openelm
mindnlp.transformers.models.openelm.modeling_openelm
¶
OpenELM config
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMDecoderLayer
¶
Bases: Module
The OpenELMDecoderLayer
class represents a single layer of the OpenELM decoder model.
It is designed to be used in the OpenELMDecoder model for generating high-quality sequence predictions.
This class inherits from the nn.Module
class, which provides a base class for all neural network cells in MindSpore.
ATTRIBUTE | DESCRIPTION |
---|---|
attn |
An instance of the |
ffn |
An instance of the |
ffn_norm |
An instance of the
TYPE:
|
attn_norm |
An instance of the
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMDecoderLayer.__init__(config, layer_idx)
¶
Initialize an instance of the OpenELMDecoderLayer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMDecoderLayer class.
|
config |
The configuration object for OpenELM. It specifies the model configuration settings.
TYPE:
|
layer_idx |
The index of the current layer in the decoder stack. It is used for identifying the layer position.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cache_position=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMFeedForwardNetwork
¶
Bases: Module
The OpenELMFeedForwardNetwork class represents a feedforward network layer for the OpenELM model. This class inherits from nn.Module and implements the forward function of the feedforward network layer.
The init method initializes the OpenELMFeedForwardNetwork instance with the provided configuration and layer index. It calculates the intermediate dimensions based on the configuration, initializes the projection layers, and sets the activation function based on the configuration.
The extra_repr method returns a string representation of the instance, including the ffn_with_glu attribute.
The forward method implements the forward function of the feedforward network layer. It takes an input tensor of shape [batch size, sequence length, model dimension], applies the projection layers and activation functions based on the configuration, and returns a tensor of the same shape as the input.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMFeedForwardNetwork.__init__(config, layer_idx)
¶
Initializes an instance of the OpenELMFeedForwardNetwork class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An instance of the OpenELMConfig class containing configuration settings.
TYPE:
|
layer_idx |
The index of the layer in the network.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input parameters are of incorrect types. |
ValueError
|
If the layer index is out of bounds or if there are any configuration issues. |
KeyError
|
If the activation function name specified in the config is not found in the ACT2FN dictionary. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMFeedForwardNetwork.extra_repr()
¶
This method generates a string representation of the OpenELMFeedForwardNetwork object with additional information about the feedforward network configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMFeedForwardNetwork class. |
RETURNS | DESCRIPTION |
---|---|
str
|
A string representation of the OpenELMFeedForwardNetwork object with the additional information about the feedforward network configuration including the ffn_with_glu attribute.
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMFeedForwardNetwork.forward(x)
¶
Forward function of FFN layer.
PARAMETER | DESCRIPTION |
---|---|
x |
Input tensor of the shape [batch size, sequence length, model dimension].
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
A tensor of the same shape as the input. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM
¶
Bases: OpenELMPreTrainedModel
This class represents a OpenELM model for Causal Language Modeling (LM). It is designed for generating text based on input sequences and predicting the next token in a sequence. The class includes methods for setting and getting input and output embeddings, setting the decoder, forwarding the model for generation, and preparing inputs for text generation. Additionally, it provides a static method for reordering cache during generation. The class inherits from OpenELMPreTrainedModel and implements functionality specific to Causal LM tasks.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.__init__(config)
¶
Initializes an instance of the OpenELMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current object instance.
|
config |
An instance of OpenELMConfig class containing the configuration settings for the OpenELM model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
This method initializes the OpenELMForCausalLM object by setting its configuration, transformer, vocab_size, and lm_head attributes. The config parameter is an instance of OpenELMConfig class and is required to configure the OpenELM model.
ATTRIBUTE | DESCRIPTION |
---|---|
self.transformer |
An instance of the OpenELMModel class.
|
self.vocab_size |
An integer representing the size of the vocabulary used in the model.
|
self.lm_head |
An instance of the nn.Linear class or None depending on the value of config.share_input_output_layers.
|
Note
The OpenELMModel and nn.Linear classes are imported from the appropriate libraries.
Example
>>> config = OpenELMConfig(vocab_size=10000, share_input_output_layers=False)
>>> open_elm = OpenELMForCausalLM(config)
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None)
¶
This method forwards a Causal Language Model for OpenELM.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
input_ids |
The input tensor containing token IDs. Default is None.
TYPE:
|
attention_mask |
An optional tensor for masking tokens. Default is None.
TYPE:
|
position_ids |
An optional tensor containing position IDs. Default is None.
TYPE:
|
past_key_values |
A list of tensors representing past key values. Default is None.
