parameter is required to access the model.
                It should be an instance of the MixtralForCausalLM class.

        Returns:
            None: This method returns None as it simply retrieves and returns the model's decoder.

        Raises:
            None.
        """
        return self.model

    def forward(
        self,
        input_ids: mindspore.Tensor = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[List[mindspore.Tensor]] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:
            Union[Tuple, MoeCausalLMOutputWithPast]

        Example:
            ```python
            >>> from transformers import AutoTokenizer, MixtralForCausalLM
            ...
            >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
            >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
            ...
            >>> prompt = "Hey, are you conscious? Can you talk to me?"
            >>> inputs = tokenizer(prompt, return_tensors="pt")
            ...
            >>> # Generate
            >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
            >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
            "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
            ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :]
            shift_labels = labels[..., 1:]
            # Flatten the tokens
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            loss = ops.cross_entropy(shift_logits, shift_labels)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits if return_dict else outputs[-1],
                self.num_experts,
                self.num_experts_per_tok,
                attention_mask,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss

        if not return_dict:
            output = (logits,) + outputs[1:]
            if output_router_logits:
                output = (aux_loss,) + output
            return (loss,) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        output_router_logits=False,
        **kwargs,
    ):
        """
        Prepare inputs for generation in the MixtralForCausalLM class.

        Args:
            self (object): The instance of the MixtralForCausalLM class.
            input_ids (torch.Tensor): The input tensor containing tokenized input IDs.
            past_key_values (Cache or tuple or None): The past key values for autoregressive generation or
                None if no past values are available.
            attention_mask (torch.Tensor or None): The attention mask tensor to avoid attending to padding tokens,
                or None if no mask is provided.
            inputs_embeds (torch.Tensor or None): The input embeddings tensor, or None if input_ids is used for embeddings.
            output_router_logits (bool): A flag indicating whether to output router logits for routing the generated tokens.

        Returns:
            dict: A dictionary containing the model inputs for generation, including input_ids, position_ids,
                past_key_values, use_cache, attention_mask, and output_router_logits.

        Raises:
            ValueError: If the input_ids and attention_mask dimensions are inconsistent or if the cache length
                exceeds the maximum length.
            TypeError: If the past_key_values type is invalid.
            IndexError: If the input_ids shape is invalid.
        """
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids = position_ids.masked_fill(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "output_router_logits": output_router_logits,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        """
        Reorders the cache for each layer in the MixtralForCausalLM class based on the provided beam index.

        Args:
            past_key_values (tuple): A tuple of past key values for each layer in the model.
                Each element in the tuple represents the past key values for a single layer,
                and is itself a tuple of tensors.
            beam_idx (torch.Tensor): A tensor containing the beam indices.

        Returns:
            tuple: The reordered past key values for each layer.
                Each element in the tuple represents the reordered past key values for a single layer,
                and is itself a tuple of tensors.

        Raises:
            None.

        Note:
            This method is a static method, which means it can be called on the class itself
            without creating an instance of the class.

        Example:
            ```python
            >>> past_key_values = ((tensor([[1, 2, 3]]), tensor([[4, 5, 6]]))),
            (tensor([[7, 8, 9]]), tensor([[10, 11, 12]]))))
            >>> beam_idx = tensor([1, 0])
            >>> reordered_past = MixtralForCausalLM._reorder_cache(past_key_values, beam_idx)
            >>> print(reordered_past)
            ((tensor([[4, 5, 6]]), tensor([[1, 2, 3]]))),
             (tensor([[10, 11, 12]]), tensor([[7, 8, 9]]))))
             ```
        """
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),
            )
        return reordered_past

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.__init__(config)

Initializes an instance of the MixtralForCausalLM class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

A dictionary containing configuration parameters for the model.

  • Type: dict
  • Purpose: Specifies the configuration settings for the model.
  • Restrictions: Must be a valid dictionary object.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
def __init__(self, config):
    """
    Initializes an instance of the MixtralForCausalLM class.

    Args:
        self: The instance of the class.
        config:
            A dictionary containing configuration parameters for the model.

            - Type: dict
            - Purpose: Specifies the configuration settings for the model.
            - Restrictions: Must be a valid dictionary object.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.model = MixtralModel(config)
    self.vocab_size = config.vocab_size
    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
    self.router_aux_loss_coef = config.router_aux_loss_coef
    self.num_experts = config.num_local_experts
    self.num_experts_per_tok = config.num_experts_per_tok
    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_router_logits=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, MoeCausalLMOutputWithPast]

Union[Tuple, MoeCausalLMOutputWithPast]

Example
>>> from transformers import AutoTokenizer, MixtralForCausalLM
...
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
def forward(
    self,
    input_ids: mindspore.Tensor = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[List[mindspore.Tensor]] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    output_router_logits: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

    Returns:
        Union[Tuple, MoeCausalLMOutputWithPast]

    Example:
        ```python
        >>> from transformers import AutoTokenizer, MixtralForCausalLM
        ...
        >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
        >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
        ...
        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")
        ...
        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_router_logits = (
        output_router_logits if output_router_logits is not None else self.config.output_router_logits
    )

    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        output_router_logits=output_router_logits,
        return_dict=return_dict,
    )

    hidden_states = outputs[0]
    logits = self.lm_head(hidden_states)
    logits = logits.float()

    loss = None
    if labels is not None:
        # Shift so that tokens < n predict n
        shift_logits = logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        # Flatten the tokens
        shift_logits = shift_logits.view(-1, self.config.vocab_size)
        shift_labels = shift_labels.view(-1)
        # Enable model parallelism
        loss = ops.cross_entropy(shift_logits, shift_labels)

    aux_loss = None
    if output_router_logits:
        aux_loss = load_balancing_loss_func(
            outputs.router_logits if return_dict else outputs[-1],
            self.num_experts,
            self.num_experts_per_tok,
            attention_mask,
        )
        if labels is not None:
            loss += self.router_aux_loss_coef * aux_loss

    if not return_dict:
        output = (logits,) + outputs[1:]
        if output_router_logits:
            output = (aux_loss,) + output
        return (loss,) + output if loss is not None else output

    return MoeCausalLMOutputWithPast(
        loss=loss,
        aux_loss=aux_loss,
        logits=logits,
        past_key_values=outputs.past_key_values,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        router_logits=outputs.router_logits,
    )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.get_decoder()

Method to retrieve the decoder from the MixtralForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of MixtralForCausalLM class. This parameter is required to access the model. It should be an instance of the MixtralForCausalLM class.

TYPE: MixtralForCausalLM

RETURNS DESCRIPTION
None

This method returns None as it simply retrieves and returns the model's decoder.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
def get_decoder(self):
    """
    Method to retrieve the decoder from the MixtralForCausalLM model.

    Args:
        self (MixtralForCausalLM): The instance of MixtralForCausalLM class.
            This parameter is required to access the model.
            It should be an instance of the MixtralForCausalLM class.

    Returns:
        None: This method returns None as it simply retrieves and returns the model's decoder.

    Raises:
        None.
    """
    return self.model

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.get_input_embeddings()

Retrieve input embeddings from the model.

PARAMETER DESCRIPTION
self

The instance of the MixtralForCausalLM class.

TYPE: MixtralForCausalLM

RETURNS DESCRIPTION
None

This method returns the input embeddings from the model.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
def get_input_embeddings(self):
    """Retrieve input embeddings from the model.

    Args:
        self (MixtralForCausalLM): The instance of the MixtralForCausalLM class.

    Returns:
        None: This method returns the input embeddings from the model.

    Raises:
        None.
    """
    return self.model.embed_tokens

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.get_output_embeddings()

Retrieve the output embeddings from the MixtralForCausalLM model.

PARAMETER DESCRIPTION
self

An instance of the MixtralForCausalLM class.

RETURNS DESCRIPTION

The output embeddings of the model.

This method retrieves the output embeddings from the MixtralForCausalLM model. The output embeddings represent the learned representations of the model's output tokens. These embeddings can be used for downstream tasks such as fine-tuning or further analysis.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
def get_output_embeddings(self):
    """
    Retrieve the output embeddings from the MixtralForCausalLM model.

    Args:
        self: An instance of the MixtralForCausalLM class.

    Returns:
        The output embeddings of the model.

    Raises:
        None.

    This method retrieves the output embeddings from the MixtralForCausalLM model.
    The output embeddings represent the learned representations of the model's output tokens.
    These embeddings can be used for downstream tasks such as fine-tuning or further analysis.
    """
    return self.lm_head

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, output_router_logits=False, **kwargs)

Prepare inputs for generation in the MixtralForCausalLM class.

PARAMETER DESCRIPTION
self

The instance of the MixtralForCausalLM class.

TYPE: object

input_ids

The input tensor containing tokenized input IDs.

TYPE: Tensor

past_key_values

The past key values for autoregressive generation or None if no past values are available.

TYPE: Cache or tuple or None DEFAULT: None

attention_mask

The attention mask tensor to avoid attending to padding tokens, or None if no mask is provided.

TYPE: Tensor or None DEFAULT: None

inputs_embeds

The input embeddings tensor, or None if input_ids is used for embeddings.

TYPE: Tensor or None DEFAULT: None

output_router_logits

A flag indicating whether to output router logits for routing the generated tokens.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
dict

A dictionary containing the model inputs for generation, including input_ids, position_ids, past_key_values, use_cache, attention_mask, and output_router_logits.

