phi
mindnlp.transformers.models.phi.configuration_phi
¶
Phi model configuration
mindnlp.transformers.models.phi.configuration_phi.PhiConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [PhiModel
]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
microsoft/phi-1.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
resid_pdrop |
Dropout probability for mlp outputs.
TYPE:
|
embd_pdrop |
The dropout ratio for the embeddings.
TYPE:
|
attention_dropout |
The dropout ratio after computing the attention scores.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
layer_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
tie_word_embeddings |
Whether to tie weight embeddings
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
rope_scaling |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
is
TYPE:
|
partial_rotary_factor |
Percentage of the query and keys which will have rotary embedding.
TYPE:
|
qk_layernorm |
Whether or not to normalize the Queries and Keys after projecting the hidden states.
TYPE:
|
bos_token_id |
Denotes beginning of sequences token id.
TYPE:
|
eos_token_id |
Denotes end of sequences token id.
TYPE:
|
Example
>>> from transformers import PhiModel, PhiConfig
...
>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
...
>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/phi/configuration_phi.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
mindnlp.transformers.models.phi.configuration_phi.PhiConfig.__init__(vocab_size=51200, hidden_size=2048, intermediate_size=8192, num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=None, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act='gelu_new', max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-05, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.5, qk_layernorm=False, bos_token_id=1, eos_token_id=2, **kwargs)
¶
Initializes an instance of the PhiConfig class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiConfig class.
|
vocab_size |
The size of the vocabulary. Default is 51200.
TYPE:
|
hidden_size |
The size of the hidden layer. Default is 2048.
TYPE:
|
intermediate_size |
The size of the intermediate layer. Default is 8192.
TYPE:
|
num_hidden_layers |
The number of hidden layers. Default is 24.
TYPE:
|
num_attention_heads |
The number of attention heads. Default is 32.
TYPE:
|
num_key_value_heads |
The number of key-value heads. Default is the same as num_attention_heads.
TYPE:
|
resid_pdrop |
The dropout probability for residual connections. Default is 0.0.
TYPE:
|
embd_pdrop |
The dropout probability for embedding layer. Default is 0.0.
TYPE:
|
attention_dropout |
The dropout probability for attention layers. Default is 0.0.
TYPE:
|
hidden_act |
The activation function for the hidden layer. Default is 'gelu_new'.
TYPE:
|
max_position_embeddings |
The maximum position embeddings. Default is 2048.
TYPE:
|
initializer_range |
The range of the initializer. Default is 0.02.
TYPE:
|
layer_norm_eps |
The epsilon value for layer normalization. Default is 1e-05.
TYPE:
|
use_cache |
Whether to use cache for transformer layers. Default is True.
TYPE:
|
tie_word_embeddings |
Whether to tie word embeddings. Default is False.
TYPE:
|
rope_theta |
The theta value for rope positional encoding. Default is 10000.0.
TYPE:
|
rope_scaling |
The scaling factor for rope positional encoding. Default is None.
TYPE:
|
partial_rotary_factor |
The factor for partial rotary positional encoding. Default is 0.5.
TYPE:
|
qk_layernorm |
Whether to apply layer normalization on query-key vectors. Default is False.
TYPE:
|
bos_token_id |
The ID of the beginning-of-sequence token. Default is 1.
TYPE:
|
eos_token_id |
The ID of the end-of-sequence token. Default is 2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/phi/configuration_phi.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
mindnlp.transformers.models.phi.modeling_phi
¶
MindSpore Phi model.
mindnlp.transformers.models.phi.modeling_phi.PhiAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/phi/modeling_phi.py
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiAttention.__init__(config, layer_idx=None)
¶
Initializes an instance of the PhiAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An instance of the PhiConfig class containing configuration parameters.
TYPE:
|
layer_idx |
The index of the layer. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the hidden_size is not divisible by num_heads. |
TypeError
|
If config is not an instance of PhiConfig. |
TypeError
|
If layer_idx is not an integer or None. |
Warning
|
If layer_idx is None, it is not recommended and may lead to errors during forward call if caching is used. |
Note
This method initializes the PhiAttention class with the given configuration and layer index. It sets the various properties and performs necessary checks.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False)
¶
This method, named 'forward', is defined in the class 'PhiAttention'.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
hidden_states |
The input hidden states with shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
An optional tensor with shape (batch_size, 1, sequence_length, sequence_length) to mask the attention scores.
