roberta
mindnlp.transformers.models.roberta.modeling_roberta
¶
roberta model, base on bert.
mindnlp.transformers.models.roberta.modeling_roberta.RobertaAttention
¶
Bases: Module
This class represents the attention mechanism used in the Roberta model. It is a subclass of nn.Module.
The RobertaAttention class implements the attention mechanism used in the Roberta model. It consists of a self-attention module and a self-output module. The self-attention module is responsible for computing the attention scores between the input hidden states and itself, while the self-output module applies a linear transformation to the attention output.
The class provides the following methods:
-
init: Initializes the RobertaAttention instance. It takes a configuration object and an optional position_embedding_type as arguments. The config object contains the model configuration, while the position_embedding_type specifies the type of position embedding to be used.
-
prune_heads: Prunes the specified attention heads. It takes a list of heads to be pruned as input. This method updates the attention module by removing the pruned heads and adjusting the attention head size accordingly.
-
forward: Constructs the attention output given the input hidden states and optional arguments. It computes the attention scores using the self-attention module and applies the self-output module to generate the final attention output. This method returns a tuple containing the attention output and optional additional outputs.
Note
- The 'hidden_states' argument is a tensor representing the input hidden states.
- The 'attention_mask' argument is an optional tensor specifying the attention mask.
- The 'head_mask' argument is an optional tensor indicating which attention heads to mask.
- The 'encoder_hidden_states' and 'encoder_attention_mask' arguments are optional tensors representing the hidden states and attention mask of the encoder.
- The 'past_key_value' argument is an optional tuple of past key-value tensors.
- The 'output_attentions' argument is a boolean flag indicating whether to output the attention scores.
Please refer to the RobertaSelfAttention and RobertaSelfOutput classes for more information about the self-attention and self-output modules used in this class.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaAttention.__init__(config, position_embedding_type=None)
¶
Initializes a new instance of the RobertaAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
The configuration object for the attention mechanism.
TYPE:
|
position_embedding_type |
The type of position embedding to be used. Default is None. If provided, it should be a string representing the type of position embedding.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaAttention.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)
¶
Constructs the attention mechanism for the RobertaAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaAttention class.
|
hidden_states |
The input hidden states for the attention mechanism.
TYPE:
|
attention_mask |
An optional mask tensor to mask out specific attention weights. Defaults to None.
TYPE:
|
head_mask |
An optional mask tensor to mask out specific attention heads. Defaults to None.
TYPE:
|
encoder_hidden_states |
An optional tensor representing hidden states from the encoder. Defaults to None.
TYPE:
|
encoder_attention_mask |
An optional mask tensor to mask out specific attention weights from the encoder. Defaults to None.
TYPE:
|
past_key_value |
An optional tuple of tensor tuples representing previous key-value pairs. Defaults to None.
TYPE:
|
output_attentions |
An optional flag to indicate whether to output attention weights. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the attention output tensor and any additional outputs from the mechanism. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaAttention.prune_heads(heads)
¶
Prunes the attention heads in the RobertaAttention class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaAttention class.
TYPE:
|
heads |
The list of attention heads to be pruned.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaClassificationHead
¶
Bases: Module
Head for sentence-level classification tasks.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaClassificationHead.__init__(config)
¶
Initialize the RobertaClassificationHead class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
config |
Configuration object containing parameters for the classification head. This object should have the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the config parameter is not provided. |
ValueError
|
If the config parameter is missing any of the required attributes. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaClassificationHead.forward(features, **kwargs)
¶
Constructs the classification head for a Roberta model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaClassificationHead class. |
features |
The input features for the classification head. It should have shape (batch_size, seq_length, hidden_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
torch.Tensor: The output tensor after passing through the classification head. It has shape (batch_size, seq_length, num_labels). |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEmbeddings
¶
Bases: Module
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEmbeddings.__init__(config)
¶
Initializes the RobertaEmbeddings class with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaEmbeddings class.