RAISES DESCRIPTION
ValueError

If the input_ids and attention_mask dimensions are inconsistent or if the cache length exceeds the maximum length.

TypeError

If the past_key_values type is invalid.

IndexError

If the input_ids shape is invalid.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
def prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    output_router_logits=False,
    **kwargs,
):
    """
    Prepare inputs for generation in the MixtralForCausalLM class.

    Args:
        self (object): The instance of the MixtralForCausalLM class.
        input_ids (torch.Tensor): The input tensor containing tokenized input IDs.
        past_key_values (Cache or tuple or None): The past key values for autoregressive generation or
            None if no past values are available.
        attention_mask (torch.Tensor or None): The attention mask tensor to avoid attending to padding tokens,
            or None if no mask is provided.
        inputs_embeds (torch.Tensor or None): The input embeddings tensor, or None if input_ids is used for embeddings.
        output_router_logits (bool): A flag indicating whether to output router logits for routing the generated tokens.

    Returns:
        dict: A dictionary containing the model inputs for generation, including input_ids, position_ids,
            past_key_values, use_cache, attention_mask, and output_router_logits.

    Raises:
        ValueError: If the input_ids and attention_mask dimensions are inconsistent or if the cache length
            exceeds the maximum length.
        TypeError: If the past_key_values type is invalid.
        IndexError: If the input_ids shape is invalid.
    """
    # Omit tokens covered by past_key_values
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
            max_cache_length = past_key_values.get_max_length()
        else:
            cache_length = past_length = past_key_values[0][0].shape[2]
            max_cache_length = None

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
            max_cache_length is not None
            and attention_mask is not None
            and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get("position_ids", None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids = position_ids.masked_fill(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and past_key_values is None:
        model_inputs = {"inputs_embeds": inputs_embeds}
    else:
        model_inputs = {"input_ids": input_ids}

    model_inputs.update(
        {
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
            "output_router_logits": output_router_logits,
        }
    )
    return model_inputs

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.set_decoder(decoder)

Sets the decoder for MixtralForCausalLM.

PARAMETER DESCRIPTION
self

The instance of MixtralForCausalLM.

TYPE: MixtralForCausalLM

decoder

The decoder object to be set for the model.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
def set_decoder(self, decoder):
    """
    Sets the decoder for MixtralForCausalLM.

    Args:
        self (MixtralForCausalLM): The instance of MixtralForCausalLM.
        decoder: The decoder object to be set for the model.

    Returns:
        None.

    Raises:
        None.
    """
    self.model = decoder

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.set_input_embeddings(value)

Sets the input embeddings of the MixtralForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of the MixtralForCausalLM class.

TYPE: MixtralForCausalLM

value

The new input embeddings to be set for the model. It can be of any compatible type that can be assigned to the 'embed_tokens' attribute of the model.

TYPE: object

RETURNS DESCRIPTION
None

This method updates the 'embed_tokens' attribute of the model in place.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
def set_input_embeddings(self, value):
    """
    Sets the input embeddings of the MixtralForCausalLM model.

    Args:
        self (MixtralForCausalLM): The instance of the MixtralForCausalLM class.
        value (object): The new input embeddings to be set for the model.
            It can be of any compatible type that can be assigned to the 'embed_tokens' attribute of the model.

    Returns:
        None: This method updates the 'embed_tokens' attribute of the model in place.

    Raises:
        None.
    """
    self.model.embed_tokens = value

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.set_output_embeddings(new_embeddings)

Set the output embeddings of the MixtralForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of the MixtralForCausalLM model.

TYPE: MixtralForCausalLM

new_embeddings

The new output embeddings to be set for the model. Should be compatible with the model's architecture and dimensions.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
def set_output_embeddings(self, new_embeddings):
    """
    Set the output embeddings of the MixtralForCausalLM model.

    Args:
        self (MixtralForCausalLM): The instance of the MixtralForCausalLM model.
        new_embeddings (object): The new output embeddings to be set for the model.
            Should be compatible with the model's architecture and dimensions.

    Returns:
        None.

    Raises:
        None.
    """
    self.lm_head = new_embeddings

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification

Bases: MixtralPreTrainedModel

MixtralForSequenceClassification

This class represents a Mixtral model for sequence classification. It inherits from MixtralPreTrainedModel and is designed to handle sequence classification tasks. It includes methods for initializing the model, getting and setting input embeddings, and forwarding the model for sequence classification. The class also provides detailed documentation for the forward method, which accepts various input parameters and returns the sequence classification output.

ATTRIBUTE DESCRIPTION
num_labels

An integer representing the number of labels for sequence classification.

model

An instance of MixtralModel used for the sequence classification task.

score

A neural network module for generating scores based on hidden states.

METHOD DESCRIPTION
__init__

Initializes the MixtralForSequenceClassification instance with the provided configuration.

get_input_embeddings

Retrieves the input embeddings from the model.

set_input_embeddings

Sets the input embeddings for the model.

forward

Constructs the model for sequence classification, processing the input data and returning the sequence classification output.

The forward method supports various optional input parameters, including input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, and return_dict. The labels parameter is optional and can be used for computing the sequence classification/regression loss. The method also handles different problem types such as regression, single-label classification, and multi-label classification, and computes the loss accordingly.

RETURNS DESCRIPTION

Conditional returns:

  • When return_dict is False, the forward method returns a tuple containing the loss and other sequence classifier outputs.
  • When return_dict is True, it returns a SequenceClassifierOutputWithPast object that includes the loss, logits, past_key_values, hidden_states, and attentions.
Note

The class documentation and method descriptions are based on the provided Python code and its associated functionality.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
class MixtralForSequenceClassification(MixtralPreTrainedModel):

    """
    MixtralForSequenceClassification

    This class represents a Mixtral model for sequence classification. It inherits from MixtralPreTrainedModel and
    is designed to handle sequence classification tasks. It includes methods for initializing the model, getting and
    setting input embeddings, and forwarding the model for sequence classification.
    The class also provides detailed documentation for the forward method, which accepts various input parameters and
    returns the sequence classification output.

    Attributes:
        num_labels: An integer representing the number of labels for sequence classification.
        model: An instance of MixtralModel used for the sequence classification task.
        score: A neural network module for generating scores based on hidden states.

    Methods:
        __init__: Initializes the MixtralForSequenceClassification instance with the provided configuration.
        get_input_embeddings: Retrieves the input embeddings from the model.
        set_input_embeddings: Sets the input embeddings for the model.
        forward: Constructs the model for sequence classification, processing the input data and returning the
            sequence classification output.

    The forward method supports various optional input parameters, including input_ids, attention_mask, position_ids,
    past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, and return_dict.
    The labels parameter is optional and can be used for computing the sequence classification/regression loss.
    The method also handles different problem types such as regression, single-label classification, and multi-label
    classification, and computes the loss accordingly.

    Returns:
        Conditional returns:

            - When return_dict is False, the forward method returns a tuple containing the loss and other sequence
            classifier outputs.
            - When return_dict is True, it returns a SequenceClassifierOutputWithPast object that
            includes the loss, logits, past_key_values, hidden_states, and attentions.

    Note:
        The class documentation and method descriptions are based on the provided Python code and its associated functionality.
    """
    def __init__(self, config):
        """
        Initializes an instance of MixtralForSequenceClassification class.

        Args:
            self: The object instance itself.
            config (object): An object containing configuration settings for the model.
                It should have a 'num_labels' attribute specifying the number of output labels.

        Returns:
            None.

        Raises:
            AttributeError: If the 'config' parameter does not contain the required 'num_labels' attribute.
            TypeError: If the 'config' parameter is not of the expected type.
            ValueError: If there are issues during the initialization process.
        """
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = MixtralModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Method: get_input_embeddings

        Description:
        This method retrieves the input embeddings from the model.

        Args:
            self: An instance of the MixtralForSequenceClassification class.

        Returns:
            None: This method does not return any value.

        Raises:
            None
        """
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        """
        Set the input embeddings for the MixtralForSequenceClassification model.

        Args:
            self (MixtralForSequenceClassification): The instance of the MixtralForSequenceClassification class.
            value (torch.Tensor): The input embeddings to be set for the model. It should be of type torch.Tensor.

        Returns:
            None.

        Raises:
            None.
        """
        self.model.embed_tokens = value

    def forward(
        self,
        input_ids: mindspore.Tensor = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[List[mindspore.Tensor]] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = ops.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
            else:
                sequence_lengths = -1

        pooled_logits = logits[ops.arange(batch_size), sequence_lengths]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse_loss(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy_with_logits(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification.__init__(config)

Initializes an instance of MixtralForSequenceClassification class.

PARAMETER DESCRIPTION
self

The object instance itself.

config

An object containing configuration settings for the model. It should have a 'num_labels' attribute specifying the number of output labels.

TYPE: object

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
AttributeError

If the 'config' parameter does not contain the required 'num_labels' attribute.

TypeError

If the 'config' parameter is not of the expected type.

ValueError

If there are issues during the initialization process.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
def __init__(self, config):
    """
    Initializes an instance of MixtralForSequenceClassification class.