TYPE:
|
inputs_embeds |
An optional tensor of input embeddings. Default is None.
TYPE:
|
labels |
An optional tensor containing labels. Default is None.
TYPE:
|
use_cache |
A flag indicating whether to use cache. Default is None.
TYPE:
|
output_attentions |
A flag indicating whether to output attentions. Default is None.
TYPE:
|
output_hidden_states |
A flag indicating whether to output hidden states. Default is None.
TYPE:
|
return_dict |
A flag indicating whether to return a dictionary. Default is None.
TYPE:
|
cache_position |
An optional tensor for cache position. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast]: The output of the method, which can be a tuple or an instance of CausalLMOutputWithPast. If return_dict is False, the return value includes loss, logits, past key values, hidden states, and attentions. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.get_decoder()
¶
This method returns the transformer for OpenELMForCausalLM.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method returns the transformer object associated with the OpenELMForCausalLM instance. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.get_input_embeddings()
¶
Retrieve the input embeddings from the OpenELMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of OpenELMForCausalLM.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
token_embeddings
|
This method returns the input embeddings as a transformer token embeddings. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.get_output_embeddings()
¶
Returns the output embeddings of the OpenELMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OpenELMForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
lm_head
|
The method returns the output embeddings of the OpenELMForCausalLM model. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepares the inputs for generation in the OpenELMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMForCausalLM class.
TYPE:
|
input_ids |
The input tensor of shape [batch_size, sequence_length] containing the token indices.
TYPE:
|
past_key_values |
The past key-value states. If provided, should be either an instance of Cache or a tuple containing tensors. Defaults to None.
TYPE:
|
attention_mask |
The attention mask tensor of shape [batch_size, sequence_length]. If provided, it masks the attention scores. Defaults to None.
TYPE:
|
inputs_embeds |
The embedded inputs tensor of shape [batch_size, sequence_length, hidden_size]. If provided, it replaces input_ids. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
model_inputs
|
A dictionary containing the model inputs for generation. It has the following keys:
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.set_decoder(decoder)
¶
Set the decoder for the OpenELMForCausalLM instance.
This method allows setting the decoder for the OpenELMForCausalLM instance. The decoder is used to transform the input data.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMForCausalLM class.
TYPE:
|
decoder |
The decoder to be set. It should be compatible with the OpenELMForCausalLM instance.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.set_input_embeddings(value)
¶
Sets the input embeddings for the OpenELMForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMForCausalLM class.
TYPE:
|
value |
The input embeddings to be set for the model. It should be a torch.Tensor object.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMForCausalLM.set_output_embeddings(new_embeddings)
¶
This method sets the output embeddings for the OpenELMForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMForCausalLM class.
TYPE:
|
new_embeddings |
The new output embeddings to be set for the OpenELMForCausalLM instance.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMModel
¶
Bases: OpenELMPreTrainedModel
This class represents an OpenELM model for natural language processing tasks. It is designed to be used for tasks such as language modeling, text generation, and machine translation. The model architecture includes a transformer-based decoder with customizable layers and attention mechanisms.
The OpenELMModel class provides methods for initializing the model with configuration settings, accessing and updating input embeddings, and forwarding the model for inference or training. The forward method handles the main computation flow of the model, including processing input data, applying transformer layers, and generating model outputs. The class also includes helper methods for managing cache, attention masks, and normalization.
The OpenELMModel class is designed to be flexible and efficient, allowing for easy customization of the model architecture and behavior. It inherits from the OpenELMPreTrainedModel class, which provides additional functionality and pre-trained model weights.
For detailed information on each method and parameter, refer to the method docstrings within the class implementation.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMModel.__init__(config)
¶
Initializes an instance of the OpenELMModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing the model settings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None)
¶
Constructs the OpenELMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMModel class.
TYPE:
|
input_ids |
The input tensor ids. Default: None.
TYPE:
|
attention_mask |
The attention mask tensor. Default: None.
TYPE:
|
position_ids |
The position ids tensor. Default: None.
TYPE:
|
past_key_values |
The list of past key value tensors. Default: None.
TYPE:
|
inputs_embeds |
The input embeddings tensor. Default: None.
TYPE:
|
use_cache |
Whether to use cache. Default: None.
TYPE:
|
output_attentions |
Whether to output attentions. Default: None.
TYPE:
|
output_hidden_states |
Whether to output hidden states. Default: None.
TYPE:
|
return_dict |
Whether to return a dictionary. Default: None.
