qwen2_moe
mindnlp.transformers.models.qwen2_moe.configuration_qwen2_moe
¶
Qwen2MoE model configuration
mindnlp.transformers.models.qwen2_moe.configuration_qwen2_moe.Qwen2MoeConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [Qwen2MoeModel
]. It is used to instantiate a
Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen1.5-MoE-A2.7B" Qwen/Qwen1.5-MoE-A2.7B".
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the
TYPE:
|
hidden_size |
Dimension of the hidden representations.
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer encoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the decoder.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
rms_norm_eps |
The epsilon used by the rms normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if
TYPE:
|
tie_word_embeddings |
Whether the model's input and output word embeddings should be tied.
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
use_sliding_window |
Whether to use sliding window attention.
TYPE:
|
sliding_window |
Sliding window attention (SWA) window size. If not specified, will default to
TYPE:
|
max_window_layers |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
decoder_sparse_step |
The frequency of the MoE layer.
TYPE:
|
moe_intermediate_size |
Intermediate size of the routed expert.
TYPE:
|
shared_expert_intermediate_size |
Intermediate size of the shared expert.
TYPE:
|
num_experts_per_tok |
Number of selected experts.
TYPE:
|
num_experts |
Number of routed experts.
TYPE:
|
norm_topk_prob |
Whether to normalize the topk probabilities.
TYPE:
|
output_router_logits |
Whether or not the router logits should be returned by the model. Enabeling this will also allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
TYPE:
|
router_aux_loss_coef |
The aux loss factor for the total loss.
TYPE:
|
Example
>>> from transformers import Qwen2MoeModel, Qwen2MoeConfig
...
>>> # Initializing a Qwen2MoE style configuration
>>> configuration = Qwen2MoeConfig()
...
>>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration
>>> model = Qwen2MoeModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/qwen2_moe/configuration_qwen2_moe.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
mindnlp.transformers.models.qwen2_moe.configuration_qwen2_moe.Qwen2MoeConfig.__init__(vocab_size=151936, hidden_size=2048, intermediate_size=5632, num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=16, hidden_act='silu', max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, use_sliding_window=False, sliding_window=4096, max_window_layers=28, attention_dropout=0.0, decoder_sparse_step=1, moe_intermediate_size=1408, shared_expert_intermediate_size=5632, num_experts_per_tok=4, num_experts=60, norm_topk_prob=False, output_router_logits=False, router_aux_loss_coef=0.001, **kwargs)
¶
Initializes a Qwen2MoeConfig object with the specified parameters.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
The size of the vocabulary.
TYPE:
|
hidden_size |
The size of the hidden layers.
TYPE:
|
intermediate_size |
The size of the intermediate layers.
TYPE:
|
num_hidden_layers |
The number of hidden layers.
TYPE:
|
num_attention_heads |
The number of attention heads.
TYPE:
|
num_key_value_heads |
The number of key and value heads.
TYPE:
|
hidden_act |
The activation function for the hidden layers.
TYPE:
|
max_position_embeddings |
The maximum position embeddings.
TYPE:
|
initializer_range |
The range for weight initialization.
TYPE:
|
rms_norm_eps |
The epsilon value for RMS normalization.
TYPE:
|
use_cache |
Whether to use caching.
TYPE:
|
tie_word_embeddings |
Whether to tie word embeddings.
TYPE:
|
rope_theta |
The theta value for rope.
TYPE:
|
use_sliding_window |
Whether to use sliding window.
TYPE:
|
sliding_window |
The size of the sliding window.
TYPE:
|
max_window_layers |
The maximum number of window layers.
TYPE:
|
attention_dropout |
The dropout rate for attention.
TYPE:
|
decoder_sparse_step |
The step size for decoder sparsity.
TYPE:
|
moe_intermediate_size |
The size of intermediate layers for Mixture of Experts.
TYPE:
|
shared_expert_intermediate_size |
The size of shared expert intermediate layers.
TYPE:
|
num_experts_per_tok |
The number of experts per token.
TYPE:
|
num_experts |
The total number of experts.
TYPE:
|
norm_topk_prob |
Whether to normalize top-k probabilities.
TYPE:
|
output_router_logits |
Whether to output router logits.