    Args:
        self: The object instance itself.
        config (object): An object containing configuration settings for the model.
            It should have a 'num_labels' attribute specifying the number of output labels.

    Returns:
        None.

    Raises:
        AttributeError: If the 'config' parameter does not contain the required 'num_labels' attribute.
        TypeError: If the 'config' parameter is not of the expected type.
        ValueError: If there are issues during the initialization process.
    """
    super().__init__(config)
    self.num_labels = config.num_labels
    self.model = MixtralModel(config)
    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
def forward(
    self,
    input_ids: mindspore.Tensor = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[List[mindspore.Tensor]] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    transformer_outputs = self.model(
        input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = transformer_outputs[0]
    logits = self.score(hidden_states)

    if input_ids is not None:
        batch_size = input_ids.shape[0]
    else:
        batch_size = inputs_embeds.shape[0]

    if self.config.pad_token_id is None and batch_size != 1:
        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
    if self.config.pad_token_id is None:
        sequence_lengths = -1
    else:
        if input_ids is not None:
            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
            sequence_lengths = ops.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
            sequence_lengths = sequence_lengths % input_ids.shape[-1]
        else:
            sequence_lengths = -1

    pooled_logits = logits[ops.arange(batch_size), sequence_lengths]

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse_loss(pooled_logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(pooled_logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(pooled_logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy_with_logits(pooled_logits, labels)
    if not return_dict:
        output = (pooled_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutputWithPast(
        loss=loss,
        logits=pooled_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification.get_input_embeddings()

Description: This method retrieves the input embeddings from the model.

PARAMETER DESCRIPTION
self

An instance of the MixtralForSequenceClassification class.

RETURNS DESCRIPTION
None

This method does not return any value.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
def get_input_embeddings(self):
    """
    Method: get_input_embeddings

    Description:
    This method retrieves the input embeddings from the model.

    Args:
        self: An instance of the MixtralForSequenceClassification class.

    Returns:
        None: This method does not return any value.

    Raises:
        None
    """
    return self.model.embed_tokens

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification.set_input_embeddings(value)

Set the input embeddings for the MixtralForSequenceClassification model.

PARAMETER DESCRIPTION
self

The instance of the MixtralForSequenceClassification class.

TYPE: MixtralForSequenceClassification

value

The input embeddings to be set for the model. It should be of type torch.Tensor.

TYPE: Tensor

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
def set_input_embeddings(self, value):
    """
    Set the input embeddings for the MixtralForSequenceClassification model.

    Args:
        self (MixtralForSequenceClassification): The instance of the MixtralForSequenceClassification class.
        value (torch.Tensor): The input embeddings to be set for the model. It should be of type torch.Tensor.

    Returns:
        None.

    Raises:
        None.
    """
    self.model.embed_tokens = value

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralModel

Bases: MixtralPreTrainedModel

Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [MixtralDecoderLayer]

PARAMETER DESCRIPTION
config

MixtralConfig

TYPE: MixtralConfig

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
class MixtralModel(MixtralPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]

    Args:
        config: MixtralConfig
    """
    def __init__(self, config: MixtralConfig):
        """
        Initializes an instance of the MixtralModel class.

        Args:
            self: The instance of the class.
            config (MixtralConfig): The configuration object containing various parameters for the model.

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Get the input embeddings for the MixtralModel.

        Args:
            self: The instance of the MixtralModel class.

        Returns:
            embed_tokens: This method returns the input embeddings for the MixtralModel.

        Raises:
            None.
        """
        return self.embed_tokens

    def set_input_embeddings(self, value):
        """
        Set the input embeddings for the MixtralModel.

        Args:
            self (MixtralModel): The instance of the MixtralModel class.
            value (Any): The input embeddings to be set for the model. It can be of any valid type.

        Returns:
            None.

        Raises:
            None.
        """
        self.embed_tokens = value

    def forward(
        self,
        input_ids: mindspore.Tensor = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[List[mindspore.Tensor]] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MoeModelOutputWithPast]:
        """
        Constructs the MixtralModel.

        Args:
            self: The object itself.
            input_ids (mindspore.Tensor, optional): The input tensor IDs. Default is None.
            attention_mask (mindspore.Tensor, optional): The attention mask tensor. Default is None.
            position_ids (mindspore.Tensor, optional): The position IDs tensor. Default is None.
            past_key_values (List[mindspore.Tensor], optional): The list of past key value tensors. Default is None.
            inputs_embeds (mindspore.Tensor, optional): The input embeddings tensor. Default is None.
            use_cache (bool, optional): Whether to use cache. Default is None.
            output_attentions (bool, optional): Whether to output attention tensors. Default is None.
            output_hidden_states (bool, optional): Whether to output hidden states. Default is None.
            output_router_logits (bool, optional): Whether to output router logits. Default is None.
            return_dict (bool, optional): Whether to return a dictionary. Default is None.

        Returns:
            Union[Tuple, MoeModelOutputWithPast]: The output of the MixtralModel, which can be a tuple or
                an instance of MoeModelOutputWithPast.

        Raises:
            ValueError: If both input_ids and inputs_embeds are specified.
            ValueError: If neither input_ids nor inputs_embeds are specified.
            Warning: If use_cache is True and gradient checkpointing is enabled.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        if input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        past_key_values_length = 0

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            position_ids = ops.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=mindspore.int64
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # 4d mask is passed through the layers
        attention_mask = _prepare_4d_causal_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
            sliding_window=self.config.sliding_window,
        )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                output_router_logits=output_router_logits,
                use_cache=use_cache,
            )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

            if output_router_logits:
                all_router_logits += (layer_outputs[-1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
                if v is not None
            )
        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            router_logits=all_router_logits,
        )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralModel.__init__(config)

Initializes an instance of the MixtralModel class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing various parameters for the model.

TYPE: MixtralConfig

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
def __init__(self, config: MixtralConfig):
    """
    Initializes an instance of the MixtralModel class.

    Args:
        self: The instance of the class.
        config (MixtralConfig): The configuration object containing various parameters for the model.

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.padding_idx = config.pad_token_id
    self.vocab_size = config.vocab_size

    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
    self.layers = nn.ModuleList(
        [MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
    )
    self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    self.gradient_checkpointing = False
    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_router_logits=None, return_dict=None)

Constructs the MixtralModel.

PARAMETER DESCRIPTION
self

The object itself.

input_ids

The input tensor IDs. Default is None.

TYPE: Tensor DEFAULT: None

attention_mask

The attention mask tensor. Default is None.

TYPE: Tensor DEFAULT: None

position_ids

The position IDs tensor. Default is None.

TYPE: Tensor DEFAULT: None

past_key_values

The list of past key value tensors. Default is None.

TYPE: List[Tensor] DEFAULT: None

inputs_embeds

The input embeddings tensor. Default is None.

TYPE: Tensor DEFAULT: None

use_cache

Whether to use cache. Default is None.

TYPE: bool DEFAULT: None

output_attentions

Whether to output attention tensors. Default is None.

TYPE: bool DEFAULT: None

output_hidden_states

Whether to output hidden states. Default is None.

TYPE: bool DEFAULT: None

output_router_logits

Whether to output router logits. Default is None.

TYPE: bool DEFAULT: None

return_dict

Whether to return a dictionary. Default is None.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, MoeModelOutputWithPast]

Union[Tuple, MoeModelOutputWithPast]: The output of the MixtralModel, which can be a tuple or an instance of MoeModelOutputWithPast.

RAISES DESCRIPTION
ValueError

If both input_ids and inputs_embeds are specified.

ValueError

If neither input_ids nor inputs_embeds are specified.

Warning

If use_cache is True and gradient checkpointing is enabled.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
def forward(
    self,
    input_ids: mindspore.Tensor = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[List[mindspore.Tensor]] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    output_router_logits: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
    """
    Constructs the MixtralModel.

    Args:
        self: The object itself.
        input_ids (mindspore.Tensor, optional): The input tensor IDs. Default is None.
        attention_mask (mindspore.Tensor, optional): The attention mask tensor. Default is None.
        position_ids (mindspore.Tensor, optional): The position IDs tensor. Default is None.
        past_key_values (List[mindspore.Tensor], optional): The list of past key value tensors. Default is None.
        inputs_embeds (mindspore.Tensor, optional): The input embeddings tensor. Default is None.
        use_cache (bool, optional): Whether to use cache. Default is None.
        output_attentions (bool, optional): Whether to output attention tensors. Default is None.
        output_hidden_states (bool, optional): Whether to output hidden states. Default is None.
        output_router_logits (bool, optional): Whether to output router logits. Default is None.
        return_dict (bool, optional): Whether to return a dictionary. Default is None.

    Returns:
        Union[Tuple, MoeModelOutputWithPast]: The output of the MixtralModel, which can be a tuple or
            an instance of MoeModelOutputWithPast.