TYPE:
|
cache_position |
The cache position tensor. Default: None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: The output tuple or BaseModelOutputWithPast object. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified or neither is specified. |
Warning
|
If use_cache=True is incompatible with gradient checkpointing. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMModel.get_input_embeddings()
¶
Returns the input embeddings for the OpenELMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the OpenELMModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method retrieves the input embeddings from the OpenELMModel.
The input embeddings are obtained from the token embeddings of the model.
The token embeddings are stored in the token_embeddings
attribute of the OpenELMModel instance.
The input embeddings are used as input for further processing or analysis in the OpenELMModel.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMModel.set_input_embeddings(new_embeddings)
¶
Set the input embeddings for the OpenELMModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMModel class.
TYPE:
|
new_embeddings |
A tensor containing the new embeddings to be set as input.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMMultiHeadCausalAttention
¶
Bases: Module
This class represents a multi-head causal attention mechanism for OpenELM models. It performs multi-head self-attention computation with optional key and query normalization and caching capabilities.
Inherits from nn.Module, this class provides functionality for processing input tensors through multi-head self-attention mechanism, with support for caching key-value pairs for efficient generation tasks.
The class initializes with configuration parameters and layer index, setting up projection layers, position embeddings, normalization options, and output projection layers. It also defines the number of query, key, and value heads, along with transformer dimensions and grouping information.
The 'forward' method performs the forward pass of multi-head self-attention, taking input hidden states, optional attention mask, cached key-value pairs, and other parameters. It computes queries, keys, and values, applies normalization if configured, updates cached key-value pairs if available, incorporates positional embeddings, and performs scaled dot-product attention calculation. Finally, it applies output projection and returns the attention output along with optional attention weights and updated cached key-value pairs.
Note
This class assumes the existence of certain related classes and functions like OpenELMConfig, OpenELMRotaryEmbedding, OpenELMRMSNorm, Cache, nn.Linear, and _scaled_dot_product_attention.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMMultiHeadCausalAttention.__init__(config, layer_idx)
¶
Initializes an instance of the OpenELMMultiHeadCausalAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An instance of the OpenELMConfig class containing configuration parameters.
TYPE:
|
layer_idx |
The index of the layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMMultiHeadCausalAttention.extra_repr()
¶
Returns a string representation of the OpenELMMultiHeadCausalAttention object, including the number of query, key, and value heads.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMMultiHeadCausalAttention class. |
RETURNS | DESCRIPTION |
---|---|
str
|
A string representation of the OpenELMMultiHeadCausalAttention object, including the number of query, key, and value heads.
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMMultiHeadCausalAttention.forward(hidden_states, attention_mask=None, past_key_value=None, output_attentions=False, use_cache=False, cache_position=None)
¶
Forward pass of multi-head self-attention.
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
Input tensor of the shape [batch size, sequence length, model dimension].
TYPE:
|
past_key_value |
Tensor storing the cached keys and values.
TYPE:
|
output_attentions |
output attention weights.
TYPE:
|
use_cache |
Specifies whether to use kv-cache for generation.
TYPE:
|
cache_position |
used for updating the kv-cache.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
The output of the same shape as the input, optionally with a tensor containing cached keys and values. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMPreTrainedModel
¶
Bases: PreTrainedModel
This class represents a pre-trained model for OpenELM. It is a subclass of PreTrainedModel and implements various methods and functionalities for training and inference.
The class contains an initialization method, '_init_weights', which is responsible for initializing the weights of the model. This method takes a 'cell' parameter, which represents the neural network cell.
The '_init_weights' method initializes the weights differently based on the type of the 'cell' parameter. If the 'cell' is an instance of 'nn.Linear', the weight is initialized using a normal distribution with a range defined by the 'initializer_range' attribute of the 'config' object. If the 'cell' has a bias, it is initialized to zeros.
If the 'cell' is an instance of 'nn.Embedding', the weight is initialized using a normal distribution with a range defined by the 'initializer_range' attribute of the 'config' object. If the 'cell' has a padding index, the weight corresponding to the padding index is set to zero.
If the 'cell' is an instance of 'OpenELMRMSNorm', the weight is initialized to ones.
Note
This class is designed specifically for OpenELM and inherits functionalities from the 'PreTrainedModel' class.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRMSNorm
¶
Bases: Module
This class represents the OpenELMRMSNorm normalization layer, which can be used for normalizing input tensors.
ATTRIBUTE | DESCRIPTION |
---|---|
eps |
A small value added to the denominator for numerical stability.
