mvp
mindnlp.transformers.models.mvp.configuration_mvp
¶
MVP model configuration
mindnlp.transformers.models.mvp.configuration_mvp.MvpConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [MvpModel
]. It is used to instantiate a MVP model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MVP RUCAIBox/mvp
architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
TYPE:
|
d_model |
Dimensionality of the layers and the pooler layer.
TYPE:
|
encoder_layers |
Number of encoder layers.
TYPE:
|
decoder_layers |
Number of decoder layers.
TYPE:
|
encoder_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
decoder_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
decoder_ffn_dim |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
TYPE:
|
encoder_ffn_dim |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
TYPE:
|
activation_function |
The non-linear activation function (function or string) in the encoder and pooler. If string,
TYPE:
|
dropout |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
activation_dropout |
The dropout ratio for activations inside the fully connected layer.
TYPE:
|
classifier_dropout |
The dropout ratio for classifier.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
init_std |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
encoder_layerdrop |
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.
TYPE:
|
decoder_layerdrop |
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.
TYPE:
|
scale_embedding |
Scale embeddings by diving by sqrt(d_model).
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models).
TYPE:
|
forced_eos_token_id |
The id of the token to force as the last generated token when
TYPE:
|
use_prompt |
Whether or not to use prompt.
TYPE:
|
prompt_length |
The length of prompt.
TYPE:
|
prompt_mid_dim |
Dimensionality of the "intermediate" layer in prompt.
TYPE:
|
Example
>>> from transformers import MvpConfig, MvpModel
...
>>> # Initializing a MVP RUCAIBox/mvp style configuration
>>> configuration = MvpConfig()
...
>>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
>>> model = MvpModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/mvp/configuration_mvp.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
mindnlp.transformers.models.mvp.modeling_mvp
¶
PyTorch MVP model.
mindnlp.transformers.models.mvp.modeling_mvp.MvpAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpAttention.forward(hidden_states, key_value_states=None, past_key_value=None, attention_mask=None, layer_head_mask=None, attn_prompt=None, output_attentions=False)
¶
Input shape: Batch x Time x Channel
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpClassificationHead
¶
Bases: Module
Head for sentence-level classification tasks.
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpDecoder
¶
Bases: MvpPreTrainedModel
Transformer decoder consisting of config.decoder_layers layers. Each layer is a [MvpDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
MvpConfig
TYPE:
|
embed_tokens |
output embedding
TYPE:
|
use_prompt |
whether to use prompt
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpDecoder.forward(input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
input_ids |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [
TYPE:
|
attention_mask |
Mask to avoid performing attention on padding token indices. Mask values selected in
TYPE:
|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in
TYPE:
|
head_mask |
Mask to nullify selected heads of the attention modules. Mask values selected in
TYPE:
|
cross_attn_head_mask |
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in
TYPE:
|
inputs_embeds |
Optionally, instead of passing
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
output_hidden_states |
Whether or not to return the hidden states of all layers. See
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpDecoderWrapper
¶
Bases: MvpPreTrainedModel
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [EncoderDecoderModel
] framework.
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpEncoder
¶
Bases: MvpPreTrainedModel
Transformer encoder consisting of config.encoder_layers self attention layers. Each layer is a
[MvpEncoderLayer
].
PARAMETER | DESCRIPTION |
---|---|
config |
MvpConfig
TYPE:
|
embed_tokens |
output embedding
TYPE:
|
use_prompt |
whether to use prompt
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpEncoder.forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
input_ids |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [
TYPE:
|
attention_mask |
Mask to avoid performing attention on padding token indices. Mask values selected in
TYPE:
|
head_mask |
Mask to nullify selected heads of the attention modules. Mask values selected in
TYPE:
|
inputs_embeds |
Optionally, instead of passing
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
output_hidden_states |
Whether or not to return the hidden states of all layers. See
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpEncoderLayer
¶
Bases: Module
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpEncoderLayer.forward(hidden_states, attention_mask, layer_head_mask, self_attn_prompt, output_attentions=False)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
layer_head_mask |
mask for attention heads in a given layer of size
TYPE:
|
self_attn_prompt |
prompt of self attention of shape
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpForConditionalGeneration
¶
Bases: MvpPreTrainedModel
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpForConditionalGeneration.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, Seq2SeqLMOutput]
|
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpForQuestionAnswering
¶
Bases: MvpPreTrainedModel
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpForQuestionAnswering.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, start_positions=None, end_positions=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpForSequenceClassification
¶
Bases: MvpPreTrainedModel
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpForSequenceClassification.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpLearnedPositionalEmbedding
¶
Bases: Embedding
This module learns positional embeddings up to a fixed maximum size.