    Raises:
        ValueError: If both input_ids and inputs_embeds are specified.
        ValueError: If neither input_ids nor inputs_embeds are specified.
        Warning: If use_cache is True and gradient checkpointing is enabled.
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_router_logits = (
        output_router_logits if output_router_logits is not None else self.config.output_router_logits
    )
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    use_cache = use_cache if use_cache is not None else self.config.use_cache

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # retrieve input_ids and inputs_embeds
    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
    if input_ids is not None:
        batch_size, seq_length = input_ids.shape
    elif inputs_embeds is not None:
        batch_size, seq_length, _ = inputs_embeds.shape
    else:
        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

    past_key_values_length = 0

    if self.gradient_checkpointing and self.training:
        if use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

    if use_cache:
        use_legacy_cache = not isinstance(past_key_values, Cache)
        if use_legacy_cache:
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        past_key_values_length = past_key_values.get_usable_length(seq_length)

    if position_ids is None:
        position_ids = ops.arange(
            past_key_values_length, seq_length + past_key_values_length, dtype=mindspore.int64
        )
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
    else:
        position_ids = position_ids.view(-1, seq_length).long()

    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)

    # 4d mask is passed through the layers
    attention_mask = _prepare_4d_causal_attention_mask(
        attention_mask,
        (batch_size, seq_length),
        inputs_embeds,
        past_key_values_length,
        sliding_window=self.config.sliding_window,
    )

    hidden_states = inputs_embeds

    # decoder layers
    all_hidden_states = () if output_hidden_states else None
    all_self_attns = () if output_attentions else None
    all_router_logits = () if output_router_logits else None
    next_decoder_cache = None

    for decoder_layer in self.layers:
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        layer_outputs = decoder_layer(
            hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_values,
            output_attentions=output_attentions,
            output_router_logits=output_router_logits,
            use_cache=use_cache,
        )

        hidden_states = layer_outputs[0]
        if use_cache:
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]

        if output_attentions:
            all_self_attns += (layer_outputs[1],)

        if output_router_logits:
            all_router_logits += (layer_outputs[-1],)

    hidden_states = self.norm(hidden_states)

    # add hidden states from the last decoder layer
    if output_hidden_states:
        all_hidden_states += (hidden_states,)

    next_cache = None
    if use_cache:
        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

    if not return_dict:
        return tuple(
            v
            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
            if v is not None
        )
    return MoeModelOutputWithPast(
        last_hidden_state=hidden_states,
        past_key_values=next_cache,
        hidden_states=all_hidden_states,
        attentions=all_self_attns,
        router_logits=all_router_logits,
    )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralModel.get_input_embeddings()

Get the input embeddings for the MixtralModel.

PARAMETER DESCRIPTION
self

The instance of the MixtralModel class.

RETURNS DESCRIPTION
embed_tokens

This method returns the input embeddings for the MixtralModel.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
931
932
933
934
935
936
937
938
939
940
941
942
943
944
def get_input_embeddings(self):
    """
    Get the input embeddings for the MixtralModel.

    Args:
        self: The instance of the MixtralModel class.

    Returns:
        embed_tokens: This method returns the input embeddings for the MixtralModel.

    Raises:
        None.
    """
    return self.embed_tokens

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralModel.set_input_embeddings(value)

Set the input embeddings for the MixtralModel.

PARAMETER DESCRIPTION
self

The instance of the MixtralModel class.

TYPE: MixtralModel

value

The input embeddings to be set for the model. It can be of any valid type.

TYPE: Any

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
def set_input_embeddings(self, value):
    """
    Set the input embeddings for the MixtralModel.

    Args:
        self (MixtralModel): The instance of the MixtralModel class.
        value (Any): The input embeddings to be set for the model. It can be of any valid type.

    Returns:
        None.

    Raises:
        None.
    """
    self.embed_tokens = value

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralPreTrainedModel

Bases: PreTrainedModel

The MixtralPreTrainedModel class is a subclass of PreTrainedModel that represents a pre-trained model for Mixtral models.

This class provides a method _init_weights that initializes the weights of the model. It takes a cell parameter and initializes the weights based on the type of the cell. If the cell is an instance of nn.Linear, the weight is initialized using the Normal initializer with a range specified by the initializer_range attribute of the config object. If the cell has a bias, it is initialized with zeros. If the cell is an instance of nn.Embedding, the weight is initialized with random values from a normal distribution with a mean of 0 and a standard deviation specified by the initializer_range attribute of the config object. If the cell has a padding_idx, the weight at the padding_idx is set to 0.

Note

This docstring does not include signatures or any other code.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
class MixtralPreTrainedModel(PreTrainedModel):

    """
    The `MixtralPreTrainedModel` class is a subclass of `PreTrainedModel` that represents a pre-trained model for
    Mixtral models.

    This class provides a method `_init_weights` that initializes the weights of the model. It takes a `cell`
    parameter and initializes the weights based on the type of the `cell`. If the `cell` is an instance of `nn.Linear`,
    the weight is initialized using the `Normal` initializer with a range specified by the `initializer_range` attribute
    of the `config` object. If the `cell` has a bias, it is initialized with zeros. If the `cell` is an instance of
    `nn.Embedding`, the weight is initialized with random values from a normal distribution with a mean of 0 and a
    standard deviation specified by the `initializer_range` attribute of the `config` object. If the `cell` has a
    `padding_idx`, the weight at the `padding_idx` is set to 0.

    Note:
        This docstring does not include signatures or any other code.
    """
    config_class = MixtralConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MixtralDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True

    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, self.config.initializer_range, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0

            cell.weight.set_data(Tensor(weight, cell.weight.dtype))

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralRMSNorm

Bases: Module

The MixtralRMSNorm class is a custom implementation of the T5LayerNorm, which is used for normalization in neural networks.

This class inherits from the nn.Module class and provides methods to perform RMS normalization on hidden states.

ATTRIBUTE DESCRIPTION
weight

A learnable parameter that scales the normalized hidden states.

TYPE: Parameter

variance_epsilon

A small epsilon value added to the variance to avoid division by zero.

TYPE: float

METHOD DESCRIPTION
__init__

Initializes the MixtralRMSNorm instance with the given hidden size and epsilon value.

forward

Applies the RMS normalization on the input hidden states and returns the normalized result.

Note
  • MixtralRMSNorm is equivalent to T5LayerNorm.
Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class MixtralRMSNorm(nn.Module):

    """
    The MixtralRMSNorm class is a custom implementation of the T5LayerNorm, which is used for normalization in
    neural networks.

    This class inherits from the nn.Module class and provides methods to perform RMS normalization on hidden states.

    Attributes:
        weight (Parameter): A learnable parameter that scales the normalized hidden states.
        variance_epsilon (float): A small epsilon value added to the variance to avoid division by zero.

    Methods:
        __init__: Initializes the MixtralRMSNorm instance with the given hidden size and epsilon value.
        forward: Applies the RMS normalization on the input hidden states and returns the normalized result.

    Note:
        - MixtralRMSNorm is equivalent to T5LayerNorm.

    """
    def __init__(self, hidden_size, eps=1e-6):
        """
        MixtralRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = Parameter(ops.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        """
        This method 'forward' is defined within the 'MixtralRMSNorm' class and is used to perform a specific
        computation on the input hidden states.

        Args:
            self: Represents the instance of the class. It is automatically passed when the method is called.
                No specific restrictions apply.
            hidden_states: Represents the input hidden states tensor. It should be of type torch.Tensor or compatible.
                No specific restrictions apply.

        Returns:
            None: This method does not return any value. It performs in-place operations on the input hidden_states.

        Raises:
            NotImplementedError: If the method or a specific operation within the method is not implemented.
            ValueError: If the input hidden_states is not of the expected data type or format.
            RuntimeError: If an error occurs during the computation process.
        """
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(mindspore.float32)
        variance = hidden_states.pow(2).mean(-1, keep_dims=True)
        hidden_states = hidden_states * ops.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralRMSNorm.__init__(hidden_size, eps=1e-06)

MixtralRMSNorm is equivalent to T5LayerNorm

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
175
176
177
178
179
180
181
def __init__(self, hidden_size, eps=1e-6):
    """
    MixtralRMSNorm is equivalent to T5LayerNorm
    """
    super().__init__()
    self.weight = Parameter(ops.ones(hidden_size))
    self.variance_epsilon = eps

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralRMSNorm.forward(hidden_states)

This method 'forward' is defined within the 'MixtralRMSNorm' class and is used to perform a specific computation on the input hidden states.

PARAMETER DESCRIPTION
self

Represents the instance of the class. It is automatically passed when the method is called. No specific restrictions apply.

hidden_states

Represents the input hidden states tensor. It should be of type torch.Tensor or compatible. No specific restrictions apply.

RETURNS DESCRIPTION
None

This method does not return any value. It performs in-place operations on the input hidden_states.

RAISES DESCRIPTION
NotImplementedError

If the method or a specific operation within the method is not implemented.

ValueError

If the input hidden_states is not of the expected data type or format.

RuntimeError

If an error occurs during the computation process.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def forward(self, hidden_states):
    """
    This method 'forward' is defined within the 'MixtralRMSNorm' class and is used to perform a specific
    computation on the input hidden states.

    Args:
        self: Represents the instance of the class. It is automatically passed when the method is called.
            No specific restrictions apply.
        hidden_states: Represents the input hidden states tensor. It should be of type torch.Tensor or compatible.
            No specific restrictions apply.

    Returns:
        None: This method does not return any value. It performs in-place operations on the input hidden_states.