TYPE:
|
config |
A configuration object containing the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
AttributeError
|
If the config object is missing required attributes. |
ValueError
|
If the config attributes are not of the expected types. |
RuntimeError
|
If there are issues with initializing embeddings or layers. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
¶
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
PARAMETER | DESCRIPTION |
---|---|
inputs_embeds |
mindspore.Tensor
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEmbeddings.forward(input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0)
¶
This method forwards the embeddings for the Roberta model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
TYPE:
|
input_ids |
The input tensor containing the tokenized input.
TYPE:
|
token_type_ids |
The tensor containing token type ids for differentiating token types in the input.
TYPE:
|
position_ids |
The tensor containing the position ids for each token in the input.
TYPE:
|
inputs_embeds |
The tensor containing the input embeddings.
TYPE:
|
past_key_values_length |
The length of past key values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input shape is not valid. |
AttributeError
|
If the 'token_type_ids' attribute is not found. |
TypeError
|
If the data type of the tensors is not supported. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEncoder
¶
Bases: Module
This class represents a RobertaEncoder, which is a neural network encoder for the RoBERTa model. It inherits from the nn.Module class and is responsible for encoding input sequences using a stack of multiple RobertaLayer modules.
The RobertaEncoder class contains an init method to initialize the encoder with a given configuration, and a forward method to perform the encoding process. The forward method takes in various input tensors and optional parameters, and returns the encoded output and optional additional information such as hidden states, attentions, and cross-attentions.
The encoder utilizes a stack of RobertaLayer modules, where each layer applies a series of transformations to the input hidden states using self-attention and optionally cross-attention mechanisms. The forward method iterates through the layers, applying the transformations and updating the hidden states accordingly.
Additionally, the encoder supports gradient checkpointing and caching of past key values for efficient training and inference.
For consistency, always use triple double quotes around docstrings.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEncoder.__init__(config)
¶
Initializes a new instance of the RobertaEncoder class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaEncoder class.
TYPE:
|
config |
A dictionary containing configuration parameters for the encoder. It should include the following keys:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaEncoder.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True)
¶
Constructs the RobertaEncoder.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
hidden_states |
The input hidden states of the encoder layer. Shape: (batch_size, sequence_length, hidden_size).
TYPE:
|
attention_mask |
The attention mask tensor. If provided, should be of shape (batch_size, sequence_length), with 0s indicating tokens to be masked and 1s indicating tokens to be attended to.
TYPE:
|
head_mask |
The head mask tensor. If provided, should be of shape (num_layers, num_heads), with 0s indicating heads to be masked and 1s indicating heads to be used.
TYPE:
|
encoder_hidden_states |
The hidden states of the encoder layer. Shape: (batch_size, sequence_length, hidden_size).
TYPE:
|
encoder_attention_mask |
The attention mask tensor for encoder layer. If provided, should be of shape (batch_size, sequence_length), with 0s indicating tokens to be masked and 1s indicating tokens to be attended to.
TYPE:
|
past_key_values |
The past key values. If provided, should be of shape (num_layers, 2, batch_size, num_heads, sequence_length, hidden_size // num_heads).
TYPE:
|
use_cache |
Whether to use cache. If True, the cache will be used and updated. If False, the cache will be ignored. Default: None.
TYPE:
|
output_attentions |
Whether to output attentions. If True, attentions will be output. Default: False.
TYPE:
|
output_hidden_states |
Whether to output hidden states. If True, hidden states will be output. Default: False.
TYPE:
|
return_dict |
Whether to return a dictionary as output. If True, a dictionary containing the output tensors will be returned. If False, a tuple will be returned. Default: True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], BaseModelOutputWithPastAndCrossAttentions]
|
Union[Tuple[mindspore.Tensor], BaseModelOutputWithPastAndCrossAttentions]: The output of the encoder layer. If return_dict is True, a dictionary containing the output tensors will be returned. If return_dict is False, a tuple of tensors will be returned. The output tensors include:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForCausalLM
¶
Bases: RobertaPreTrainedModel
RobertaForCausalLM
This class is a RoBERTa model for causal language modeling. It predicts the next word in a sequence given the previous words.
Class Inheritance
RobertaForCausalLM
inherits from RobertaPreTrainedModel
.