TYPE:
|
position_ids |
An optional tensor representing the position indices of input tokens with shape (batch_size, sequence_length).
TYPE:
|
past_key_value |
An optional cache structure for storing previous key and value states during auto-regressive decoding.
TYPE:
|
output_attentions |
A boolean flag indicating whether to return the attention weights.
TYPE:
|
use_cache |
A boolean flag indicating whether to use caching for key and value states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: A tuple containing the attention output tensor with shape (batch_size, sequence_length, hidden_size), optional attention weights tensor, and optional updated cache structure. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the cache structure has changed since version v4.36 and the layer index is not initialized when using the cache for auto-regressive decoding. |
ValueError
|
If the shape of attention weights does not match (batch_size, num_heads, sequence_length, sequence_length). |
ValueError
|
If the shape of attention mask does not match (batch_size, 1, sequence_length, sequence_length). |
ValueError
|
If the shape of attn_output does not match (batch_size, num_heads, sequence_length, hidden_size). |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiDecoderLayer
¶
Bases: Module
PhiDecoderLayer represents a single layer of the Phi decoder model.
This class inherits from nn.Module and contains methods for initializing the layer and forwarding the layer's computations.
The init method initializes the PhiDecoderLayer with the provided configuration and layer index. It sets up the self-attention mechanism, multi-layer perceptron, layer normalization, and residual dropout.
The forward method takes hidden_states as input and applies layer normalization. It then computes the self-attention outputs, optionally returning attention weights and caching key-value states. The method also computes the feed-forward hidden states and returns the final layer outputs, optionally including attention weights and key-value states in the output tuple.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiDecoderLayer.__init__(config, layer_idx)
¶
This method initializes a PhiDecoderLayer object.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of PhiDecoderLayer.
TYPE:
|
config |
An object containing configuration settings for the PhiDecoderLayer.
TYPE:
|
layer_idx |
An integer representing the index of the layer within the PhiDecoderLayer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not of type PhiConfig. |
ValueError
|
If the layer_idx parameter is not an integer. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False, past_key_value=None)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
position_ids |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/phi/modeling_phi.py
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiDynamicNTKScalingRotaryEmbedding
¶
Bases: PhiRotaryEmbedding
PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
Source code in mindnlp/transformers/models/phi/modeling_phi.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiDynamicNTKScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes an instance of PhiDynamicNTKScalingRotaryEmbedding.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimensionality of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings.
TYPE:
|
base |
The base value used in calculations.
TYPE:
|
scaling_factor |
The scaling factor applied to the embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM
¶
Bases: PhiPreTrainedModel
The PhiForCausalLM
class represents a Phi model for causal language modeling. It inherits from PhiPreTrainedModel
and provides methods for initializing the model, getting and setting input and output embeddings, setting the
decoder, forwarding the model, preparing inputs for generation, and reordering cache.
The PhiForCausalLM
class also includes detailed type annotations and example usage.
The class includes the following methods:
__init__
: Initializes the PhiForCausalLM model with the provided configuration.get_input_embeddings
: Returns the input embeddings of the model.set_input_embeddings
: Sets the input embeddings of the model to the provided value.get_output_embeddings
: Returns the output embeddings of the model.set_output_embeddings
: Sets the output embeddings of the model to the provided new_embeddings.set_decoder
: Sets the decoder of the model to the provided decoder.get_decoder
: Returns the decoder of the model.forward
: Constructs the model for causal language modeling with the specified inputs and returns the outputs.prepare_inputs_for_generation
: Prepares the inputs for generation based on the provided input_ids, past_key_values, attention_mask, and inputs_embeds._reorder_cache
: Reorders the past_key_values based on the specified beam index.
The class docstring includes detailed descriptions of the methods, their arguments, and return values, as well as
an example usage demonstrating how to use the PhiForCausalLM
class for generating text using the model.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.__init__(config)
¶
Initializes an instance of the 'PhiForCausalLM' class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing the necessary parameters for the Phi model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
Union[Tuple, CausalLMOutputWithPast] |
Example
>>> from transformers import AutoTokenizer, PhiForCausalLM
...
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
...
>>> prompt = "This is an example script ."