    Raises:
        NotImplementedError: If the method or a specific operation within the method is not implemented.
        ValueError: If the input hidden_states is not of the expected data type or format.
        RuntimeError: If an error occurs during the computation process.
    """
    input_dtype = hidden_states.dtype
    hidden_states = hidden_states.to(mindspore.float32)
    variance = hidden_states.pow(2).mean(-1, keep_dims=True)
    hidden_states = hidden_states * ops.rsqrt(variance + self.variance_epsilon)
    return self.weight * hidden_states.to(input_dtype)

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding

Bases: Module

A class representing MixtralRotaryEmbedding, a neural network module used for Rotary Positional Embedding in Mixtral models.

This class inherits from nn.Module and provides methods to initialize the embedding, set the cosine and sine cache, and forward the embedding for a given input sequence.

ATTRIBUTE DESCRIPTION
dim

The dimension of the embedding.

TYPE: int

max_position_embeddings

The maximum number of position embeddings.

TYPE: int

base

The base value used in the inverse frequency calculation.

TYPE: int

inv_freq

The inverse frequency tensor used for the embedding.

TYPE: Tensor

max_seq_len_cached

The maximum sequence length up to which the cosine and sine cache is calculated.

TYPE: int

cos_cached

The cosine cache tensor.

TYPE: Tensor

sin_cached

The sine cache tensor.

TYPE: Tensor

METHOD DESCRIPTION
__init__

Initializes a MixtralRotaryEmbedding instance with the specified dimension, maximum position embeddings, and base value.

_set_cos_sin_cache

Sets the cosine and sine cache for the specified sequence length and data type.

forward

Constructs the rotary positional embedding for the given input sequence.

Note

This class is designed for use in Mixtral models and is intended to be used as a part of a larger neural network architecture.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
class MixtralRotaryEmbedding(nn.Module):

    """
    A class representing MixtralRotaryEmbedding, a neural network module used for Rotary Positional Embedding in
    Mixtral models.

    This class inherits from nn.Module and provides methods to initialize the embedding, set the cosine and sine cache,
    and forward the embedding for a given input sequence.

    Attributes:
        dim (int): The dimension of the embedding.
        max_position_embeddings (int): The maximum number of position embeddings.
        base (int): The base value used in the inverse frequency calculation.
        inv_freq (Tensor): The inverse frequency tensor used for the embedding.
        max_seq_len_cached (int): The maximum sequence length up to which the cosine and sine cache is calculated.
        cos_cached (Tensor): The cosine cache tensor.
        sin_cached (Tensor): The sine cache tensor.

    Methods:
        __init__:
            Initializes a MixtralRotaryEmbedding instance with the specified dimension, maximum position embeddings,
            and base value.

        _set_cos_sin_cache:
            Sets the cosine and sine cache for the specified sequence length and data type.

        forward:
            Constructs the rotary positional embedding for the given input sequence.

    Note:
        This class is designed for use in Mixtral models and is intended to be used as a part of a
        larger neural network architecture.
    """
    def __init__(self, dim, max_position_embeddings=2048, base=10000):
        """
        __init__(self, dim, max_position_embeddings=2048, base=10000)

        Initialize the MixtralRotaryEmbedding instance with the specified parameters.

        Args:
            self: The instance of the MixtralRotaryEmbedding class.
            dim (int): The dimension of the embedding.
            max_position_embeddings (int, optional): The maximum number of position embeddings. Defaults to 2048.
            base (int, optional): The base value for computing the inverse frequency. Defaults to 10000.

        Returns:
            None.

        Raises:
            TypeError: If the provided 'dim', 'max_position_embeddings', or 'base' is not of type int.
            ValueError: If 'dim' is not a positive integer or 'max_position_embeddings' or 'base' is not a
                non-negative integer.
        """
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (ops.arange(0, self.dim, 2, dtype=mindspore.int64).float() / self.dim))
        self.inv_freq = inv_freq

        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, dtype=get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, dtype):
        """Set cosine and sine cache for MixtralRotaryEmbedding.

        This method calculates and stores the cosine and sine values for the MixtralRotaryEmbedding class.
        These values are used in the embedding calculations for the given sequence length and data type.

        Args:
            self (MixtralRotaryEmbedding): The instance of the MixtralRotaryEmbedding class.
            seq_len (int): The length of the sequence for which the cosine and sine values are calculated.
            dtype (type): The data type of the cosine and sine values.

        Returns:
            None.

        Raises:
            None.
        """
        self.max_seq_len_cached = seq_len
        t = ops.arange(self.max_seq_len_cached, dtype=mindspore.int64).astype(self.inv_freq.dtype)

        freqs = ops.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = ops.cat((freqs, freqs), axis=-1)
        self.cos_cached = emb.cos().to(dtype)
        self.sin_cached = emb.sin().to(dtype)

    def forward(self, x, seq_len=None):
        """
        This method forwards a Mixtral Rotary Embedding based on the input parameters.

        Args:
            self: The instance of the MixtralRotaryEmbedding class.
            x: The input tensor for which the embedding is forwarded.
            seq_len: An integer representing the sequence length of the embedding. Default is None.

        Returns:
            None.

        Raises:
            ValueError: If seq_len is greater than the maximum sequence length cached in the object.
        """
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)

init(self, dim, max_position_embeddings=2048, base=10000)

Initialize the MixtralRotaryEmbedding instance with the specified parameters.

PARAMETER DESCRIPTION
self

The instance of the MixtralRotaryEmbedding class.

dim

The dimension of the embedding.

TYPE: int

max_position_embeddings

The maximum number of position embeddings. Defaults to 2048.

TYPE: int DEFAULT: 2048

base

The base value for computing the inverse frequency. Defaults to 10000.

TYPE: int DEFAULT: 10000

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided 'dim', 'max_position_embeddings', or 'base' is not of type int.

ValueError

If 'dim' is not a positive integer or 'max_position_embeddings' or 'base' is not a non-negative integer.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def __init__(self, dim, max_position_embeddings=2048, base=10000):
    """
    __init__(self, dim, max_position_embeddings=2048, base=10000)

    Initialize the MixtralRotaryEmbedding instance with the specified parameters.

    Args:
        self: The instance of the MixtralRotaryEmbedding class.
        dim (int): The dimension of the embedding.
        max_position_embeddings (int, optional): The maximum number of position embeddings. Defaults to 2048.
        base (int, optional): The base value for computing the inverse frequency. Defaults to 10000.

    Returns:
        None.

    Raises:
        TypeError: If the provided 'dim', 'max_position_embeddings', or 'base' is not of type int.
        ValueError: If 'dim' is not a positive integer or 'max_position_embeddings' or 'base' is not a
            non-negative integer.
    """
    super().__init__()

    self.dim = dim
    self.max_position_embeddings = max_position_embeddings
    self.base = base
    inv_freq = 1.0 / (self.base ** (ops.arange(0, self.dim, 2, dtype=mindspore.int64).float() / self.dim))
    self.inv_freq = inv_freq

    self._set_cos_sin_cache(
        seq_len=max_position_embeddings, dtype=get_default_dtype()
    )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding.forward(x, seq_len=None)

This method forwards a Mixtral Rotary Embedding based on the input parameters.

PARAMETER DESCRIPTION
self

The instance of the MixtralRotaryEmbedding class.

x

The input tensor for which the embedding is forwarded.

seq_len

An integer representing the sequence length of the embedding. Default is None.

DEFAULT: None

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If seq_len is greater than the maximum sequence length cached in the object.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def forward(self, x, seq_len=None):
    """
    This method forwards a Mixtral Rotary Embedding based on the input parameters.

    Args:
        self: The instance of the MixtralRotaryEmbedding class.
        x: The input tensor for which the embedding is forwarded.
        seq_len: An integer representing the sequence length of the embedding. Default is None.

    Returns:
        None.

    Raises:
        ValueError: If seq_len is greater than the maximum sequence length cached in the object.
    """
    # x: [bs, num_attention_heads, seq_len, head_size]
    if seq_len > self.max_seq_len_cached:
        self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype)

    return (
        self.cos_cached[:seq_len].to(dtype=x.dtype),
        self.sin_cached[:seq_len].to(dtype=x.dtype),
    )

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock

Bases: Module

This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens). It's faster since it formulates MoE operations in terms of block-sparse operations to accomodate imbalanced assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance or (2) set capacity factor to number of experts and thus waste computation and memory on padding.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
class MixtralSparseMoeBlock(nn.Module):
    """
    This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens).
    It's faster since it formulates MoE operations in terms of block-sparse operations to accomodate imbalanced
    assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance
    or (2) set capacity factor to number of experts and thus waste computation and memory on padding.
    """
    def __init__(self, config):
        """
        Initializes an instance of the MixtralSparseMoeBlock class.

        Args:
            self: An instance of the MixtralSparseMoeBlock class.
            config:
                A configuration object containing the following attributes:

                - hidden_size (int): The dimension of the hidden layer.
                - intermediate_size (int): The dimension of the feed-forward network.
                - num_local_experts (int): The number of local experts.
                - num_experts_per_tok (int): The number of experts per token.

        Returns:
            None.