PARAMETER | DESCRIPTION |
---|---|
config |
|
ATTRIBUTE | DESCRIPTION |
---|---|
roberta |
|
lm_head |
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForCausalLM.__init__(config)
¶
Initializes a new instance of the RobertaForCausalLM
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
An instance of the
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForCausalLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in
TYPE:
|
labels |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
TYPE:
|
use_cache |
If set to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], CausalLMOutputWithCrossAttentions]
|
Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions] |
Example
>>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
...
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)
...
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
...
>>> prediction_logits = outputs.logits
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForCausalLM.get_output_embeddings()
¶
Returns the output embeddings for the RobertaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the RobertaForCausalLM class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
This method returns the output embeddings for the RobertaForCausalLM model. The output embeddings are obtained from the decoder of the lm_head.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, **model_kwargs)
¶
Prepares the inputs for generation in the RobertaForCausalLM class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaForCausalLM class.
TYPE:
|
input_ids |
The input tensor of shape (batch_size, sequence_length) containing the input token IDs.
TYPE:
|
past_key_values |
A tuple of past key values. Defaults to None.
TYPE:
|
attention_mask |
The attention mask tensor of shape (batch_size, sequence_length). Defaults to None.
TYPE:
|
**model_kwargs |
Additional keyword arguments for the model.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the prepared inputs for generation with the following key-value pairs:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForCausalLM.set_output_embeddings(new_embeddings)
¶
Sets the output embeddings of the RobertaForCausalLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaForCausalLM class.
TYPE:
|
new_embeddings |
The new embeddings to be set as the output embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMaskedLM
¶
Bases: RobertaPreTrainedModel
RobertaForMaskedLM
is a Python class that represents a RoBERTa model for masked language modeling tasks.
This class inherits from RobertaPreTrainedModel
and provides methods for initializing the model,
getting and setting output embeddings, and forwarding the model for masked language modeling tasks.
It also includes a detailed forward
method for processing input data and computing the masked language
modeling loss.
The class includes the following methods:
__init__
: Initializes theRobertaForMaskedLM
instance.get_output_embeddings
: Returns the output embeddings of the model.set_output_embeddings
: Sets the output embeddings of the model to the specified new embeddings.forward
: Constructs the model for masked language modeling tasks and computes the masked language modeling loss.
The forward
method supports various input parameters such as input IDs, attention mask, token type IDs,
position IDs, head mask, input embeddings, encoder hidden states, encoder attention mask, labels, output attentions,
output hidden states, and return dictionary. It also includes detailed information about the expected shape and
type of the input data, as well as the optional arguments.
Additionally, the class includes warnings and error handling for specific configurations, ensuring the proper usage
of the RobertaForMaskedLM
model for bi-directional self-attention.
Note
The detailed method signatures and implementation details have been omitted for brevity and clarity.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__(config)
¶
Initializes a new instance of the 'RobertaForMaskedLM' class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current object instance.
|
config |
An instance of the 'Config' class containing the configuration settings for the model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
kwargs |
Used to hide legacy arguments that have been deprecated.
TYPE:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.get_output_embeddings()
¶
Returns the output embeddings for the RobertaForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the RobertaForMaskedLM class.
|
RETURNS | DESCRIPTION |
---|---|
A tensor of size (batch_size, sequence_length, hidden_size) representing the output embeddings. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.set_output_embeddings(new_embeddings)
¶
This method sets the output embeddings for the RobertaForMaskedLM model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaForMaskedLM class.
TYPE:
|
new_embeddings |
The new output embeddings to be set for the model. It should be an instance of torch.nn.Module.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice
¶
Bases: RobertaPreTrainedModel
RobertaForMultipleChoice is a class for fine-tuning a pre-trained Roberta model for multiple choice tasks.
This class inherits from RobertaPreTrainedModel and implements the necessary methods for forwarding the model architecture and computing the multiple choice classification loss.
ATTRIBUTE | DESCRIPTION |
---|---|
roberta |
The RobertaModel instance for handling the main Roberta model.
TYPE:
|
dropout |
Dropout layer for regularization.
TYPE:
|
classifier |
Dense layer for classification.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the RobertaForMultipleChoice instance with the given configuration. |
forward |
Constructs the model architecture and computes the multiple choice classification loss. |
PARAMETER | DESCRIPTION |
---|---|
input_ids |
Input tensor containing the token indices.
