olmo
mindnlp.transformers.models.olmo.modeling_olmo
¶
MindSpore OLMo model.
mindnlp.transformers.models.olmo.modeling_olmo.OlmoAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoAttention.__init__(config, layer_idx=None)
¶
Initializes an instance of the OlmoAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class itself.
|
config |
An instance of the OlmoConfig class, containing configuration parameters for the attention layer.
TYPE:
|
layer_idx |
The index of the layer. If not provided, it is set to None.
Not providing a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cache_position=None, **kwargs)
¶
Constructs the attention mechanism for OlmoAttention.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OlmoAttention class.
TYPE:
|
hidden_states |
The hidden states input tensor of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
The attention mask tensor of shape (batch_size, num_heads, sequence_length, sequence_length), where each element is either 0 or 1.
TYPE:
|
position_ids |
The position ids tensor of shape (batch_size, sequence_length).
TYPE:
|
past_key_value |
The past key-value cache for efficient attention computation.
TYPE:
|
output_attentions |
Flag indicating whether to output the attention weights.
TYPE:
|
use_cache |
Flag indicating whether to use the past key-value cache.
TYPE:
|
cache_position |
The position tensor for the key-value cache.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size), the attention weights tensor of shape (batch_size, num_heads, sequence_length, sequence_length), and the updated past key-value cache. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shape of the attention output tensor is not (batch_size, num_heads, sequence_length, hidden_size). |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoDecoderLayer
¶
Bases: Module
This class represents a decoder layer in the Olmo model. It inherits from the nn.Module class.
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden state.
TYPE:
|
self_attn |
An instance of the OLMO_ATTENTION_CLASSES['eager'] class for self-attention.
|
mlp |
An instance of the OlmoMLP class.
|
input_layernorm |
An instance of the OlmoLayerNorm class for input layer normalization.
|
post_attention_layernorm |
An instance of the OlmoLayerNorm class for post-attention layer normalization.
|
Note
The forward method is the entry point for the decoder layer.
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoDecoderLayer.__init__(config, layer_idx)
¶
Initializes an instance of OlmoDecoderLayer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoDecoderLayer class.
TYPE:
|
config |
An instance of OlmoConfig that contains configuration settings for the decoder layer.
TYPE:
|
layer_idx |
An integer representing the index of the layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not an instance of OlmoConfig. |
ValueError
|
If the layer_idx parameter is not an integer. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cache_position=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoDynamicNTKScalingRotaryEmbedding
¶
Bases: OlmoRotaryEmbedding
OlmoRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoDynamicNTKScalingRotaryEmbedding.forward(x, position_ids)
¶
Constructs the OlmoDynamicNTKScalingRotaryEmbedding.
This method initializes the OlmoDynamicNTKScalingRotaryEmbedding object by forwarding the positional encodings for the input tensor.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OlmoDynamicNTKScalingRotaryEmbedding class. |
x |
The input tensor.
TYPE:
|
position_ids |
The tensor containing the positional indices.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Tensor]: A tuple containing the cosine and sine of the positional encodings. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM
¶
Bases: OlmoPreTrainedModel
This class represents a model for Causal Language Modeling using Olmo. It is a subclass of OlmoPreTrainedModel.
The class contains the following methods:
__init__
: Initializes the class instance with a given configuration.get_input_embeddings
: Returns the input embeddings of the model.set_input_embeddings
: Sets the input embeddings of the model.get_output_embeddings
: Returns the output embeddings of the model.set_output_embeddings
: Sets the output embeddings of the model.set_decoder
: Sets the decoder of the model.get_decoder
: Returns the decoder of the model.forward
: Constructs the model and returns the output.prepare_inputs_for_generation
: Prepares the inputs for generation.
The class also includes a private static method _reorder_cache(past_key_values, beam_idx)
.
Example
>>> from transformers import AutoTokenizer, OlmoForCausalLM
...
>>> model = OlmoForCausalLM.from_pretrained("allenai/OLMo-1B-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf")
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> generated_text = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
>>> print(generated_text)
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.__init__(config)
¶
Initializes an instance of the OlmoForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the class.
|
config |
An instance of the configuration class for OlmoForCausalLM. It contains various parameters and settings used for model initialization.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast] |
Example
>>> from transformers import AutoTokenizer, OlmoForCausalLM
...