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.get_decoder()
¶
Returns the decoder model used for PhiForCausalLM.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the PhiForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method retrieves the decoder model that is used for PhiForCausalLM. The decoder model is an essential component of the PhiForCausalLM class and is responsible for generating output based on the input data. The decoder model contains the learned weights and biases that enable the PhiForCausalLM class to perform its tasks effectively. The returned decoder model is of type 'None' as it is used internally within the PhiForCausalLM class and is not intended to be directly accessed or modified by the user.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.get_input_embeddings()
¶
Method to retrieve the input embeddings from the PhiForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the PhiForCausalLM class. Represents the current object instance.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
embed_tokens
|
This method returns the input embeddings as obtained from the model's embed_tokens attribute. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.get_output_embeddings()
¶
Returns the output embeddings for the PhiForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the PhiForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None
|
The method returns the output embeddings for the PhiForCausalLM model. These embeddings are used to map the output tokens to a continuous representation. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepares inputs for generating output sequences using PhiForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of PhiForCausalLM class.
TYPE:
|
input_ids |
A tensor of shape (batch_size, sequence_length) containing input sequence tokens.
TYPE:
|
past_key_values |
A cache object or tuple of two tensors containing previously computed key and value pairs for the attention mechanism. If None, no caching is performed.
TYPE:
|
attention_mask |
An optional tensor of shape (batch_size, sequence_length) containing a mask to avoid performing attention on padding tokens.
TYPE:
|
inputs_embeds |
An optional tensor of shape (batch_size, sequence_length, hidden_size) containing precomputed embeddings for the input sequence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
model_inputs
|
A dictionary containing the following keys:
TYPE:
|
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.set_decoder(decoder)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiForCausalLM class.
TYPE:
|
decoder |
The decoder object to be set for the model. It should be an instance of the decoder class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.set_input_embeddings(value)
¶
This method sets the input embeddings for the PhiForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiForCausalLM class.
TYPE:
|
value |
The input embeddings to be set for the model. It should be a tensor of appropriate shape and type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings for the PhiForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set as the model's output embeddings. It should be a tensor of shape (vocab_size, hidden_size) where 'vocab_size' represents the size of the vocabulary and 'hidden_size' represents the size of the hidden layer. The new embeddings should be compatible with the model's existing architecture.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForSequenceClassification
¶
Bases: PhiPreTrainedModel
PhiForSequenceClassification
This class is a sequence classification model that uses the PHI algorithm for natural language processing tasks. It inherits from the PhiPreTrainedModel class.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The model configuration class instance.
TYPE:
|
num_labels |
The number of labels for the classification task.
TYPE:
|
model |
The PHI model for token embeddings.
TYPE:
|
score |
The dense layer for scoring hidden states.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes a new PhiForSequenceClassification instance. |
get_input_embeddings |
Retrieves the input embeddings from the model. |
set_input_embeddings |
Sets the input embeddings for the model. |
forward |
Constructs the model for sequence classification. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForSequenceClassification.__init__(config)
¶
Initializes a new instance of the PhiForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object containing configuration parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForSequenceClassification.get_input_embeddings()
¶
Retrieves the input embeddings from the PhiForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiForSequenceClassification class. |
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. |
RAISES | DESCRIPTION |
---|---|
None
|
This method does not raise any exceptions. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForSequenceClassification.set_input_embeddings(value)
¶
Sets the input embeddings for the PhiForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiForSequenceClassification class. |
value |
The new input embeddings tensor to be set for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForTokenClassification
¶
Bases: PhiPreTrainedModel
This class represents a PhiForTokenClassification model, which is used for token classification tasks such as Named Entity Recognition (NER) or Part-of-Speech (POS) tagging. It is a subclass of the PhiPreTrainedModel.
The PhiForTokenClassification class initializes with a PhiConfig object, which contains the configuration parameters for the model. It sets the number of labels for the classification task and creates an instance of the PhiModel based on the provided configuration.
The class also handles the initialization of the classifier dropout, which can be set either through the 'classifier_dropout' parameter in the config or the 'hidden_dropout' parameter. If neither is provided, a default dropout rate of 0.1 is used.
The 'forward' method is used to perform the forward pass of the model. It takes several input tensors such as 'input_ids', 'past_key_values', 'attention_mask', 'inputs_embeds', and 'labels'. It also supports various optional arguments such as 'use_cache', 'output_attentions', 'output_hidden_states', and 'return_dict'.