TYPE:
|
token_type_ids |
Input tensor containing the token type ids.
TYPE:
|
attention_mask |
Input tensor containing the attention mask.
TYPE:
|
labels |
Tensor containing the labels for classification loss.
TYPE:
|
position_ids |
Tensor containing the positional indices.
TYPE:
|
head_mask |
Tensor containing the head mask.
TYPE:
|
inputs_embeds |
Tensor containing the embedded input.
TYPE:
|
output_attentions |
Flag indicating whether to output attentions.
TYPE:
|
output_hidden_states |
Flag indicating whether to output hidden states.
TYPE:
|
return_dict |
Flag indicating whether to return outputs as a dictionary.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[mindspore.Tensor], MultipleChoiceModelOutput]: Tuple containing the loss and model outputs. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input shape does not match the expected dimensions for multiple choice classification. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice.__init__(config)
¶
Initializes a new instance of the RobertaForMultipleChoice
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
An instance of the
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice.forward(input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering
¶
Bases: RobertaPreTrainedModel
RobertaForQuestionAnswering is a class representing a model for question answering tasks based on the RoBERTa architecture. It inherits from RobertaPreTrainedModel and provides functionalities for forwarding the model and processing inputs for question answering.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for the question answering task.
TYPE:
|
roberta |
The RoBERTa model used for processing input sequences.
TYPE:
|
qa_outputs |
A dense layer for outputting logits for the start and end positions of the labelled span.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the RobertaForQuestionAnswering model with the provided configuration. |
forward |
Constructs the model using the input tensors and returns the output logits for start and end positions. Optionally computes the total loss if start and end positions are provided. Args:
Returns:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the start_positions or end_positions have incorrect dimensions. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__(config)
¶
Initializes a new instance of the RobertaForQuestionAnswering class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance itself.
|
config |
A configuration object containing parameters for model initialization. It must have the attribute 'num_labels' specifying the number of labels.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the 'config' parameter is not provided or is not of the expected type. |
ValueError
|
If the 'num_labels' attribute is missing in the 'config' object. |
RuntimeError
|
If an issue occurs during the initialization process of the RobertaForQuestionAnswering object. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification
¶
Bases: RobertaPreTrainedModel
This class represents a Roberta model for sequence classification tasks. It is a subclass of RobertaPreTrainedModel and is specifically designed for sequence classification tasks.
The class's code includes an initialization method (init) and a forward method.
The init method initializes the RobertaForSequenceClassification object by taking a config argument. It calls the super() method to initialize the parent class (RobertaPreTrainedModel) with the provided config. It also initializes other attributes such as num_labels and classifier.
The forward method takes several input arguments and returns either a tuple of tensors or a SequenceClassifierOutput object. It performs the main computation of the model. It first calls the roberta() method of the parent class to obtain the sequence output. Then, it passes the sequence output to the classifier to obtain the logits. If labels are provided, it calculates the loss based on the problem type specified in the config. The loss and other outputs are returned as per the value of the return_dict parameter.
It is important to note that this class is specifically designed for sequence classification tasks, where the labels can be used to compute either a regression loss (Mean-Square loss) or a classification loss (Cross-Entropy). The problem type is determined automatically based on the number of labels and the dtype of the labels tensor.
For more details on the usage and functionality of this class, please refer to the RobertaForSequenceClassification documentation.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__(config)
¶
Initializes a new instance of the RobertaForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object for the Roberta model. It contains the model configuration settings such as num_labels, which is the number of labels for classification. This parameter is required for configuring the model initialization.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForTokenClassification
¶
Bases: RobertaPreTrainedModel
This class represents a Roberta model for token classification. It is a subclass of the RobertaPreTrainedModel.
Class Attributes
- num_labels (int): The number of labels for token classification.
- roberta (RobertaModel): The RoBERTa model.
- dropout (Dropout): The dropout layer.
- classifier (Dense): The classifier layer.
