squeezebert
mindnlp.transformers.models.squeezebert.configuration_squeezebert
¶
SqueezeBERT model configuration
mindnlp.transformers.models.squeezebert.configuration_squeezebert.SqueezeBertConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [SqueezeBertModel
]. It is used to instantiate a
SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
squeezebert/squeezebert-uncased architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
the
TYPE:
|
hidden_size |
Dimensionality of the encoder layers and the pooler layer.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer encoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
intermediate_size |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the encoder and pooler. If string,
TYPE:
|
hidden_dropout_prob |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
attention_probs_dropout_prob |
The dropout ratio for the attention probabilities.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
type_vocab_size |
The vocabulary size of the
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
layer_norm_eps |
TYPE:
|
pad_token_id |
The ID of the token in the word embedding to use as padding.
TYPE:
|
embedding_size |
The dimension of the word embedding vectors.
TYPE:
|
q_groups |
The number of groups in Q layer.
TYPE:
|
k_groups |
The number of groups in K layer.
TYPE:
|
v_groups |
The number of groups in V layer.
TYPE:
|
post_attention_groups |
The number of groups in the first feed forward network layer.
TYPE:
|
intermediate_groups |
The number of groups in the second feed forward network layer.
TYPE:
|
output_groups |
The number of groups in the third feed forward network layer.
TYPE:
|
Example
>>> from mindnlp.transformers import SqueezeBertConfig, SqueezeBertModel
...
>>> # Initializing a SqueezeBERT configuration
>>> configuration = SqueezeBertConfig()
...
>>> # Initializing a model (with random weights) from the configuration above
>>> model = SqueezeBertModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/squeezebert/configuration_squeezebert.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert
¶
Mindspore SqueezeBert model.
mindnlp.transformers.models.squeezebert.modeling_squeezebert.ConvActivation
¶
Bases: Module
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.ConvDropoutLayerNorm
¶
Bases: Module
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.MatMulWrapper
¶
Bases: Module
Wrapper for ops.matmul(). This makes flop-counting easier to implement. Note that if you directly call ops.matmul() in your code, the flop counter will typically ignore the flops of the matmul.
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.MatMulWrapper.forward(mat1, mat2)
¶
Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B,
PARAMETER | DESCRIPTION |
---|---|
mat1 |
a tensor
|
mat2 |
a tensor
|
RETURNS | DESCRIPTION |
---|---|
matmul of these tensors |
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertEmbeddings
¶
Bases: Module
Construct the embeddings from word, position and token_type embeddings.
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForMaskedLM
¶
Bases: SqueezeBertPreTrainedModel
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForMultipleChoice
¶
Bases: SqueezeBertPreTrainedModel
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForMultipleChoice.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForQuestionAnswering
¶
Bases: SqueezeBertPreTrainedModel
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForSequenceClassification
¶
Bases: SqueezeBertPreTrainedModel
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForTokenClassification
¶
Bases: SqueezeBertPreTrainedModel
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the token classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertLayerNorm
¶
Bases: LayerNorm
This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension.
N = batch C = channels W = sequence length
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertModel
¶
Bases: SqueezeBertPreTrainedModel
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertModule
¶
Bases: Module
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertModule.__init__(config)
¶
PARAMETER | DESCRIPTION |
---|---|
config |
containing:
|
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertPreTrainedModel
¶
Bases: PreTrainedModel
, Module
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertSelfAttention
¶
Bases: Module
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertSelfAttention.__init__(config, cin, q_groups=1, k_groups=1, v_groups=1)
¶
config = used for some things; ignored for others (work in progress...) cin = input channels = output channels group = number of group to use in conv1d layers
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertSelfAttention.forward(hidden_states, attention_mask, output_attentions)
¶
expects hidden_states in [N, C, W] data layout.
The attention_mask data layout is [N, W], and it does not need to be transposed.
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertSelfAttention.transpose_for_scores(x)
¶
Input/Output: - input: [N, C, W] - output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertSelfAttention.transpose_key_for_scores(x)
¶
Input/Output: - input: [N, C, W] - output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
mindnlp.transformers.models.squeezebert.modeling_squeezebert.SqueezeBertSelfAttention.transpose_output(x)
¶
Input/Output: - input: [N, C1, W, C2] - output: [N, C, W]
Source code in mindnlp/transformers/models/squeezebert/modeling_squeezebert.py
245 246 247 248 249 250 251 252 253 254 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert
¶
Tokenization classes for SqueezeBERT.