The 'labels' tensor is optional and represents the ground truth labels for computing the sequence classification/regression loss. The indices in 'labels' should be in the range of [0, config.num_labels - 1]. If 'config.num_labels == 1', a regression loss (Mean-Square loss) is computed. If 'config.num_labels > 1', a classification loss (Cross-Entropy) is computed.
The 'forward' method returns either a tuple of logits and other model outputs or a TokenClassifierOutput object depending on the 'return_dict' parameter. If 'labels' are provided, the method also computes the loss using the logits and the ground truth labels.
Please note that the class inherits additional functionality and attributes from the PhiPreTrainedModel superclass.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForTokenClassification.__init__(config)
¶
Initializes a new instance of the PhiForTokenClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
The configuration object for PhiForTokenClassification. This object contains various parameters for configuring the model. The config parameter is required and cannot be None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiForTokenClassification.forward(input_ids=None, past_key_values=None, attention_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **deprecated_arguments)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/phi/modeling_phi.py
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiLinearScalingRotaryEmbedding
¶
Bases: PhiRotaryEmbedding
PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev
Source code in mindnlp/transformers/models/phi/modeling_phi.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiLinearScalingRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0)
¶
Initializes the PhiLinearScalingRotaryEmbedding object.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value for calculations. Defaults to 10000.
TYPE:
|
scaling_factor |
The scaling factor applied to the embeddings. Defaults to 1.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiMLP
¶
Bases: Module
PhiMLP represents a Multi-Layer Perceptron (MLP) neural network with configurable hidden layer sizes and activation functions.
This class inherits from nn.Module and implements the forward pass of the MLP by defining the layers and activation functions.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
A configuration object that specifies the MLP architecture parameters.
TYPE:
|
activation_fn |
The activation function used in the hidden layers of the MLP.
TYPE:
|
fc1 |
The first fully connected layer of the MLP.
TYPE:
|
fc2 |
The second fully connected layer of the MLP.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the PhiMLP instance with the provided configuration. |
forward |
Constructs the forward pass of the MLP using the provided input tensor. |
RETURNS | DESCRIPTION |
---|---|
mindspore.Tensor: The output tensor of the forward pass through the MLP. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiMLP.__init__(config)
¶
Initializes an instance of the PhiMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object containing configuration parameters for the PhiMLP model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiMLP.forward(hidden_states)
¶
Constructs the forward pass of the PhiMLP model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiMLP class.
TYPE:
|
hidden_states |
The input hidden states tensor to be processed. The shape of the hidden_states tensor should be compatible with the model's architecture.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The tensor resulting from the forward pass through the PhiMLP model. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input hidden_states is not of type mindspore.Tensor. |
ValueError
|
If the shape of the hidden_states tensor is incompatible with the model's architecture. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiModel
¶
Bases: PhiPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [PhiDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
PhiConfig
TYPE:
|
Source code in mindnlp/transformers/models/phi/modeling_phi.py
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiModel.__init__(config)
¶
Initializes an instance of the PhiModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiModel class.
|
config |
The configuration object containing the model's hyperparameters and settings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
This method forwards the PhiModel using the specified input parameters and returns the output as a tuple or a BaseModelOutputWithPast object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
input_ids |
The input tensor containing the token ids for the model input. Defaults to None.
TYPE:
|
attention_mask |
An optional tensor providing the attention mask for the input. Defaults to None.
TYPE:
|
position_ids |
An optional tensor representing the position ids for the input. Defaults to None.
TYPE:
|
past_key_values |
An optional list of tensors containing the past key values. Defaults to None.
TYPE:
|
inputs_embeds |
An optional tensor representing the embedded inputs. Defaults to None.
TYPE:
|
use_cache |
An optional boolean flag indicating whether to use caching. Defaults to None.
TYPE:
|
output_attentions |
An optional boolean flag indicating whether to output attentions. Defaults to None.
TYPE:
|
output_hidden_states |
An optional boolean flag indicating whether to output hidden states. Defaults to None.