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the RobertaForTokenClassification instance with the given configuration. |
ATTRIBUTE | DESCRIPTION |
---|---|
return_dict |
Indicates whether to return a dictionary as output.
TYPE:
|
PARAMETER | DESCRIPTION |
---|---|
input_ids |
The input tensor of shape (batch_size, sequence_length).
TYPE:
|
attention_mask |
The attention mask tensor of shape (batch_size, sequence_length).
TYPE:
|
token_type_ids |
The token type IDs tensor of shape (batch_size, sequence_length).
TYPE:
|
position_ids |
The position IDs tensor of shape (batch_size, sequence_length).
TYPE:
|
head_mask |
The head mask tensor of shape (batch_size, num_heads, sequence_length, sequence_length).
TYPE:
|
inputs_embeds |
The embedded inputs tensor of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
labels |
The labels tensor of shape (batch_size, sequence_length).
TYPE:
|
output_attentions |
Indicates whether to output attentions.
TYPE:
|
output_hidden_states |
Indicates whether to output hidden states.
TYPE:
|
return_dict |
Indicates whether to return a dictionary as output.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Conditional Return:
|
Note
The labels tensor should contain indices in the range [0, num_labels-1] for computing the token classification loss.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__(config)
¶
Initializes a new instance of the RobertaForTokenClassification
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object itself.
|
config |
A
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the token classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaIntermediate
¶
Bases: Module
Represents the intermediate layer of the Roberta model for processing hidden states.
This class inherits from nn.Module and provides methods for forwarding the intermediate layer of the Roberta model.
ATTRIBUTE | DESCRIPTION |
---|---|
dense |
A dense layer with specified hidden size and intermediate size.
TYPE:
|
intermediate_act_fn |
Activation function applied to hidden states.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the RobertaIntermediate instance with the given configuration. |
forward |
Constructs the intermediate layer by passing the hidden states through the dense layer and activation function. |
Example
>>> config = RobertaConfig(hidden_size=768, intermediate_size=3072, hidden_act='gelu')
>>> intermediate_layer = RobertaIntermediate(config)
>>> hidden_states = intermediate_layer.forward(input_hidden_states)
Example
>>> config = RobertaConfig(hidden_size=768, intermediate_size=3072, hidden_act='gelu')
>>> intermediate_layer = RobertaIntermediate(config)
>>> hidden_states = intermediate_layer.forward(input_hidden_states)
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaIntermediate.__init__(config)
¶
Initializes a new instance of the RobertaIntermediate class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
An object of type 'config' containing configuration parameters for the intermediate layer. It is expected to have attributes like 'hidden_size', 'intermediate_size', and 'hidden_act'.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the 'config' parameter is not provided or is not of the expected type. |
ValueError
|
If the 'config' parameter does not contain the required attributes. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaIntermediate.forward(hidden_states)
¶
This method forwards the intermediate representation of the Roberta model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaIntermediate class.
TYPE:
|
hidden_states |
The input tensor representing the hidden states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: A tensor representing the intermediate states of the Roberta model. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLMHead
¶
Bases: Module
Roberta Head for masked language modeling.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLMHead.__init__(config)
¶
Initialize the RobertaLMHead class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaLMHead class.
TYPE:
|
config |
An object containing configuration parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If config is not provided or is not an object. |
ValueError
|
If the config object does not contain the required parameters. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLMHead.forward(features)
¶
Constructs the output of the language model head for a given set of features.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaLMHead class.
TYPE:
|
features |
The input features for forwarding the output. It should be a tensor of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tensor
|
The forwarded output tensor of shape (batch_size, sequence_length, hidden_size). |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input features tensor is not of the expected shape. |
RuntimeError
|
If there is an issue in the execution of the method. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLayer
¶
Bases: Module
Represents a layer of the Roberta model for natural language processing tasks. This layer includes self-attention and cross-attention mechanisms.
This class inherits from nn.Module and contains methods for initializing the layer and forwarding the layer's functionality.
ATTRIBUTE | DESCRIPTION |
---|---|
chunk_size_feed_forward |
The chunk size for the feed-forward computation.
TYPE:
|
seq_len_dim |
The dimension for sequence length.
TYPE:
|
attention |
The self-attention mechanism used in the layer.