>>> model = OlmoForCausalLM.from_pretrained("allenai/OLMo-1B-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf")
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.get_decoder()
¶
This method returns the decoder model used for OlmoForCausalLM.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
model
|
The decoder model associated with the OlmoForCausalLM instance. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.get_input_embeddings()
¶
This method is implemented in the 'OlmoForCausalLM' class and is used to retrieve the input embeddings from the model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'OlmoForCausalLM' class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.get_output_embeddings()
¶
This method, 'get_output_embeddings', is defined in the class 'OlmoForCausalLM' and returns the 'lm_head' attribute.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'OlmoForCausalLM' class.
|
RETURNS | DESCRIPTION |
---|---|
The 'lm_head' attribute: which is of type 'None'. The 'lm_head' is the output embedding layer of the model. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs)
¶
This method prepares inputs for text generation for OlmoForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
input_ids |
The input tensor containing tokenized input sequence.
TYPE:
|
past_key_values |
The tensor of cached key values for previous time steps. Defaults to None.
TYPE:
|
attention_mask |
The attention mask tensor to avoid attending to padding tokens. Defaults to None.
TYPE:
|
inputs_embeds |
The tensor of embeddings for input tokens. Defaults to None.
TYPE:
|
cache_position |
The tensor specifying the position in the cache. Defaults to None.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If attention_mask and input_ids have incompatible shapes. |
ValueError
|
If past_key_values and inputs_embeds are both provided. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.set_decoder(decoder)
¶
Sets the decoder for the OlmoForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoForCausalLM class.
TYPE:
|
decoder |
The decoder to be set for the model. It should be compatible with the OlmoForCausalLM model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.set_input_embeddings(value)
¶
Set the input embeddings for the OlmoForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoForCausalLM class.
TYPE:
|
value |
The input embeddings to be set for the model. It should be a tensor representing the embeddings.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings of the OlmoForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set for the output layer of the model.
This can be a tensor or any object that can be assigned to
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoLayerNorm
¶
Bases: Module
LayerNorm but with no learnable weight or bias.
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoLayerNorm.__init__(hidden_size)
¶
Initializes a new instance of the OlmoLayerNorm class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
hidden_size |
The size of the hidden dimension for the layer normalization. It determines the shape of the normalized layer. The hidden size must be a positive integer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoLayerNorm.forward(hidden_states)
¶
Constructs the OlmoLayerNorm for the given hidden states.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OlmoLayerNorm class.
TYPE:
|
hidden_states |
The input hidden states to be normalized.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The normalized hidden states. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input hidden states are not of type mindspore.Tensor. |
ValueError
|
If the input hidden states are empty or have incompatible shape. |
Note
- The input hidden states should have a valid shape compatible with the layer normalization operation.
- The hidden states are expected to be of a specific data type.
Example
>>> norm = OlmoLayerNorm()
>>> input_states = mindspore.Tensor([1, 2, 3], mindspore.float32)
>>> output_states = norm.forward(input_states)
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoLinearScalingRotaryEmbedding
¶
Bases: OlmoRotaryEmbedding
OlmoRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoLinearScalingRotaryEmbedding.forward(x, position_ids)
¶
Constructs the cosine and sine embeddings for the given input tensor 'x' with positional encoding.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoLinearScalingRotaryEmbedding class. |
x |
The input tensor for which the positional embeddings are forwarded.
TYPE:
|
position_ids |
The tensor containing positional indices.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Tensor]: A tuple containing the cosine and sine embeddings forwarded based on the input 'x' and 'position_ids'. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input 'position_ids' is not a tensor. |
ValueError
|
If the scaling factor 'self.scaling_factor' is not valid for the division operation. |
NotImplementedError
|
If the superclass method 'forward' is not implemented. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoMLP
¶
Bases: Module
The 'OlmoMLP' class represents a multi-layer perceptron (MLP) with customized operations for gating, projection, and activation functions. This class inherits from the 'nn.Module' class.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration object that stores the parameters for the MLP.
TYPE:
|
hidden_size |
The size of the hidden layer in the MLP.
TYPE:
|
intermediate_size |
The size of the intermediate layer in the MLP.
TYPE:
|
gate_proj |
The dense layer used for projecting the input into the intermediate size for gating.
TYPE:
|
up_proj |
The dense layer used for projecting the input into the intermediate size for the up projection.
TYPE:
|
down_proj |
The dense layer used for projecting the intermediate size back to the hidden size.
TYPE:
|
act_fn |
The activation function applied to the output of the gating and up projection.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the 'OlmoMLP' class with the given configuration object. |
forward |
Constructs the MLP by applying the necessary operations to the input 'x' and returning the result. |
Example
>>> # Create a configuration object
>>> config = MLPConfig(hidden_size=128, intermediate_size=64, hidden_act='relu')
...