TYPE:
|
router_aux_loss_coef |
The coefficient for router auxiliary loss.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/configuration_qwen2_moe.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe
¶
MindSpore Qwen2MoE model.
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers".
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeAttention.__init__(config, layer_idx=None)
¶
Initialize a Qwen2MoeAttention instance.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing model hyperparameters.
TYPE:
|
layer_idx |
The index of the layer within the model. Defaults to None if not provided. If layer_idx is None, a warning is issued indicating potential issues during forward call if caching is used. It is recommended to always provide a layer index when creating an instance of this class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the hidden_size is not divisible by num_heads. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeAttention.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, **kwargs)
¶
This method forwards Qwen2MoeAttention and performs attention mechanism.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeAttention class.
|
hidden_states |
The input hidden states tensor of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
An optional tensor specifying the attention mask of shape (batch_size, 1, sequence_length, key_value_sequence_length). Defaults to None.
TYPE:
|
position_ids |
An optional tensor specifying the position ids of shape (batch_size, sequence_length). Defaults to None.
TYPE:
|
past_key_value |
An optional cache object for storing key and value states from previous steps. Defaults to None.
TYPE:
|
output_attentions |
A flag indicating whether to output attention weights. Defaults to False.
TYPE:
|
use_cache |
A flag indicating whether to use cache for storing key and value states. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]: |
Optional[Tensor]
|
A tuple containing the attention output tensor of shape (batch_size, sequence_length, hidden_size), |
Optional[Tuple[Tensor]]
|
optional attention weights tensor, and optional updated past key value tuple. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the size of attention weights or attention mask does not match the expected shape. |
ValueError
|
If the size of the final attention output tensor does not match the expected shape. |
ValueError
|
If the cache structure has changed since version v4.36 and a layer index is not provided for auto-regressive decoding with k/v caching. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeDecoderLayer
¶
Bases: Module
The Qwen2MoeDecoderLayer
class represents a single layer of the Qwen2Moe decoder model.
It is designed to be used in the Qwen2MoeDecoder model to process the input hidden states and generate output
representations.
This class inherits from the nn.Module
class.
ATTRIBUTE | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden state.
TYPE:
|
self_attn |
The self-attention mechanism used in the layer.
TYPE:
|
mlp |
The multi-layer perceptron used in the layer.
TYPE:
|
input_layernorm |
The layer normalization applied to the input hidden states.
TYPE:
|
post_attention_layernorm |
The layer normalization applied after the attention mechanism.
TYPE:
|
Note
- The
hidden_states
argument represents the input to the layer. - The
attention_mask
argument is an optional tensor that masks certain positions in the input sequence. - The
position_ids
argument is an optional tensor that represents the position IDs of the input hidden states. - The
past_key_value
argument is an optional tuple of tensors that caches the past key and value projection states. - The
output_attentions
argument is an optional boolean flag indicating whether to return the attention tensors. - The
output_router_logits
argument is an optional boolean flag indicating whether to return the logits of the routers. - The
use_cache
argument is an optional boolean flag indicating whether to use the cached key value states for decoding.
Please refer to the source code for more information on the specific implementation details.
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeDecoderLayer.__init__(config, layer_idx)
¶
Initializes a Qwen2MoeDecoderLayer object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeDecoderLayer class.
|
config |
An object containing configuration settings for the decoder layer. It specifies the hidden size, number of experts, decoder sparse step, and intermediate size.
TYPE:
|
layer_idx |
An integer indicating the index of the layer within the decoder. It is used to determine the behavior of the layer based on the configuration.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
KeyError
|
If the attention class specified in the configuration is not found in QWEN2MOE_ATTENTION_CLASSES. |
ValueError
|
If the number of experts specified in the configuration is less than or equal to 0. |
TypeError
|
If the configuration parameters are not of the expected types. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, output_router_logits=False, use_cache=False)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
output_router_logits |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference.
TYPE:
|
use_cache |
If set to
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM
¶
Bases: Qwen2MoePreTrainedModel
This class represents a Qwen2Moe model for causal language modeling. It is used for generating text based on a given input. The model is initialized with a configuration and consists of a Qwen2MoeModel for encoding and a linear layer (lm_head) for decoding. It also includes methods for getting and setting the input and output embeddings, setting and getting the decoder, and generating text.