TYPE:
|
is_decoder |
Indicates if the layer is used as a decoder model.
TYPE:
|
add_cross_attention |
Indicates if cross-attention is added to the layer.
TYPE:
|
crossattention |
The cross-attention mechanism used in the layer, if cross-attention is added.
TYPE:
|
intermediate |
The intermediate processing module of the layer.
TYPE:
|
output |
The output module of the layer.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the RobertaLayer with the given configuration. |
forward |
Constructs the layer using the given input and arguments, applying self-attention and cross-attention if applicable. |
feed_forward_chunk |
Performs the feed-forward computation using the given attention output. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLayer.__init__(config)
¶
Initializes an instance of the RobertaLayer
class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the
|
config |
An object of type
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLayer.feed_forward_chunk(attention_output)
¶
Method that carries out feed-forward processing on the attention output in a RobertaLayer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaLayer class.
TYPE:
|
attention_output |
The input tensor representing the attention output. This tensor is expected to have a specific shape and structure required for processing.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaLayer.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)
¶
Constructs a single layer of the Roberta model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaLayer class.
TYPE:
|
hidden_states |
The input tensor of shape (batch_size, sequence_length, hidden_size) representing the hidden states.
TYPE:
|
attention_mask |
An optional tensor of shape (batch_size, sequence_length) representing the attention mask. Defaults to None.
TYPE:
|
head_mask |
An optional tensor of shape (num_attention_heads, sequence_length, sequence_length) representing the head mask. Defaults to None.
TYPE:
|
encoder_hidden_states |
An optional tensor of shape (batch_size, encoder_sequence_length, hidden_size) representing the hidden states of the encoder. Defaults to None.
TYPE:
|
encoder_attention_mask |
An optional tensor of shape (batch_size, encoder_sequence_length) representing the attention mask for the encoder. Defaults to None.
TYPE:
|
past_key_value |
An optional tuple containing past key-value tensors. Defaults to None.
TYPE:
|
output_attentions |
An optional boolean value indicating whether to output attentions. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tensor]
|
Tuple[mindspore.Tensor]: A tuple containing the following:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaModel
¶
Bases: RobertaPreTrainedModel
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the is_decoder
argument of the configuration set
to True
. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder
argument and
add_cross_attention
set to True
; an encoder_hidden_states
is then expected as an input to the forward pass.
.. _Attention is all you need: https://arxiv.org/abs/1706.03762
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaModel.__init__(config, add_pooling_layer=True)
¶
Initializes a new instance of the RobertaModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current object instance.
|
config |
An instance of the configuration class that contains the model configuration parameters.
TYPE:
|
add_pooling_layer |
Determines whether to add a pooling layer to the model. Defaults to True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Description
This method initializes a new instance of the RobertaModel class. It takes the following parameters:
- self: The current object instance.
- config: An instance of the configuration class that contains the model configuration parameters.
- add_pooling_layer: A boolean value that determines whether to add a pooling layer to the model.
The method initializes the following attributes:
- self.config: Stores the provided configuration object.
- self.embeddings: An instance of the RobertaEmbeddings class, initialized with the provided configuration.
- self.encoder: An instance of the RobertaEncoder class, initialized with the provided configuration.
- self.pooler: An instance of the RobertaPooler class, initialized with the provided configuration if add_pooling_layer is True, otherwise set to None.
After initialization, this method calls the post_init() method to perform any additional setup or initialization steps.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaModel.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in
TYPE:
|
use_cache |
If set to
TYPE:
|
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaModel.get_input_embeddings()
¶
Returns the input embeddings of the RobertaModel.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the RobertaModel class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaModel.set_input_embeddings(value)
¶
Sets the input embeddings for the RobertaModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaModel class.
TYPE:
|
value |
The input embeddings to be set for the model. This can be a tensor or any other object
that can be assigned to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Note
The word_embeddings
attribute of the embeddings
object is a key component of the RobertaModel.
It represents the input embeddings used for the model's forward pass.
By setting the input embeddings using this method, you can customize the input representation for the model.