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpLearnedPositionalEmbedding.forward(input_ids, past_key_values_length=0)
¶
`input_ids' shape is expected to be [bsz x seqlen].
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
79 80 81 82 83 84 85 86 87 |
|
mindnlp.transformers.models.mvp.modeling_mvp.MvpPrompt
¶
Bases: Module
Layer-wise prompt for encoder or decoder.
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|
mindnlp.transformers.models.mvp.modeling_mvp.shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id)
¶
Shift input ids one token to the right.
Source code in mindnlp/transformers/models/mvp/modeling_mvp.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
mindnlp.transformers.models.mvp.tokenization_mvp
¶
mvp tokenizer
mindnlp.transformers.models.mvp.tokenization_mvp.MvpTokenizer
¶
Bases: PreTrainedTokenizer
Constructs a MVP tokenizer, which is smilar to the RoBERTa tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not:
Example
>>> from transformers import MvpTokenizer
...
>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer will add a space before each word (even the first one).
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
Path to the vocabulary file.
TYPE:
|
merges_file |
Path to the merges file.
TYPE:
|
errors |
Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the
TYPE:
|
eos_token |
The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
add_prefix_space |
Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (MVP tokenizer detect beginning of words by the preceding space).
TYPE:
|
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
mindnlp.transformers.models.mvp.tokenization_mvp.MvpTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MVP sequence has the following format:
- single sequence:
<s> X </s>
- pair of sequences:
<s> A </s></s> B </s>
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
mindnlp.transformers.models.mvp.tokenization_mvp.MvpTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
278 279 280 281 282 |
|
mindnlp.transformers.models.mvp.tokenization_mvp.MvpTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not make use of token type ids, therefore a list of zeros is returned.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
|
mindnlp.transformers.models.mvp.tokenization_mvp.MvpTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
|
mindnlp.transformers.models.mvp.tokenization_mvp.bytes_to_unicode()
cached
¶
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
mindnlp.transformers.models.mvp.tokenization_mvp.get_pairs(word)
¶
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
Source code in mindnlp/transformers/models/mvp/tokenization_mvp.py
61 62 63 64 65 66 67 68 69 70 71 72 |
|
mindnlp.transformers.models.mvp.tokenization_mvp_fast
¶
mvp tokenizer fast
mindnlp.transformers.models.mvp.tokenization_mvp_fast.MvpTokenizerFast
¶
Bases: PreTrainedTokenizerFast
Construct a "fast" MVP tokenizer (backed by HuggingFace's tokenizers library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not:
Example
>>> from transformers import MvpTokenizerFast
...
>>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer needs to be instantiated with add_prefix_space=True
.
This tokenizer inherits from [PreTrainedTokenizerFast
] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
Path to the vocabulary file.
TYPE:
|
merges_file |
Path to the merges file.
TYPE:
|
errors |
Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information.
TYPE:
|
bos_token |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the
TYPE:
|
eos_token |
The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
add_prefix_space |
Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (MVP tokenizer detect beginning of words by the preceding space).
TYPE:
|
trim_offsets |
Whether the post processing step should trim offsets to avoid including whitespaces.
TYPE:
|
Source code in mindnlp/transformers/models/mvp/tokenization_mvp_fast.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
mindnlp.transformers.models.mvp.tokenization_mvp_fast.MvpTokenizerFast.mask_token: str
property
writable
¶
str
: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.
MVP tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
comprise the space before the
mindnlp.transformers.models.mvp.tokenization_mvp_fast.MvpTokenizerFast.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not make use of token type ids, therefore a list of zeros is returned.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/mvp/tokenization_mvp_fast.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|