ATTRIBUTE | DESCRIPTION |
---|---|
`model` |
The Qwen2MoeModel used for encoding.
TYPE:
|
`vocab_size` |
The size of the vocabulary.
TYPE:
|
`lm_head` |
The linear layer used for decoding.
TYPE:
|
`router_aux_loss_coef` |
The coefficient for the auxiliary loss.
TYPE:
|
`num_experts` |
The number of experts.
TYPE:
|
`num_experts_per_tok` |
The number of experts per token.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
`get_input_embeddings` |
Returns the input embeddings. |
`set_input_embeddings` |
Sets the input embeddings. |
`get_output_embeddings` |
Returns the output embeddings. |
`set_output_embeddings` |
Sets the output embeddings. |
`set_decoder` |
Sets the decoder. |
`get_decoder` |
Returns the decoder. |
`forward` |
Constructs the model with the given inputs and returns the output logits. Optionally computes the masked language modeling loss and the auxiliary loss. |
`prepare_inputs_for_generation` |
Prepares the inputs for text generation, taking into account past key values and attention mask. |
`_reorder_cache` |
Reorders the cache based on the beam index. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.__init__(config)
¶
Initializes a Qwen2MoeForCausalLM object.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
A dictionary containing configuration parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_router_logits=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, MoeCausalLMOutputWithPast]
|
|
Example
>>> from transformers import AutoTokenizer, Qwen2MoeForCausalLM
...
>>> model = Qwen2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
...
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.get_decoder()
¶
Returns the decoder model used in the Qwen2MoeForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Qwen2MoeForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.get_input_embeddings()
¶
Returns the input embeddings for the Qwen2MoeForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.get_output_embeddings()
¶
Return the output embeddings of the Qwen2MoeForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Qwen2MoeForCausalLM class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs)
¶
Prepares inputs for generation in the Qwen2MoeForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeForCausalLM class.
|
input_ids |
The input tensor of shape (batch_size, sequence_length) containing the input IDs.
TYPE:
|
past_key_values |
Optional. The past key values used for caching during generation. If past_key_values is an instance of Cache, it represents the cached key values with attributes:
TYPE:
|
attention_mask |
Optional. The attention mask tensor of shape (batch_size, sequence_length) containing the attention mask for the input IDs.
TYPE:
|
inputs_embeds |
Optional. The input embeddings tensor of shape (batch_size, sequence_length, hidden_size) containing the input embeddings.
TYPE:
|
**kwargs |
Additional keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the model inputs for generation with the following keys:
|
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.set_decoder(decoder)
¶
Sets the decoder for the Qwen2MoeForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Qwen2MoeForCausalLM class.
TYPE:
|
decoder |
The decoder to be set for the Qwen2MoeForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.set_input_embeddings(value)
¶
Description
This method sets the input embeddings for the Qwen2MoeForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeForCausalLM class. This parameter refers to the current instance of the model where the input embeddings will be set.
TYPE:
|
value |
The input embeddings to be set for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets new output embeddings for the Qwen2MoeForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeForCausalLM class.
TYPE:
|
new_embeddings |
The new output embeddings to be set for the model. Should be of the desired embedding type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForSequenceClassification
¶
Bases: Qwen2MoePreTrainedModel
Qwen2MoeForSequenceClassification is a class that implements a sequence classification model based on the Qwen2Moe architecture. It inherits from the Qwen2MoePreTrainedModel class and provides methods for initializing the model, getting and setting input embeddings, and forwarding the model for sequence classification tasks.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
Number of labels for classification.
TYPE:
|
model |
The Qwen2MoeModel instance used in the classification model.