Example
>>> model = RobertaModel()
>>> embeddings = torch.tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
>>> model.set_input_embeddings(embeddings)
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaOutput
¶
Bases: Module
This class represents the output of a Roberta model, which is used for fine-tuning tasks.
It inherits from the nn.Module
class.
The RobertaOutput
class applies a series of transformations to the input hidden states and produces
the final output tensor.
ATTRIBUTE | DESCRIPTION |
---|---|
dense |
A fully connected layer that maps the input hidden states to an intermediate size.
TYPE:
|
LayerNorm |
A layer normalization module that normalizes the hidden states.
TYPE:
|
dropout |
A dropout module that applies dropout to the hidden states.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
forward |
Applies the transformation operations to the hidden states and returns the final output tensor. |
Example
>>> # Create a `RobertaOutput` instance
>>> output = RobertaOutput(config)
...
>>> # Apply the transformation operations to the hidden states
>>> output_tensor = output.forward(hidden_states, input_tensor)
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaOutput.__init__(config)
¶
Initializes a new instance of the 'RobertaOutput' class.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the class.
|
config |
An object of type 'Config' that holds the configuration parameters.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaOutput.forward(hidden_states, input_tensor)
¶
This method forwards the output tensor for the Roberta model.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaOutput class.
|
hidden_states |
The hidden states tensor representing the output from the model's encoder layers. It is expected to be a tensor of shape [batch_size, sequence_length, hidden_size].
TYPE:
|
input_tensor |
The input tensor representing the output from the previous layer. It is expected to be a tensor of the same shape as hidden_states.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The forwarded output tensor of the same shape as hidden_states, representing the final output of the Roberta model. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the shapes of hidden_states and input_tensor are not compatible for addition. |
RuntimeError
|
If an error occurs during the dense, dropout, or LayerNorm operations. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaPooler
¶
Bases: Module
This class represents a pooler for the Roberta model. It inherits from the nn.Module class and is responsible for processing hidden states to generate a pooled output.
ATTRIBUTE | DESCRIPTION |
---|---|
dense |
A fully connected layer that maps the input hidden state to the hidden size.
TYPE:
|
activation |
The activation function applied to the output of the dense layer.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the RobertaPooler instance with the specified configuration. |
forward |
Constructs the pooled output from the input hidden states. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaPooler.__init__(config)
¶
Initializes a new instance of the RobertaPooler class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaPooler class.
|
config |
An object containing configuration parameters for the RobertaPooler instance. It is expected to have a 'hidden_size' attribute specifying the size of the hidden layer.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
AttributeError
|
If the 'config' parameter does not have the expected 'hidden_size' attribute. |
TypeError
|
If the 'config' parameter is not of the expected type. |
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaPooler.forward(hidden_states)
¶
Constructs a pooled output tensor from the given hidden states using the RobertaPooler module.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the RobertaPooler class.
TYPE:
|
hidden_states |
The input hidden states tensor of shape (batch_size, sequence_length, hidden_size).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
mindspore.Tensor: The pooled output tensor of shape (batch_size, hidden_size). |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the 'hidden_states' parameter is not of type 'mindspore.Tensor'. |
ValueError
|
If the shape of the 'hidden_states' tensor is not (batch_size, sequence_length, hidden_size). |
Note
- The 'hidden_states' tensor should contain the hidden states of the sequence generated by the Roberta model.
- The 'hidden_states' tensor should have a shape of (batch_size, sequence_length, hidden_size).
- The 'hidden_states' tensor is expected to be the output of the Roberta model's last layer.
- The 'hidden_states' tensor should be on the same device as the RobertaPooler module.
Example
>>> roberta_pooler = RobertaPooler()
>>> hidden_states = mindspore.Tensor(np.random.randn(2, 5, 768), dtype=mindspore.float32)
>>> pooled_output = roberta_pooler.forward(hidden_states)
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel
¶
Bases: BertPreTrainedModel
Roberta Pretrained Model.
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
1170 1171 1172 1173 |
|
mindnlp.transformers.models.roberta.modeling_roberta.RobertaSelfAttention
¶
Bases: Module
RobertaSelfAttention
Source code in mindnlp/transformers/models/roberta/modeling_roberta.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|