TYPE:
|
weight |
Learnable scaling parameter.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initialize the OpenELMRMSNorm normalization layer. |
_norm |
Apply the OpenELMRMSNorm normalization to the input tensor. |
forward |
Forward pass through the OpenELMRMSNorm layer. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRMSNorm.__init__(num_features, eps=1e-06)
¶
Initialize the OpenELMRMSNorm normalization layer.
PARAMETER | DESCRIPTION |
---|---|
dim |
The dimension of the input tensor.
TYPE:
|
eps |
A small value added to the denominator for numerical stability. Default is 1e-6.
TYPE:
|
ATTRIBUTE | DESCRIPTION |
---|---|
eps |
A small value added to the denominator for numerical stability.
TYPE:
|
weight |
Learnable scaling parameter.
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRMSNorm.forward(x)
¶
Forward pass through the OpenELMRMSNorm layer.
PARAMETER | DESCRIPTION |
---|---|
x |
The input tensor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The output tensor after applying OpenELMRMSNorm. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
82 83 84 85 86 87 88 89 90 91 92 93 94 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRotaryEmbedding
¶
Bases: Module
The rotary position embeddings (aka RoPE) from RoFormer <https://arxiv.org/abs/2104.09864>
_.
RoPE encodes the position information of tokens using a rotation matrix, and is able to capture explicit relative positional dependencies.
PARAMETER | DESCRIPTION |
---|---|
model_dim |
The dimensionality of the model's hidden state.
TYPE:
|
max_seq_length |
Maximum sequence length.
TYPE:
|
freq_constant |
A constant used for computing frequencies.
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRotaryEmbedding.__init__(model_dim, max_seq_length, freq_constant=10000)
¶
Initializes the OpenELMRotaryEmbedding instance with the specified parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
model_dim |
The dimension of the model.
TYPE:
|
max_seq_length |
The maximum sequence length.
TYPE:
|
freq_constant |
The frequency constant used in the calculation. Defaults to 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRotaryEmbedding.extra_repr()
¶
This method generates a string representation that includes specific attributes of the OpenELMRotaryEmbedding class instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMRotaryEmbedding class.
|
RETURNS | DESCRIPTION |
---|---|
str
|
A formatted string representing the model_dim, max_seq_length, and freq_constant attributes of the instance.
TYPE:
|
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|
mindnlp.transformers.models.openelm.modeling_openelm.OpenELMRotaryEmbedding.forward(query, key)
¶
The forward function of RoPE embeddings.
PARAMETER | DESCRIPTION |
---|---|
query |
Query embeddings in the transformer model. The shape of query embeddings is [Batch, number of query heads, number of query tokens, model dimension].
TYPE:
|
key |
Key embeddings in the transformer model. The shape of key embeddings is [Batch, number of key heads, number of key tokens, model dimension].
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple
|
A tuple containing the query and key embeddings with positional information. The shape of the returned query and key embeddings is the same as the input query and key embeddings respectively.
TYPE:
|
Note
The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors are casted to original input datatype.
Source code in mindnlp/transformers/models/openelm/modeling_openelm.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|
mindnlp.transformers.models.openelm.configuration_openelm
¶
Implements HF OpenELMConfig based on PretrainedConfig
mindnlp.transformers.models.openelm.configuration_openelm.OpenELMConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [OpenELMModel
].
It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the OpenELM model.
TYPE:
|
max_context_length |
Maximum number of input tokens.
TYPE:
|
num_transformer_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
model_dim |
Dimension of the hidden representations.
TYPE:
|
head_dim |
The attention head dimension.
TYPE:
|
qkv_multipliers |
If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions, resulting in uniform allocation of parameters. If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer. This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
TYPE:
|
num_query_heads |
The number of query heads, computed from
TYPE:
|
num_gqa_groups |
This variable allows to switch between multi-head attention, group query attention, and multi-query attention. When num_gqa_groups == 1, then it is multi-head attention. When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention When num_gqa_groups == num_heads, then it is multi-query attention
TYPE:
|
ffn_multipliers |
Feed-forward network (FFN) multipliers. If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions, resulting in uniform allocation of parameters. If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer. This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
TYPE:
|
ffn_with_glu |
Whether to use FFN with Gated Linear Unit (GLU)
TYPE:
|
ffn_dim_divisor |
The ffn layer dimension divisor.
TYPE:
|
activation_fn_name |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
normalization_layer_name |
Type of normalization layer.