TYPE:
|
score |
Dense layer for computing the classification scores.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the Qwen2MoeForSequenceClassification instance with the provided configuration. |
get_input_embeddings |
Retrieves the input embeddings from the model. |
set_input_embeddings |
Sets the input embeddings of the model to the given value. |
forward |
Constructs the model for sequence classification based on the input parameters. Computes the classification loss based on the provided labels and problem type. Returns a tuple of loss and output if loss is computed, otherwise returns the model outputs. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForSequenceClassification.__init__(config)
¶
Initializes a new instance of the Qwen2MoeForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
A reference to the current instance of the class.
|
config |
An instance of the Qwen2MoeConfig class containing the configuration parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForSequenceClassification.get_input_embeddings()
¶
Description
This method retrieves the input embeddings from the 'Qwen2MoeForSequenceClassification' model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the 'Qwen2MoeForSequenceClassification' class.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForSequenceClassification.set_input_embeddings(value)
¶
Set the input embeddings for the Qwen2MoeForSequenceClassification model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeForSequenceClassification class. |
value |
The input embeddings to be set for the model. It should be an object of type torch.nn.Embedding.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeMLP
¶
Bases: Module
Qwen2MoeMLP represents a multi-layer perceptron (MLP) model with customized projection layers for gating and feature transformation.
The Qwen2MoeMLP class inherits from nn.Module and is initialized with a configuration and an optional intermediate size. The class provides methods to forward and manipulate the MLP model.
ATTRIBUTE | DESCRIPTION |
---|---|
config |
The configuration object used for initializing the MLP.
|
hidden_size |
The size of the hidden layers in the MLP.
|
intermediate_size |
The optional intermediate size for the projection layers.
|
gate_proj |
The projection layer for gating, implemented as a Dense layer with the hidden size and intermediate size.
|
up_proj |
The projection layer for feature transformation, implemented as a Dense layer with the hidden size and intermediate size.
|
down_proj |
The inverse projection layer for feature transformation, implemented as a Dense layer with the intermediate size and hidden size.
|
act_fn |
The activation function used in the MLP model, derived from the configuration's hidden activation function.
|
METHOD | DESCRIPTION |
---|---|
forward |
Constructs the multi-layer perceptron model using the provided input x. This method applies the gating, feature transformation, and activation function to the input data. |
Note
The Qwen2MoeMLP class assumes the availability of the nn module for neural network operations.
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeMLP.__init__(config, intermediate_size=None)
¶
Initializes an instance of the Qwen2MoeMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object containing various settings and parameters.
TYPE:
|
intermediate_size |
The size of the intermediate layer. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeMLP.forward(x)
¶
Constructs a modified multi-layer perceptron in the Qwen2MoeMLP class.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Qwen2MoeMLP class. Represents the object itself.
TYPE:
|
x |
Input data for forwarding the modified MLP.
|
RETURNS | DESCRIPTION |
---|---|
None
|
|
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeModel
¶
Bases: Qwen2MoePreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [Qwen2MoeDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
Qwen2MoeConfig
TYPE:
|
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeModel.__init__(config)
¶
Initializes a new instance of the Qwen2MoeModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current object instance.
|
config |
The configuration object for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeModel.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_router_logits=None, return_dict=None)
¶
Constructs the Qwen2MoeModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
input_ids |
The input tensor representing the token ids. Defaults to None.
TYPE:
|
attention_mask |
The tensor representing the attention mask. Defaults to None.
TYPE:
|
position_ids |
The tensor representing the position ids. Defaults to None.
TYPE:
|
past_key_values |
The list of tensors representing past key values. Defaults to None.
TYPE:
|
inputs_embeds |
The tensor representing the embedded inputs. Defaults to None.
TYPE:
|
use_cache |
Whether to use cache or not. Defaults to None.
TYPE:
|
output_attentions |
Whether to output attentions or not. Defaults to None.
TYPE:
|
output_hidden_states |
Whether to output hidden states or not. Defaults to None.
TYPE:
|
output_router_logits |
Whether to output router logits or not. Defaults to None.
TYPE:
|
return_dict |
Whether to return a dictionary or not. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, MoeModelOutputWithPast]
|
Union[Tuple, MoeModelOutputWithPast]: The forwarded model output. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If both input_ids and inputs_embeds are specified at the same time. |
ValueError
|
If neither input_ids nor inputs_embeds are specified. |
Warning
|
If use_cache=True is incompatible with gradient checkpointing. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeModel.get_input_embeddings()
¶
Get the input embeddings.
This method takes the 'self' parameter, which refers to the instance of the Qwen2MoeModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeModel.set_input_embeddings(value)
¶
Sets the input embeddings for the Qwen2MoeModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeModel class.
