speech_to_text
mindnlp.transformers.models.speech_to_text.configuration_speech_to_text
¶
Speech2Text model configuration
mindnlp.transformers.models.speech_to_text.configuration_speech_to_text.Speech2TextConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [Speech2TextModel
]. It is used to instantiate a
Speech2Text model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Speech2Text
facebook/s2t-small-librispeech-asr architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by
the
TYPE:
|
encoder_layers |
Number of encoder layers.
TYPE:
|
encoder_ffn_dim |
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
TYPE:
|
encoder_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
decoder_layers |
Number of decoder layers.
TYPE:
|
decoder_ffn_dim |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
TYPE:
|
decoder_attention_heads |
Number of attention heads for each attention layer in the Transformer decoder.
TYPE:
|
encoder_layerdrop |
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.
TYPE:
|
decoder_layerdrop |
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.
TYPE:
|
use_cache |
Whether the model should return the last key/values attentions (not used by all models).
TYPE:
|
is_encoder_decoder |
Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks.
TYPE:
|
activation_function |
The non-linear activation function (function or string) in the encoder and pooler. If string,
TYPE:
|
d_model |
Dimensionality of the layers and the pooler layer.
TYPE:
|
dropout |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
activation_dropout |
The dropout ratio for activations inside the fully connected layer.
TYPE:
|
init_std |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
decoder_start_token_id |
The initial token ID of the decoder when decoding sequences.
TYPE:
|
scale_embedding |
Whether the embeddings are scaled by the square root of
TYPE:
|
pad_token_id |
Padding token id.
TYPE:
|
bos_token_id |
The id of the beginning-of-sequence token.
TYPE:
|
eos_token_id |
The id of the end-of-sequence token.
TYPE:
|
max_source_positions |
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
TYPE:
|
max_target_positions |
The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
num_conv_layers |
Number of 1D convolutional layers in the conv module.
TYPE:
|
conv_kernel_sizes |
A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length
of
TYPE:
|
conv_channels |
An integer defining the number of output channels of each convolution layers except the final one in the conv module.
TYPE:
|
input_feat_per_channel |
An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank features.
TYPE:
|
input_channels |
An integer specifying number of input channels of the input feature vector.
TYPE:
|
Example
>>> from transformers import Speech2TextConfig, Speech2TextModel
...
>>> # Initializing a Speech2Text s2t_transformer_s style configuration
>>> configuration = Speech2TextConfig()
...
>>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration
>>> model = Speech2TextModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/speech_to_text/configuration_speech_to_text.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text
¶
PyTorch Speech2Text model.
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Conv1dSubsampler
¶
Bases: Module
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460)
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextAttention.forward(hidden_states, key_value_states=None, past_key_value=None, attention_mask=None, layer_head_mask=None, output_attentions=False)
¶
Input shape: Batch x Time x Channel
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextDecoder
¶
Bases: Speech2TextPreTrainedModel
Transformer decoder consisting of config.decoder_layers layers. Each layer is a [Speech2TextDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
Speech2TextConfig
TYPE:
|
embed_tokens |
output embedding
TYPE:
|
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextDecoder.forward(input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
input_ids |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [
TYPE:
|
attention_mask |
Mask to avoid performing attention on padding token indices. Mask values selected in
TYPE:
|
encoder_hidden_states |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
TYPE:
|
encoder_attention_mask |
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in
TYPE:
|
head_mask |
Mask to nullify selected heads of the attention modules. Mask values selected in
TYPE:
|
cross_attn_head_mask |
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in
TYPE:
|
past_key_values |
Tuple of Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see If
TYPE:
|
inputs_embeds |
Optionally, instead of passing
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
output_hidden_states |
Whether or not to return the hidden states of all layers. See
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextDecoderLayer
¶
Bases: Module
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextDecoderLayer.forward(hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, output_attentions=False, use_cache=True)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
encoder_hidden_states |
cross attention input to the layer of shape
TYPE:
|
encoder_attention_mask |
encoder attention mask of size
TYPE:
|
layer_head_mask |
mask for attention heads in a given layer of size
TYPE:
|
cross_attn_layer_head_mask |
mask for cross-attention heads in a given layer of
size
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextEncoder
¶
Bases: Speech2TextPreTrainedModel
Transformer encoder consisting of config.encoder_layers self attention layers. Each layer is a
[Speech2TextEncoderLayer
].
PARAMETER | DESCRIPTION |
---|---|
config |
Speech2TextConfig
TYPE:
|
embed_tokens |
output embedding
TYPE:
|
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextEncoder.forward(input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
input_features |
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a
TYPE:
|
attention_mask |
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
TYPE:
|
head_mask |
Mask to nullify selected heads of the attention modules. Mask values selected in
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
output_hidden_states |
Whether or not to return the hidden states of all layers. See
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextEncoderLayer
¶
Bases: Module
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextEncoderLayer.forward(hidden_states, attention_mask, layer_head_mask, output_attentions=False)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
layer_head_mask |
mask for attention heads in a given layer of size
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextForConditionalGeneration
¶
Bases: Speech2TextPreTrainedModel
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextForConditionalGeneration.forward(input_features=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], Seq2SeqLMOutput]
|
Union[Tuple[mindspore.Tensor], Seq2SeqLMOutput] |
Example
>>> import torch
>>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
>>> from datasets import load_dataset
...
>>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
...
...
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
...
>>> inputs = processor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> input_features = inputs.input_features
...
>>> generated_ids = model.generate(inputs=input_features)
...
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel'
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextModel
¶
Bases: Speech2TextPreTrainedModel
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextModel.forward(input_features=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], Seq2SeqLMOutput]
|
Union[Tuple[mindspore.Tensor], Seq2SeqLMOutput] |
Example
>>> import torch
>>> from transformers import Speech2TextModel, AutoFeatureExtractor
>>> from datasets import load_dataset
...
>>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> input_features = inputs.input_features
>>> decoder_input_ids = mindspore.Tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 256]
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextPreTrainedModel
¶
Bases: PreTrainedModel
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding
¶
Bases: Module
This module produces sinusoidal positional embeddings of any length.
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding.create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0)
¶
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's utils.make_positions
.
PARAMETER | DESCRIPTION |
---|---|
x |
x.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
mindspore.Tensor |
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding.get_embedding(num_embeddings, embedding_dim, padding_idx=None)
staticmethod
¶
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need".
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
mindnlp.transformers.models.speech_to_text.modeling_speech_to_text.shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id)
¶
Shift input ids one token to the right.
Source code in mindnlp/transformers/models/speech_to_text/modeling_speech_to_text.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|