TYPE:
|
normalize_qk_projections |
Whether to normalize queries and keys after projections
TYPE:
|
share_input_output_layers |
Whether to share the embedding between input and output linear layer
TYPE:
|
rope_freq_constant |
The base period of the RoPE embeddings.
TYPE:
|
rope_max_length |
That rope_max_length is set to twice of max_context_length. This allows flexibility in token lengths during training or fine-tuning.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
bos_token_id |
Beginning of stream token id.
TYPE:
|
eos_token_id |
End of stream token id.
TYPE:
|
Source code in mindnlp/transformers/models/openelm/configuration_openelm.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
mindnlp.transformers.models.openelm.configuration_openelm.OpenELMConfig.__init__(vocab_size=32000, max_context_length=2048, num_transformer_layers=12, model_dim=2048, head_dim=128, qkv_multipliers=1.0, num_query_heads=None, num_gqa_groups=1, ffn_multipliers=4.0, ffn_with_glu=True, ffn_dim_divisor=256, activation_fn_name='swish', normalization_layer_name='rms_norm', normalize_qk_projections=False, share_input_output_layers=False, rope_freq_constant=10000, rope_max_length=4096, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, **kwargs)
¶
This method initializes an instance of the OpenELMConfig class with the provided parameters.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
vocab_size |
The size of the vocabulary.
TYPE:
|
max_context_length |
The maximum length of the context.
TYPE:
|
num_transformer_layers |
The number of transformer layers.
TYPE:
|
model_dim |
The dimension of the model.
TYPE:
|
head_dim |
The dimension of the head.
TYPE:
|
qkv_multipliers |
The multiplier(s) for query, key, and value vectors.
TYPE:
|
num_query_heads |
The number of query heads. If None, it will be computed based on model_dim and head_dim.
TYPE:
|
num_gqa_groups |
The number of groups for generalized query attention.
TYPE:
|
ffn_multipliers |
The multiplier(s) for feed-forward network.
TYPE:
|
ffn_with_glu |
A boolean indicating whether to use gated linear units in the feed-forward network.
TYPE:
|
ffn_dim_divisor |
The divisor for the feed-forward network dimension.
TYPE:
|
activation_fn_name |
The name of the activation function.
TYPE:
|
normalization_layer_name |
The name of the normalization layer.
TYPE:
|
normalize_qk_projections |
A boolean indicating whether to normalize query and key projections.
TYPE:
|
share_input_output_layers |
A boolean indicating whether to share input and output layers.
TYPE:
|
rope_freq_constant |
The frequency constant for the relative positional encoding.
TYPE:
|
rope_max_length |
The maximum length for the relative positional encoding.
TYPE:
|
initializer_range |
The range for random weight initialization.
TYPE:
|
use_cache |
A boolean indicating whether to use cache.
TYPE:
|
bos_token_id |
The token ID for the beginning of sentence.
TYPE:
|
eos_token_id |
The token ID for the end of sentence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
Source code in mindnlp/transformers/models/openelm/configuration_openelm.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
|
mindnlp.transformers.models.openelm.configuration_openelm.OpenELMConfig.__post_init__()
¶
This method initializes the configuration parameters for the OpenELM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the OpenELMConfig class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None. |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If the QKV multipliers are not a single number or a list containing exactly two numbers, or if the FFN multipliers are not a single number or a list containing exactly two numbers. |
AssertionError
|
If the length of the FFN multipliers does not match the number of transformer layers, or if the number of query heads is not divisible by the number of key-value heads for any layer. |
Source code in mindnlp/transformers/models/openelm/configuration_openelm.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
mindnlp.transformers.models.openelm.configuration_openelm.compute_heads(model_dim, head_dim)
¶
Compute the number of heads.
PARAMETER | DESCRIPTION |
---|---|
model_dim |
Model dimension.
TYPE:
|
head_dim |
Head dimension.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
int
|
An integer denoting number of heads in multi-head attention is returned. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
if model dimension is not divisible by head dimension. |
Source code in mindnlp/transformers/models/openelm/configuration_openelm.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
mindnlp.transformers.models.openelm.configuration_openelm.make_divisible(v, divisor=8, min_value=None)
¶
This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by the divisor It can be seen at: https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
PARAMETER | DESCRIPTION |
---|---|
v |
input value
TYPE:
|
divisor |
default to 8
TYPE:
|
min_value |
minimum divisor value
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
new_v
|
new divisible value
TYPE:
|
Source code in mindnlp/transformers/models/openelm/configuration_openelm.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|