TYPE:
|
value |
The input embeddings to be set.
This should be a tensor or an object that can be assigned to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method sets the input embeddings for the Qwen2MoeModel by assigning the given value to the
embed_tokens
attribute of the instance.
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoePreTrainedModel
¶
Bases: PreTrainedModel
Qwen2MoePreTrainedModel is a Python class that represents a pre-trained model for Qwen2Moe. This class inherits from PreTrainedModel and contains methods for initializing weights for different types of cells such as Dense and Embedding.
METHOD | DESCRIPTION |
---|---|
_init_weights |
Initializes the weights for the given cell. If the cell is a Dense type, it initializes the weight using a normal distribution with a specified range and initializes the bias to zeros if present. If the cell is an Embedding type, it initializes the weight with random values within the specified range and handles padding if necessary. |
PARAMETER | DESCRIPTION |
---|---|
cell |
The cell for which weights need to be initialized. It can be a nn.Linear or nn.Embedding type.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeRMSNorm
¶
Bases: Module
Qwen2MoeRMSNorm is a custom normalization layer that is equivalent to T5LayerNorm. It inherits from the nn.Module class.
This normalization layer performs root mean square normalization (RMSNorm) on the input hidden states. It is commonly used in neural network architectures, such as T5 models, to improve the training efficiency and convergence.
PARAMETER | DESCRIPTION |
---|---|
hidden_size |
The size of the hidden states.
TYPE:
|
eps |
A small value added to the variance for numerical stability. Defaults to 1e-06.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes a new instance of the Qwen2MoeRMSNorm class. |
forward |
Applies RMSNorm normalization to the input hidden_states. Parameters:
Returns:
|
Example
>>> # Create a Qwen2MoeRMSNorm instance
>>> norm_layer = Qwen2MoeRMSNorm(hidden_size=512)
...
>>> # Apply RMSNorm normalization to the input tensor
>>> input_tensor = ops.randn((batch_size, sequence_length, hidden_size))
>>> normalized_tensor = norm_layer.forward(input_tensor)
...
>>> # The normalized_tensor now contains the input tensor after applying RMSNorm normalization.
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeRMSNorm.__init__(hidden_size, eps=1e-06)
¶
Qwen2MoeRMSNorm is equivalent to T5LayerNorm
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
199 200 201 202 203 204 205 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeRMSNorm.forward(hidden_states)
¶
Constructs the Qwen2MoeRMSNorm for the given hidden states.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Qwen2MoeRMSNorm class.
|
hidden_states |
The input hidden states to normalize. It should be of type 'mindspore.dtype'.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Note
- The hidden_states parameter is expected to be a tensor of shape (batch_size, sequence_length, hidden_size).
- The hidden_states tensor is converted to 'mindspore.float32' type.
- The variance of the hidden_states tensor is calculated by squaring each element and then taking the mean along the last dimension.
- The hidden_states tensor is then multiplied by the reciprocal square root of the variance plus 'self.variance_epsilon'.
- The final result is the element-wise multiplication of the hidden_states tensor with the weight tensor, which is then casted back to the input_dtype.
Example
>>> qwen = Qwen2MoeRMSNorm()
>>> hidden_states = mindspore.Tensor(np.random.rand(2, 3, 4), dtype=mindspore.float16)
>>> qwen.forward(hidden_states)
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
¶
Bases: Module
This class represents a Qwen2MoeRotaryEmbedding, which is a rotary positional embedding used in natural language processing tasks. It is a subclass of the nn.Module class.
The Qwen2MoeRotaryEmbedding class initializes with the following parameters:
- dim (int): The dimension of the embedding.
- max_position_embeddings (int): The maximum number of position embeddings.
- base (int): The base used in the exponential calculation.
The class provides the following methods:
-
init: Initializes the Qwen2MoeRotaryEmbedding instance.
-
_set_cos_sin_cache: Sets the cosine and sine cache for the given sequence length and data type.
-
forward: Constructs the rotary embedding for the given input tensor and sequence length.
Note
The methods above are inherited from the nn.Module class.
Example
>>> # Create a Qwen2MoeRotaryEmbedding instance
>>> embedding = Qwen2MoeRotaryEmbedding(dim=512)
...