>>> # Create an instance of the 'OlmoMLP' class
>>> mlp = OlmoMLP(config)
...
>>> # Construct the MLP
>>> output = mlp.forward(input_data)
Note
The 'OlmoMLP' class assumes that the 'ACT2FN' dictionary is defined, which maps the activation function names to their corresponding functions.
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoMLP.__init__(config)
¶
Initializes an instance of the OlmoMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoMLP class.
|
config |
An object of type 'Config' that contains the configuration settings for the OlmoMLP model. It must have the following attributes:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoMLP.forward(x)
¶
Constructs a multi-layer perceptron using the specified input data.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OlmoMLP class.
TYPE:
|
x |
Input data for forwarding the MLP.
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method modifies the MLP model in-place. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input data is not in the expected format. |
ValueError
|
If the input data is invalid or incompatible with the model. |
RuntimeError
|
If there is an issue during the forwardion process. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoModel
¶
Bases: OlmoPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [OlmoDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
OlmoConfig
TYPE:
|
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoModel.__init__(config)
¶
Initializes an instance of the OlmoModel
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object containing the configuration parameters for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None)
¶
Constructs the OlmoModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
input_ids |
The input tensor containing the token IDs. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor. Default is None.
TYPE:
|
position_ids |
The tensor containing the position IDs. Default is None.
TYPE:
|
past_key_values |
The list of tensors containing the past key values. Default is None.
TYPE:
|
inputs_embeds |
The input tensor containing the embedded inputs. Default is None.
TYPE:
|
use_cache |
Whether to use cache. Default is None.
TYPE:
|
output_attentions |
Whether to output attentions. Default is None.
TYPE:
|
output_hidden_states |
Whether to output hidden states. Default is None.
TYPE:
|
return_dict |
Whether to return a dictionary instead of tuple. Default is None.
TYPE:
|
cache_position |
The tensor containing the cache position. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: A tuple or BaseModelOutputWithPast object containing the model outputs. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified at the same time. |
ValueError
|
If use_cache is True and gradient checkpointing is enabled. |
ValueError
|
If cache_position is not specified when using StaticCache. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoModel.get_input_embeddings()
¶
Get the input embeddings for the OlmoModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoModel.set_input_embeddings(value)
¶
This method sets the input embeddings for the OlmoModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoModel class.
TYPE:
|
value |
The input embeddings to be set for the OlmoModel. It should be of type 'object' and can contain the input embeddings data.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoPreTrainedModel
¶
Bases: PreTrainedModel
This class represents a pre-trained model for Olmo, which is a subclass of the PreTrainedModel class.
OlmoPreTrainedModel provides methods for initializing weights, setting up cache, and resetting cache.
METHOD | DESCRIPTION |
---|---|
_init_weights |
Initializes the weights of the given cell.
|
_setup_cache |
Sets up the cache for the model. If the attention implementation is 'flash_attention_2' and the cache class is StaticCache, a ValueError is raised. For each layer in the model, the cache is set to an instance of the cache class, with the specified maximum batch size, maximum cache length, and data type. |
_reset_cache |
Resets the cache for the model. For each layer in the model, the cache is set to None. |
Note
The OlmoPreTrainedModel class assumes the existence of a model attribute, which is expected to have a layers attribute. Additionally, it checks for the existence of a _pre_quantization_dtype attribute in the config attribute. For more information on Olmo, refer to the documentation at https://github.com/huggingface/transformers.
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoRotaryEmbedding
¶
Bases: Module
This class represents an implementation of Olmo Rotary Embedding for neural networks. It provides methods to calculate and cache cosine and sine values based on positional embeddings for efficient computation in attention mechanisms. The class inherits from nn.Module and includes initialization parameters for dimensionality, maximum position embeddings, base value, and scaling factor. The class also includes methods to calculate cosine and sine values based on positional embeddings, and provides warnings for deprecated attributes.
Note
The 'sin_cached' and 'cos_cached' attributes will be removed in version 4.39 and their contents changed in version 4.38. It is recommended to use the 'forward' method of RoPE instead of accessing these attributes directly.