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.BasicTokenizer
¶
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
PARAMETER | DESCRIPTION |
---|---|
do_lower_case |
Whether or not to lowercase the input when tokenizing.
TYPE:
|
never_split |
Collection of tokens which will never be split during tokenization. Only has an effect when
TYPE:
|
tokenize_chinese_chars |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).
TYPE:
|
strip_accents |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for
TYPE:
|
do_split_on_punc |
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions.
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.BasicTokenizer.tokenize(text, never_split=None)
¶
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.SqueezeBertTokenizer
¶
Bases: PreTrainedTokenizer
Construct a SqueezeBERT tokenizer. Based on WordPiece.
This tokenizer inherits from [PreTrainedTokenizer
] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
File containing the vocabulary.
TYPE:
|
do_lower_case |
Whether or not to lowercase the input when tokenizing.
TYPE:
|
do_basic_tokenize |
Whether or not to do basic tokenization before WordPiece.
TYPE:
|
never_split |
Collection of tokens which will never be split during tokenization. Only has an effect when
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
tokenize_chinese_chars |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).
TYPE:
|
strip_accents |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.SqueezeBertTokenizer.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A SqueezeBERT sequence has the following format:
- single sequence:
[CLS] X [SEP]
- pair of sequences:
[CLS] A [SEP] B [SEP]
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.SqueezeBertTokenizer.convert_tokens_to_string(tokens)
¶
Converts a sequence of tokens (string) in a single string.
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
191 192 193 194 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.SqueezeBertTokenizer.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SqueezeBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.SqueezeBertTokenizer.get_special_tokens_mask(token_ids_0, token_ids_1=None, already_has_special_tokens=False)
¶
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
already_has_special_tokens |
Whether or not the token list is already formatted with special tokens for the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.WordpieceTokenizer
¶
Runs WordPiece tokenization.
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.WordpieceTokenizer.tokenize(text)
¶
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary.
For example, input = "unaffable"
wil return as output ["un", "##aff", "##able"]
.
PARAMETER | DESCRIPTION |
---|---|
text |
A single token or whitespace separated tokens. This should have already been passed through BasicTokenizer.
|
RETURNS | DESCRIPTION |
---|---|
A list of wordpiece tokens. |
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.load_vocab(vocab_file)
¶
Loads a vocabulary file into a dictionary.
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
37 38 39 40 41 42 43 44 45 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert.whitespace_tokenize(text)
¶
Runs basic whitespace cleaning and splitting on a piece of text.
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert.py
49 50 51 52 53 54 55 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert_fast
¶
Tokenization classes for SqueezeBERT.
mindnlp.transformers.models.squeezebert.tokenization_squeezebert_fast.SqueezeBertTokenizerFast
¶
Bases: PreTrainedTokenizerFast
Construct a "fast" SqueezeBERT tokenizer (backed by HuggingFace's tokenizers library). Based on WordPiece.
This tokenizer inherits from [PreTrainedTokenizerFast
] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
PARAMETER | DESCRIPTION |
---|---|
vocab_file |
File containing the vocabulary.
TYPE:
|
do_lower_case |
Whether or not to lowercase the input when tokenizing.
TYPE:
|
unk_token |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
TYPE:
|
sep_token |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
TYPE:
|
pad_token |
The token used for padding, for example when batching sequences of different lengths.
TYPE:
|
cls_token |
The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
TYPE:
|
mask_token |
The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
TYPE:
|
clean_text |
Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one.
TYPE:
|
tokenize_chinese_chars |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).
TYPE:
|
strip_accents |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for
TYPE:
|
wordpieces_prefix |
The prefix for subwords.
TYPE:
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert_fast.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert_fast.SqueezeBertTokenizerFast.build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
¶
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A SqueezeBERT sequence has the following format:
- single sequence:
[CLS] X [SEP]
- pair of sequences:
[CLS] A [SEP] B [SEP]
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs to which the special tokens will be added.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert_fast.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
mindnlp.transformers.models.squeezebert.tokenization_squeezebert_fast.SqueezeBertTokenizerFast.create_token_type_ids_from_sequences(token_ids_0, token_ids_1=None)
¶
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SqueezeBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
PARAMETER | DESCRIPTION |
---|---|
token_ids_0 |
List of IDs.
TYPE:
|
token_ids_1 |
Optional second list of IDs for sequence pairs.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[int]
|
|
Source code in mindnlp/transformers/models/squeezebert/tokenization_squeezebert_fast.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|