>>> # Generate rotary embedding for input tensor x
>>> x = ... # Input tensor
>>> seq_len = ... # Sequence length
>>> cos_embedding, sin_embedding = embedding.forward(x, seq_len)
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding.__init__(dim, max_position_embeddings=2048, base=10000)
¶
Initializes an instance of the Qwen2MoeRotaryEmbedding class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
dim |
The dimension of the embedding.
TYPE:
|
max_position_embeddings |
The maximum number of position embeddings. Defaults to 2048.
TYPE:
|
base |
The base value used in the calculation. Defaults to 10000.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding.forward(x, seq_len=None)
¶
Constructs a rotary embedding for the given input sequence.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Qwen2MoeRotaryEmbedding class.
TYPE:
|
x |
The input tensor of shape (batch_size, sequence_length, input_size).
TYPE:
|
seq_len |
The length of the input sequence. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If seq_len is greater than the maximum sequence length that is cached. |
This method forwards a rotary embedding for the input sequence. It first checks if the provided seq_len is greater than the maximum sequence length that is currently cached. If so, it updates the cosine and sine caches by calling the _set_cos_sin_cache method. The cached cosine and sine values are then returned for the specified sequence length.
Note that the returned cosine and sine tensors are converted to the same dtype as the input tensor x.
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
¶
Bases: Module
This class represents a sparse mixture-of-experts (MoE) block for the Qwen2 model. It is a subclass of nn.Module.
ATTRIBUTE | DESCRIPTION |
---|---|
num_experts |
The number of experts in the MoE block.
TYPE:
|
top_k |
The number of top experts to select per token.
TYPE:
|
norm_topk_prob |
Flag indicating whether to normalize the probabilities of the top experts.
TYPE:
|
gate |
The gate layer that computes the routing probabilities for the experts.
TYPE:
|
experts |
List of expert layers in the MoE block.
TYPE:
|
shared_expert |
The shared expert layer in the MoE block.
TYPE:
|
shared_expert_gate |
The gate layer for the shared expert.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Constructs the MoE block by processing the given hidden states. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock.__init__(config)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Qwen2MoeSparseMoeBlock class.
TYPE:
|
config |
A configuration object containing various parameters for the Qwen2MoeSparseMoeBlock.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the number of experts (config.num_experts) is not a positive integer. |
ValueError
|
If the top k value (config.num_experts_per_tok) is not a positive integer. |
ValueError
|
If the normalized top k probability (config.norm_topk_prob) is not in the range [0, 1]. |
ValueError
|
If the hidden size for the gate (config.hidden_size) is not a positive integer. |
ValueError
|
If the intermediate size for the experts (config.moe_intermediate_size) or shared expert (config.shared_expert_intermediate_size) is not a positive integer. |
ValueError
|
If the number of shared expert gates (1) is not a positive integer. |
TypeError
|
If the provided configuration object is not of type Config. |
RuntimeError
|
If there is an issue with initializing the gate or expert models. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock.forward(hidden_states)
¶
This method forwards a Qwen2MoeSparseMoeBlock by processing the input hidden_states.
PARAMETER | DESCRIPTION |
---|---|
self |
Qwen2MoeSparseMoeBlock The instance of the Qwen2MoeSparseMoeBlock class.
|
hidden_states |
mindspore.Tensor A tensor representing the hidden states with the shape (batch_size, sequence_length, hidden_dim).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor A tensor representing the final hidden states after processing, with the shape (batch_size, sequence_length, hidden_dim). |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.load_balancing_loss_func(gate_logits, num_experts=None, top_k=2, attention_mask=None)
¶
Computes auxiliary load balancing loss as in Switch Transformer - implemented in MindSpore.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced.
PARAMETER | DESCRIPTION |
---|---|
gate_logits |
Logits from the
TYPE:
|
attention_mask |
The attention_mask used in forward function shape [batch_size X sequence_length] if not None.
TYPE:
|
num_experts |
Number of experts
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
The auxiliary loss. |
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
491 492 493 494 495 496 497 498 499 500 |
|
mindnlp.transformers.models.qwen2_moe.modeling_qwen2_moe.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/qwen2_moe/modeling_qwen2_moe.py
372 373 374 375 376 377 |
|