        Raises:
            TypeError: If the provided config parameter is not of the expected type.
            ValueError: If the hidden_size, intermediate_size, num_local_experts,
                or num_experts_per_tok attributes are missing in the config object.
            ValueError: If the hidden_size, intermediate_size, num_local_experts,
                or num_experts_per_tok attributes are not integers.
        """
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.ffn_dim = config.intermediate_size
        self.num_experts = config.num_local_experts
        self.top_k = config.num_experts_per_tok

        # gating
        self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)

        self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])

    def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
        """
        Constructs the MixtralSparseMoeBlock.

        Args:
            self (MixtralSparseMoeBlock): The instance of the MixtralSparseMoeBlock class.
            hidden_states (mindspore.Tensor): The input hidden states tensor of shape
                (batch_size, sequence_length, hidden_dim).

        Returns:
            mindspore.Tensor: The final hidden states tensor after applying the MixtralSparseMoeBlock,
                of shape (batch_size, sequence_length, hidden_dim).

        Raises:
            None.

        This method forwards the MixtralSparseMoeBlock by applying the following steps:

        1. Reshapes the hidden_states tensor to (-1, hidden_dim).
        2. Computes the router logits by passing the reshaped hidden_states through the gate module.
        3. Computes the routing weights by applying softmax to the router logits along axis 1.
        4. Selects the top-k routing weights and corresponding indices.
        5. Normalizes the routing weights.
        6. Converts the routing weights to the same data type as hidden_states.
        7. Initializes the final_hidden_states tensor with zeros of shape (batch_size * sequence_length, hidden_dim).
        8. Generates the expert_mask tensor using one_hot encoding and permutation.
        9. Iterates over each expert and performs the following steps:

            - Retrieves the non-zero indices from the expert_mask for the current expert.
            - Splits the non-zero indices tensor into index and top_x tensors.
            - If top_x tensor is empty, continue to the next iteration.
            - Retrieves the current hidden states by indexing the hidden_states tensor with top_x.
            - Computes the current hidden states using the expert_layer and routing_weights.
            - Updates the final_hidden_states tensor by adding the computed current_hidden_states using index_add.

        10. Reshapes the final_hidden_states tensor to its original shape (batch_size, sequence_length, hidden_dim).
        11. Returns the final_hidden_states tensor and the router_logits tensor.
        """
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.gate(hidden_states)

        routing_weights = ops.softmax(router_logits, axis=1, dtype=mindspore.float32)
        routing_weights, selected_experts = ops.topk(routing_weights, self.top_k, dim=-1)
        routing_weights = routing_weights / routing_weights.sum(axis=-1, keepdims=True)
        # we cast back to the input dtype
        routing_weights = routing_weights.to(hidden_states.dtype)

        final_hidden_states = ops.zeros(
            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype
        )

        # One hot encode the selected experts to create an expert mask
        # this will be used to easily index which expert is going to be sollicitated
        expert_mask = ops.one_hot(selected_experts, self.num_experts).permute(2, 1, 0)

        # Loop over all available experts in the model and perform the computation on each expert
        for expert_idx in range(self.num_experts):
            expert_layer = self.experts[expert_idx]
            non_zero = ops.nonzero(expert_mask[expert_idx])
            idx, top_x = non_zero.tensor_split(2, 1)
            if top_x.shape[0] == 0:
                continue

            # Index the correct hidden states and compute the expert hidden state for
            # the current expert. We need to make sure to multiply the output hidden
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx]

            # However `index_add_` only support torch tensors for indexing so we'll use
            # the `top_x` tensor here.
            final_hidden_states = final_hidden_states.index_add(0, top_x.astype(mindspore.int32).reshape(-1), current_hidden_states.to(hidden_states.dtype))
        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock.__init__(config)

Initializes an instance of the MixtralSparseMoeBlock class.

PARAMETER DESCRIPTION
self

An instance of the MixtralSparseMoeBlock class.

config

A configuration object containing the following attributes:

  • hidden_size (int): The dimension of the hidden layer.
  • intermediate_size (int): The dimension of the feed-forward network.
  • num_local_experts (int): The number of local experts.
  • num_experts_per_tok (int): The number of experts per token.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided config parameter is not of the expected type.

ValueError

If the hidden_size, intermediate_size, num_local_experts, or num_experts_per_tok attributes are missing in the config object.

ValueError

If the hidden_size, intermediate_size, num_local_experts, or num_experts_per_tok attributes are not integers.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def __init__(self, config):
    """
    Initializes an instance of the MixtralSparseMoeBlock class.

    Args:
        self: An instance of the MixtralSparseMoeBlock class.
        config:
            A configuration object containing the following attributes:

            - hidden_size (int): The dimension of the hidden layer.
            - intermediate_size (int): The dimension of the feed-forward network.
            - num_local_experts (int): The number of local experts.
            - num_experts_per_tok (int): The number of experts per token.

    Returns:
        None.

    Raises:
        TypeError: If the provided config parameter is not of the expected type.
        ValueError: If the hidden_size, intermediate_size, num_local_experts,
            or num_experts_per_tok attributes are missing in the config object.
        ValueError: If the hidden_size, intermediate_size, num_local_experts,
            or num_experts_per_tok attributes are not integers.
    """
    super().__init__()
    self.hidden_dim = config.hidden_size
    self.ffn_dim = config.intermediate_size
    self.num_experts = config.num_local_experts
    self.top_k = config.num_experts_per_tok

    # gating
    self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)

    self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])

mindnlp.transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock.forward(hidden_states)

Constructs the MixtralSparseMoeBlock.

PARAMETER DESCRIPTION
self

The instance of the MixtralSparseMoeBlock class.

TYPE: MixtralSparseMoeBlock

hidden_states

The input hidden states tensor of shape (batch_size, sequence_length, hidden_dim).

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The final hidden states tensor after applying the MixtralSparseMoeBlock, of shape (batch_size, sequence_length, hidden_dim).

This method forwards the MixtralSparseMoeBlock by applying the following steps:

  1. Reshapes the hidden_states tensor to (-1, hidden_dim).
  2. Computes the router logits by passing the reshaped hidden_states through the gate module.
  3. Computes the routing weights by applying softmax to the router logits along axis 1.
  4. Selects the top-k routing weights and corresponding indices.
  5. Normalizes the routing weights.
  6. Converts the routing weights to the same data type as hidden_states.
  7. Initializes the final_hidden_states tensor with zeros of shape (batch_size * sequence_length, hidden_dim).
  8. Generates the expert_mask tensor using one_hot encoding and permutation.
  9. Iterates over each expert and performs the following steps:

    • Retrieves the non-zero indices from the expert_mask for the current expert.
    • Splits the non-zero indices tensor into index and top_x tensors.
    • If top_x tensor is empty, continue to the next iteration.
    • Retrieves the current hidden states by indexing the hidden_states tensor with top_x.
    • Computes the current hidden states using the expert_layer and routing_weights.
    • Updates the final_hidden_states tensor by adding the computed current_hidden_states using index_add.
  10. Reshapes the final_hidden_states tensor to its original shape (batch_size, sequence_length, hidden_dim).

  11. Returns the final_hidden_states tensor and the router_logits tensor.
Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
    """
    Constructs the MixtralSparseMoeBlock.

    Args:
        self (MixtralSparseMoeBlock): The instance of the MixtralSparseMoeBlock class.
        hidden_states (mindspore.Tensor): The input hidden states tensor of shape
            (batch_size, sequence_length, hidden_dim).

    Returns:
        mindspore.Tensor: The final hidden states tensor after applying the MixtralSparseMoeBlock,
            of shape (batch_size, sequence_length, hidden_dim).

    Raises:
        None.

    This method forwards the MixtralSparseMoeBlock by applying the following steps:

    1. Reshapes the hidden_states tensor to (-1, hidden_dim).
    2. Computes the router logits by passing the reshaped hidden_states through the gate module.
    3. Computes the routing weights by applying softmax to the router logits along axis 1.
    4. Selects the top-k routing weights and corresponding indices.
    5. Normalizes the routing weights.
    6. Converts the routing weights to the same data type as hidden_states.
    7. Initializes the final_hidden_states tensor with zeros of shape (batch_size * sequence_length, hidden_dim).
    8. Generates the expert_mask tensor using one_hot encoding and permutation.
    9. Iterates over each expert and performs the following steps:

        - Retrieves the non-zero indices from the expert_mask for the current expert.
        - Splits the non-zero indices tensor into index and top_x tensors.
        - If top_x tensor is empty, continue to the next iteration.
        - Retrieves the current hidden states by indexing the hidden_states tensor with top_x.
        - Computes the current hidden states using the expert_layer and routing_weights.
        - Updates the final_hidden_states tensor by adding the computed current_hidden_states using index_add.