TYPE:
|
return_dict |
An optional boolean flag indicating whether to return a dictionary. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, BaseModelOutputWithPast]
|
Union[Tuple, BaseModelOutputWithPast]: The output is either a tuple containing the hidden states, next_cache, all_hidden_states, and all_self_attns or a BaseModelOutputWithPast object containing the last hidden state, past key values, hidden states, and attentions. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if both input_ids and inputs_embeds are specified simultaneously or if neither input_ids nor inputs_embeds are specified. |
Warning
|
If |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiModel.get_input_embeddings()
¶
Returns the input embeddings for the PhiModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiModel.set_input_embeddings(value)
¶
Set the input embeddings for the PhiModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiModel class.
TYPE:
|
value |
The input embeddings to be set for the PhiModel. It should be a tensor or an object that can be assigned to self.embed_tokens.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the provided value is not compatible with the expected input embeddings format. |
ValueError
|
If the provided value is empty or invalid. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiPreTrainedModel
¶
Bases: PreTrainedModel
This class represents a PhiPreTrainedModel, which is a subclass of PreTrainedModel. It is designed for pre-training models using the Phi framework.
The class includes a method called _init_weights which initializes the weights of the model's cells. The method takes a cell object as an argument and sets the weights and biases for the cell based on the configuration settings.
If the cell is an instance of nn.Linear, the method sets the weight data using the initializer function with a normal distribution and the specified standard deviation. It also sets the bias data to zeros if the cell has a bias.
If the cell is an instance of nn.Embedding, the method generates random weight values from a normal distribution with a mean of 0 and the specified standard deviation. If the cell has a padding index, the weight value at that index is set to 0. The weight data is then set for the cell.
Note
This docstring does not include signatures or any other code. Please refer to the actual code implementation for more details.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiRotaryEmbedding
¶
Bases: Module
The PhiRotaryEmbedding class represents a rotational positional embedding for neural network models. It inherits from nn.Module and provides functionality for forwarding rotational embeddings based on input sequences and sequence lengths.
ATTRIBUTE | DESCRIPTION |
---|---|
dim |
The dimension of the rotational positional embedding.
TYPE:
|
max_position_embeddings |
The maximum position embeddings allowed.
TYPE:
|
base |
The base value used in the rotational embedding calculation.
TYPE:
|
inv_freq |
The inverse frequency used in the rotational embedding calculation.
TYPE:
|
max_seq_len_cached |
The maximum sequence length for which the cosine and sine cache is precomputed.
TYPE:
|
cos_cached |
Precomputed cosine values for positional embeddings.
TYPE:
|
sin_cached |
Precomputed sine values for positional embeddings.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
_set_cos_sin_cache |
Precomputes and caches cosine and sine values for positional embeddings based on the specified sequence length and data type. |
forward |
Constructs the rotational positional embedding for the input sequence based on the specified sequence length or the maximum cached sequence length. |
Note
This docstring is based on the provided code snippet and may need additional details or context to fully describe the class and its functionality.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
Initializes an instance of the PhiRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimensionality of the embeddings.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings to generate. Default is 2048.
TYPE:
|
base |
The base value used in the calculation. Default is 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If dim is not a positive integer. |
ValueError
|
If max_position_embeddings is not a positive integer. |
ValueError
|
If base is not a positive integer. |
Source code in mindnlp/transformers/models/phi/modeling_phi.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
mindnlp.transformers.models.phi.modeling_phi.PhiRotaryEmbedding.forward(x, seq_len=None)
¶
Constructs a PhiRotaryEmbedding.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the PhiRotaryEmbedding class.
TYPE:
|
x |
The input tensor.
|
seq_len |
The length of the sequence. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
This method forwards a PhiRotaryEmbedding by calculating and returning the cosine and sine cached values
based on the input tensor x
and the provided sequence length seq_len
. If seq_len
is not specified,
the method returns the cosine and sine cached values for the entire sequence.
The returned values are converted to the same data type as x
.
If the specified seq_len
is greater than the max_seq_len_cached
value, the method internally updates the
cached values by calling the _set_cos_sin_cache
method. This method should be called before accessing the
cached values to ensure they are up to date.
Note that this method does not modify the instance's state and only returns the calculated cached values.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
mindnlp.transformers.models.phi.modeling_phi.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/phi/modeling_phi.py
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|
mindnlp.transformers.models.phi.modeling_phi.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/phi/modeling_phi.py
434 435 436 437 438 439 440 441 442 443 |
|
mindnlp.transformers.models.phi.modeling_phi.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/phi/modeling_phi.py
324 325 326 327 |
|