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoRotaryEmbedding.cos_cached
property
¶
This method 'cos_cached' in the class 'OlmoRotaryEmbedding' retrieves the cached cosine similarity value.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'OlmoRotaryEmbedding' class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
mindnlp.transformers.models.olmo.modeling_olmo.OlmoRotaryEmbedding.sin_cached
property
¶
Returns the cached value of the sine of the input.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OlmoRotaryEmbedding class.
|
RETURNS | DESCRIPTION |
---|---|
Conditional return: This method returns the cached value of the sine of the input, or None if the cache is empty. |
mindnlp.transformers.models.olmo.modeling_olmo.OlmoRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes an instance of the OlmoRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
dim |
The dimensionality of the rotary embeddings.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value used for calculating inverse frequencies. Defaults to 10000.
TYPE:
|
scaling_factor |
The scaling factor applied to the sequence length. Defaults to 1.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
mindnlp.transformers.models.olmo.modeling_olmo.OlmoRotaryEmbedding.forward(x, position_ids)
¶
Constructs the OlmoRotaryEmbedding.
PARAMETER | DESCRIPTION |
---|---|
self |
OlmoRotaryEmbedding The instance of the OlmoRotaryEmbedding class.
|
x |
torch.Tensor The input tensor.
|
position_ids |
torch.Tensor The position IDs tensor.
|
RETURNS | DESCRIPTION |
---|---|
Tuple[torch.Tensor, torch.Tensor] The tuple containing the cosine and sine values computed based on the input and position IDs. |
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
mindnlp.transformers.models.olmo.modeling_olmo.apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
Deprecated and unused.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
mindnlp.transformers.models.olmo.modeling_olmo.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
441 442 443 444 445 446 447 448 449 450 |
|
mindnlp.transformers.models.olmo.modeling_olmo.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/olmo/modeling_olmo.py
320 321 322 323 324 325 |
|
mindnlp.transformers.models.olmo.configuration_olmo
¶
OLMo model configuration
mindnlp.transformers.models.olmo.configuration_olmo.OlmoConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [OlmoModel
]. It is used to instantiate an OLMo
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the allenai/OLMo-7B-hf.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
pad_token_id |
Padding token id.
TYPE:
|
bos_token_id |
Beginning of stream token id.
TYPE:
|
eos_token_id |
End of stream token id.
TYPE:
|
tie_word_embeddings |
Whether to tie weight embeddings
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
rope_scaling |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
TYPE:
|
attention_bias |
Whether to use a bias in the query, key, value and output projection layers during self-attention.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
clip_qkv |
If not
TYPE:
|
Example
>>> from transformers import OlmoModel, OlmoConfig
...
>>> # Initializing a OLMo 7B style configuration
>>> configuration = OlmoConfig()
...
>>> # Initializing a model from the OLMo 7B style configuration
>>> model = OlmoModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/olmo/configuration_olmo.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
mindnlp.transformers.models.olmo.configuration_olmo.OlmoConfig.__init__(vocab_size=50304, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, use_cache=True, pad_token_id=1, bos_token_id=None, eos_token_id=50279, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, clip_qkv=None, **kwargs)
¶
Initializes an instance of the OlmoConfig class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OlmoConfig class.
TYPE:
|
vocab_size |
The size of the vocabulary. Defaults to 50304.
TYPE:
|
hidden_size |
The size of the hidden layers. Defaults to 4096.
TYPE:
|
intermediate_size |
The size of the intermediate layers. Defaults to 11008.
TYPE:
|
num_hidden_layers |
The number of hidden layers. Defaults to 32.
TYPE:
|
num_attention_heads |
The number of attention heads. Defaults to 32.
TYPE:
|
num_key_value_heads |
The number of key and value heads. Defaults to None.
TYPE:
|
hidden_act |
The activation function for the hidden layers. Defaults to 'silu'.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
initializer_range |
The range for the weight initializer. Defaults to 0.02.
TYPE:
|
use_cache |
Whether to use caching. Defaults to True.
TYPE:
|
pad_token_id |
The ID of the padding token. Defaults to 1.
TYPE:
|
bos_token_id |
The ID of the beginning-of-sentence token. Defaults to None.
TYPE:
|
eos_token_id |
The ID of the end-of-sentence token. Defaults to 50279.
TYPE:
|
tie_word_embeddings |
Whether to tie word embeddings. Defaults to False.
TYPE:
|
rope_theta |
The theta value for the rope attention. Defaults to 10000.0.
TYPE:
|
rope_scaling |
The scaling factor for rope attention. Defaults to None.
TYPE:
|
attention_bias |
Whether to use attention bias. Defaults to False.
TYPE:
|
attention_dropout |
The dropout rate for attention. Defaults to 0.0.
TYPE:
|
clip_qkv |
The clip value for query, key, and value. Defaults to None.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/olmo/configuration_olmo.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|