    10. Reshapes the final_hidden_states tensor to its original shape (batch_size, sequence_length, hidden_dim).
    11. Returns the final_hidden_states tensor and the router_logits tensor.
    """
    batch_size, sequence_length, hidden_dim = hidden_states.shape
    hidden_states = hidden_states.view(-1, hidden_dim)
    # router_logits: (batch * sequence_length, n_experts)
    router_logits = self.gate(hidden_states)

    routing_weights = ops.softmax(router_logits, axis=1, dtype=mindspore.float32)
    routing_weights, selected_experts = ops.topk(routing_weights, self.top_k, dim=-1)
    routing_weights = routing_weights / routing_weights.sum(axis=-1, keepdims=True)
    # we cast back to the input dtype
    routing_weights = routing_weights.to(hidden_states.dtype)

    final_hidden_states = ops.zeros(
        (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype
    )

    # One hot encode the selected experts to create an expert mask
    # this will be used to easily index which expert is going to be sollicitated
    expert_mask = ops.one_hot(selected_experts, self.num_experts).permute(2, 1, 0)

    # Loop over all available experts in the model and perform the computation on each expert
    for expert_idx in range(self.num_experts):
        expert_layer = self.experts[expert_idx]
        non_zero = ops.nonzero(expert_mask[expert_idx])
        idx, top_x = non_zero.tensor_split(2, 1)
        if top_x.shape[0] == 0:
            continue

        # Index the correct hidden states and compute the expert hidden state for
        # the current expert. We need to make sure to multiply the output hidden
        # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
        current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
        current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx]

        # However `index_add_` only support torch tensors for indexing so we'll use
        # the `top_x` tensor here.
        final_hidden_states = final_hidden_states.index_add(0, top_x.astype(mindspore.int32).reshape(-1), current_hidden_states.to(hidden_states.dtype))
    final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
    return final_hidden_states, router_logits

mindnlp.transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)

Applies Rotary Position Embedding to the query and key tensors.

PARAMETER DESCRIPTION
q

The query tensor.

TYPE: `mindspore.Tensor`

k

The key tensor.

TYPE: `mindspore.Tensor`

cos

The cosine part of the rotary embedding.

TYPE: `mindspore.Tensor`

sin

The sine part of the rotary embedding.

TYPE: `mindspore.Tensor`

position_ids

The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.

TYPE: `mindspore.Tensor`

unsqueeze_dim

The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`mindspore.Tensor`): The query tensor.
        k (`mindspore.Tensor`): The key tensor.
        cos (`mindspore.Tensor`): The cosine part of the rotary embedding.
        sin (`mindspore.Tensor`): The sine part of the rotary embedding.
        position_ids (`mindspore.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(mindspore.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

mindnlp.transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func(gate_logits, num_experts=None, top_k=2, attention_mask=None)

Computes auxiliary load balancing loss as in Switch Transformer - implemented in MindSpore.

See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced.

PARAMETER DESCRIPTION
gate_logits

Logits from the gate, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts].

TYPE: Union[`mindspore.Tensor`, Tuple[mindspore.Tensor]

attention_mask

The attention_mask used in forward function shape [batch_size X sequence_length] if not None.

TYPE: `mindspore.Tensor`, None DEFAULT: None

num_experts

Number of experts

TYPE: `int`, *optional* DEFAULT: None

RETURNS DESCRIPTION
float

The auxiliary loss.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def load_balancing_loss_func(
    gate_logits: mindspore.Tensor, num_experts: mindspore.Tensor = None, top_k=2, attention_mask: Optional[mindspore.Tensor] = None
) -> float:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in MindSpore.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        gate_logits (Union[`mindspore.Tensor`, Tuple[mindspore.Tensor]):
            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        attention_mask (`mindspore.Tensor`, None):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.
        num_experts (`int`, *optional*):
            Number of experts

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return 0

    if isinstance(gate_logits, tuple):
        concatenated_gate_logits = ops.cat(list(gate_logits), axis=0)

    routing_weights = ops.softmax(concatenated_gate_logits, axis=-1)

    _, selected_experts = ops.topk(routing_weights, top_k, dim=-1)

    expert_mask = ops.one_hot(selected_experts, num_experts)

    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = ops.mean(expert_mask.float(), axis=0)

        # Compute the average probability of routing to these experts
        router_prob_per_expert = ops.mean(routing_weights, axis=0)
    else:
        batch_size, sequence_length = attention_mask.shape
        num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)

        # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (
            attention_mask[None, :, :, None, None]
            .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
            .reshape(-1, top_k, num_experts)
        )

        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = ops.sum(expert_mask.float() * expert_attention_mask, dim=0) / ops.sum(
            expert_attention_mask, dim=0
        )

        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[None, :, :, None]
            .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
            .reshape(-1, num_experts)
        )

        # Compute the average probability of routing to these experts
        router_prob_per_expert = ops.sum(routing_weights * router_per_expert_attention_mask, dim=0) / ops.sum(
            router_per_expert_attention_mask, dim=0
        )

    overall_loss = ops.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
    return overall_loss * num_experts

mindnlp.transformers.models.mixtral.modeling_mixtral.repeat_kv(hidden_states, n_rep)

This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
365
366
367
368
369
370
371
372
373
374
def repeat_kv(hidden_states: mindspore.Tensor, n_rep: int) -> mindspore.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

mindnlp.transformers.models.mixtral.modeling_mixtral.rotate_half(x)

Rotates half the hidden dims of the input.

Source code in mindnlp/transformers/models/mixtral/modeling_mixtral.py
327
328
329
330
331
332
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    # x1 = x[..., : x.shape[-1] // 2]
    # x2 = x[..., x.shape[-1] // 2 :]
    x1, x2 = x.tensor_split(2, -1)
    return ops.cat((-x2, x1), axis=-1)

mindnlp.transformers.models.mixtral.configuration_mixtral

Mixtral model configuration

mindnlp.transformers.models.mixtral.configuration_mixtral.MixtralConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [MixtralModel]. It is used to instantiate an Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.

mixtralai/Mixtral-8x7B mixtralai/Mixtral-7B-Instruct-v0.1

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
vocab_size

Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [MixtralModel]

TYPE: `int`, *optional*, defaults to 32000 DEFAULT: 32000

hidden_size

Dimension of the hidden representations.

TYPE: `int`, *optional*, defaults to 4096 DEFAULT: 4096

intermediate_size

Dimension of the MLP representations.

TYPE: `int`, *optional*, defaults to 14336 DEFAULT: 14336

num_hidden_layers

Number of hidden layers in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 32 DEFAULT: 32

num_attention_heads

Number of attention heads for each attention layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 32 DEFAULT: 32

num_key_value_heads

This is the number of key_value heads that should be used to implement Grouped Query Attention. If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be forwarded by meanpooling all the original heads within that group. For more details checkout this paper. If it is not specified, will default to 8.

TYPE: `int`, *optional*, defaults to 8 DEFAULT: 8

hidden_act

The non-linear activation function (function or string) in the decoder.

TYPE: `str` or `function`, *optional*, defaults to `"silu"` DEFAULT: 'silu'

max_position_embeddings

The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention allows sequence of up to 4096*32 tokens.

TYPE: `int`, *optional*, defaults to `4096*32` DEFAULT: 4096 * 32

initializer_range

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

rms_norm_eps

The epsilon used by the rms normalization layers.

TYPE: `float`, *optional*, defaults to 1e-05 DEFAULT: 1e-05

use_cache

Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

pad_token_id

The id of the padding token.

TYPE: `int`, *optional* DEFAULT: None

bos_token_id

The id of the "beginning-of-sequence" token.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eos_token_id

The id of the "end-of-sequence" token.

TYPE: `int`, *optional*, defaults to 2 DEFAULT: 2

tie_word_embeddings

Whether the model's input and output word embeddings should be tied.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

rope_theta

The base period of the RoPE embeddings.

TYPE: `float`, *optional*, defaults to 1000000.0 DEFAULT: 1000000.0

sliding_window

Sliding window attention window size. If not specified, will default to 4096.

TYPE: `int`, *optional* DEFAULT: None

attention_dropout

The dropout ratio for the attention probabilities.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

num_experts_per_tok

The number of experts to root per-token, can be also interpreted as the top-p routing parameter

TYPE: `int`, *optional*, defaults to 2 DEFAULT: 2

num_local_experts

Number of experts per Sparse MLP layer.

TYPE: `int`, *optional*, defaults to 8 DEFAULT: 8

output_router_logits

Whether or not the router logits should be returned by the model. Enabeling this will also allow the model to output the auxiliary loss. See here for more details

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

router_aux_loss_coef

The aux loss factor for the total loss.

TYPE: `float`, *optional*, defaults to 0.001 DEFAULT: 0.001

Example
>>> from transformers import MixtralModel, MixtralConfig
...
>>> # Initializing a Mixtral 7B style configuration
>>> configuration = MixtralConfig()
...
>>> # Initializing a model from the Mixtral 7B style configuration
>>> model = MixtralModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/mixtral/configuration_mixtral.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class MixtralConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
    Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.

    [mixtralai/Mixtral-8x7B](https://hf-mirror.com/mixtralai/Mixtral-8x7B)
    [mixtralai/Mixtral-7B-Instruct-v0.1](https://hf-mirror.com/mixtralai/Mixtral-7B-Instruct-v0.1)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MixtralModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be forwarded
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to root per-token, can be also interpreted as the `top-p` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 8):
            Number of experts per Sparse MLP layer.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabeling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.

    Example:
        ```python
        >>> from transformers import MixtralModel, MixtralConfig
        ...
        >>> # Initializing a Mixtral 7B style configuration
        >>> configuration = MixtralConfig()
        ...
        >>> # Initializing a model from the Mixtral 7B style configuration
        >>> model = MixtralModel(configuration)
        ...
        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """
    model_type = "mixtral"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=14336,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=4096 * 32,
        initializer_range=0.02,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        rope_theta=1e6,
        sliding_window=None,
        attention_dropout=0.0,
        num_experts_per_tok=2,
        num_local_experts=8,
        output_router_logits=False,
        router_aux_loss_coef=0.001,
        **kwargs,
    ):
        """
        Initializes a new MixtralConfig object.

        Args:
            vocab_size (int, optional): The size of the vocabulary. Defaults to 32000.
            hidden_size (int, optional): The size of the hidden layers. Defaults to 4096.
            intermediate_size (int, optional): The size of the intermediate layers. Defaults to 14336.
            num_hidden_layers (int, optional): The number of hidden layers. Defaults to 32.
            num_attention_heads (int, optional): The number of attention heads. Defaults to 32.
            num_key_value_heads (int, optional): The number of key and value heads. Defaults to 8.
            hidden_act (str, optional): The activation function for the hidden layers. Defaults to 'silu'.
            max_position_embeddings (int, optional): The maximum position embeddings. Defaults to 4096 * 32.
            initializer_range (float, optional): The range for weight initialization. Defaults to 0.02.
            rms_norm_eps (float, optional): The epsilon value for RMS normalization. Defaults to 1e-05.
            use_cache (bool, optional): Indicates whether to use cache. Defaults to True.
            pad_token_id (int, optional): The ID of the padding token. Defaults to None.
            bos_token_id (int, optional): The ID of the beginning-of-sequence token. Defaults to 1.
            eos_token_id (int, optional): The ID of the end-of-sequence token. Defaults to 2.
            tie_word_embeddings (bool, optional): Indicates whether to tie word embeddings. Defaults to False.
            rope_theta (float, optional): The theta value for rope. Defaults to 1000000.0.
            sliding_window (int, optional): The size of the sliding window. Defaults to None.
            attention_dropout (float, optional): The dropout rate for attention. Defaults to 0.0.
            num_experts_per_tok (int, optional): The number of experts per token. Defaults to 2.
            num_local_experts (int, optional): The number of local experts. Defaults to 8.
            output_router_logits (bool, optional): Indicates whether to output router logits. Defaults to False.
            router_aux_loss_coef (float, optional): The coefficient for router auxiliary loss. Defaults to 0.001.
            **kwargs: Additional keyword arguments.

        Returns:
            None.

        Raises:
            ValueError: If any of the provided parameters are invalid or out of range.
            TypeError: If the input types are incorrect.
        """
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout

        self.num_experts_per_tok = num_experts_per_tok
        self.num_local_experts = num_local_experts
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

mindnlp.transformers.models.mixtral.configuration_mixtral.MixtralConfig.__init__(vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act='silu', max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=1000000.0, sliding_window=None, attention_dropout=0.0, num_experts_per_tok=2, num_local_experts=8, output_router_logits=False, router_aux_loss_coef=0.001, **kwargs)

Initializes a new MixtralConfig object.

PARAMETER DESCRIPTION
vocab_size

The size of the vocabulary. Defaults to 32000.

TYPE: int DEFAULT: 32000

hidden_size

The size of the hidden layers. Defaults to 4096.

TYPE: int DEFAULT: 4096

intermediate_size

The size of the intermediate layers. Defaults to 14336.

TYPE: int DEFAULT: 14336

num_hidden_layers

The number of hidden layers. Defaults to 32.

TYPE: int DEFAULT: 32

num_attention_heads

The number of attention heads. Defaults to 32.

TYPE: int DEFAULT: 32

num_key_value_heads

The number of key and value heads. Defaults to 8.

TYPE: int DEFAULT: 8

hidden_act

The activation function for the hidden layers. Defaults to 'silu'.

TYPE: str DEFAULT: 'silu'

max_position_embeddings

The maximum position embeddings. Defaults to 4096 * 32.

TYPE: int DEFAULT: 4096 * 32

initializer_range

The range for weight initialization. Defaults to 0.02.

TYPE: float DEFAULT: 0.02

rms_norm_eps

The epsilon value for RMS normalization. Defaults to 1e-05.

TYPE: float DEFAULT: 1e-05

use_cache

Indicates whether to use cache. Defaults to True.

TYPE: bool DEFAULT: True

pad_token_id

The ID of the padding token. Defaults to None.

TYPE: int DEFAULT: None

bos_token_id

The ID of the beginning-of-sequence token. Defaults to 1.

TYPE: int DEFAULT: 1

eos_token_id

The ID of the end-of-sequence token. Defaults to 2.

TYPE: int DEFAULT: 2

tie_word_embeddings

Indicates whether to tie word embeddings. Defaults to False.

TYPE: bool DEFAULT: False

rope_theta

The theta value for rope. Defaults to 1000000.0.

TYPE: float DEFAULT: 1000000.0

sliding_window

The size of the sliding window. Defaults to None.

TYPE: int DEFAULT: None

attention_dropout

The dropout rate for attention. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

num_experts_per_tok

The number of experts per token. Defaults to 2.

TYPE: int DEFAULT: 2

num_local_experts

The number of local experts. Defaults to 8.

TYPE: int DEFAULT: 8

output_router_logits

Indicates whether to output router logits. Defaults to False.

TYPE: bool DEFAULT: False

router_aux_loss_coef

The coefficient for router auxiliary loss. Defaults to 0.001.

TYPE: float DEFAULT: 0.001

**kwargs

Additional keyword arguments.

DEFAULT: {}

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If any of the provided parameters are invalid or out of range.

TypeError

If the input types are incorrect.

Source code in mindnlp/transformers/models/mixtral/configuration_mixtral.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def __init__(
    self,
    vocab_size=32000,
    hidden_size=4096,
    intermediate_size=14336,
    num_hidden_layers=32,
    num_attention_heads=32,
    num_key_value_heads=8,
    hidden_act="silu",
    max_position_embeddings=4096 * 32,
    initializer_range=0.02,
    rms_norm_eps=1e-5,
    use_cache=True,
    pad_token_id=None,
    bos_token_id=1,
    eos_token_id=2,
    tie_word_embeddings=False,
    rope_theta=1e6,
    sliding_window=None,
    attention_dropout=0.0,
    num_experts_per_tok=2,
    num_local_experts=8,
    output_router_logits=False,
    router_aux_loss_coef=0.001,
    **kwargs,
):
    """
    Initializes a new MixtralConfig object.

    Args:
        vocab_size (int, optional): The size of the vocabulary. Defaults to 32000.
        hidden_size (int, optional): The size of the hidden layers. Defaults to 4096.
        intermediate_size (int, optional): The size of the intermediate layers. Defaults to 14336.
        num_hidden_layers (int, optional): The number of hidden layers. Defaults to 32.
        num_attention_heads (int, optional): The number of attention heads. Defaults to 32.
        num_key_value_heads (int, optional): The number of key and value heads. Defaults to 8.
        hidden_act (str, optional): The activation function for the hidden layers. Defaults to 'silu'.
        max_position_embeddings (int, optional): The maximum position embeddings. Defaults to 4096 * 32.
        initializer_range (float, optional): The range for weight initialization. Defaults to 0.02.
        rms_norm_eps (float, optional): The epsilon value for RMS normalization. Defaults to 1e-05.
        use_cache (bool, optional): Indicates whether to use cache. Defaults to True.
        pad_token_id (int, optional): The ID of the padding token. Defaults to None.
        bos_token_id (int, optional): The ID of the beginning-of-sequence token. Defaults to 1.
        eos_token_id (int, optional): The ID of the end-of-sequence token. Defaults to 2.
        tie_word_embeddings (bool, optional): Indicates whether to tie word embeddings. Defaults to False.
        rope_theta (float, optional): The theta value for rope. Defaults to 1000000.0.
        sliding_window (int, optional): The size of the sliding window. Defaults to None.
        attention_dropout (float, optional): The dropout rate for attention. Defaults to 0.0.
        num_experts_per_tok (int, optional): The number of experts per token. Defaults to 2.
        num_local_experts (int, optional): The number of local experts. Defaults to 8.
        output_router_logits (bool, optional): Indicates whether to output router logits. Defaults to False.
        router_aux_loss_coef (float, optional): The coefficient for router auxiliary loss. Defaults to 0.001.
        **kwargs: Additional keyword arguments.

    Returns:
        None.

    Raises:
        ValueError: If any of the provided parameters are invalid or out of range.
        TypeError: If the input types are incorrect.
    """
    self.vocab_size = vocab_size
    self.max_position_embeddings = max_position_embeddings
    self.hidden_size = hidden_size
    self.intermediate_size = intermediate_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.sliding_window = sliding_window

    # for backward compatibility
    if num_key_value_heads is None:
        num_key_value_heads = num_attention_heads

    self.num_key_value_heads = num_key_value_heads
    self.hidden_act = hidden_act
    self.initializer_range = initializer_range
    self.rms_norm_eps = rms_norm_eps
    self.use_cache = use_cache
    self.rope_theta = rope_theta
    self.attention_dropout = attention_dropout

    self.num_experts_per_tok = num_experts_per_tok
    self.num_local_experts = num_local_experts
    self.output_router_logits = output_router_logits
    self.router_aux_loss_coef = router_aux_loss_coef
    super().__init__(
        pad_token_id=pad_token_id,
        bos_token_id=bos_token_id,
        eos_token_id=eos_token_id,
        tie_word_embeddings=tie_word_embeddings,
        **kwargs,
    )