stablelm
mindnlp.transformers.models.stablelm.configuration_stablelm
¶
StableLM model configuration
mindnlp.transformers.models.stablelm.configuration_stablelm.StableLmConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [~StableLmModel
].
It is used to instantiate an StableLM model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the StableLM stabilityai/stablelm-3b-4e1t architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used
to control the model outputs. Read the documentation from [PretrainedConfig
]
for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the StableLM model. Defines the number of different tokens that
can be represented by the
TYPE:
|
intermediate_size |
Dimension of the MLP representations.
TYPE:
|
hidden_size |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer decoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
num_key_value_heads |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
TYPE:
|
hidden_act |
The non-linear activation function (function or string).
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
layer_norm_eps |
The epsilon used by the normalization layers.
TYPE:
|
use_cache |
Whether or not the model should return the last key/values attentions
(not used by all models). Only relevant if
TYPE:
|
tie_word_embeddings |
Whether the model's input and output word embeddings should be tied.
TYPE:
|
rope_theta |
The base period of the RoPE embeddings.
TYPE:
|
rope_scaling |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
TYPE:
|
use_qkv_bias |
Whether or not the model should use bias for qkv layers.
TYPE:
|
qk_layernorm |
Whether or not to normalize, per head, the Queries and Keys after projecting the hidden states.
TYPE:
|
use_parallel_residual |
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training speedup at large scales.
TYPE:
|
hidden_dropout |
The dropout ratio after applying the MLP to the hidden states.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
partial_rotary_factor |
Percentage of the query and keys which will have rotary embedding.
TYPE:
|
bos_token_id |
The id of the
TYPE:
|
eos_token_id |
The id of the
TYPE:
|
Example
>>> from transformers import StableLmModel, StableLmConfig
...
>>> # Initializing a StableLM stablelm-3b style configuration
>>> configuration = StableLmConfig()
Source code in mindnlp/transformers/models/stablelm/configuration_stablelm.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm
¶
MindSpore StableLM model.
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmDecoderLayer
¶
Bases: Module
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmDecoderLayer.forward(hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False)
¶
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
input to the layer of shape
TYPE:
|
attention_mask |
attention mask of size
TYPE:
|
position_ids |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
TYPE:
|
past_key_value |
cached past key and value projection states
TYPE:
|
output_attentions |
Whether or not to return the attentions tensors of all attention layers. See
TYPE:
|
use_cache |
If set to
TYPE:
|
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmDynamicNTKScalingRotaryEmbedding
¶
Bases: StableLmRotaryEmbedding
StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmForCausalLM
¶
Bases: StableLmPreTrainedModel
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmForCausalLM.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should either be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, CausalLMOutputWithPast]
|
|
Example
>>> from transformers import AutoTokenizer, StableLmForCausalLM
...
>>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
...
>>> prompt = "The weather is always wonderful in"
>>> inputs = tokenizer(prompt, return_tensors="pt")
...
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by'
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmForSequenceClassification
¶
Bases: StableLmPreTrainedModel
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmForSequenceClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmForTokenClassification
¶
Bases: StableLmPreTrainedModel
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmForTokenClassification.forward(input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmLinearScalingRotaryEmbedding
¶
Bases: StableLmRotaryEmbedding
StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.StableLmModel
¶
Bases: StableLmPreTrainedModel
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [StableLmDecoderLayer
]
PARAMETER | DESCRIPTION |
---|---|
config |
StableLmConfig
TYPE:
|
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1)
¶
Applies Rotary Position Embedding to the query and key tensors.
PARAMETER | DESCRIPTION |
---|---|
q |
The query tensor.
TYPE:
|
k |
The key tensor.
TYPE:
|
cos |
The cosine part of the rotary embedding.
TYPE:
|
sin |
The sine part of the rotary embedding.
TYPE:
|
position_ids |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache.
TYPE:
|
unsqueeze_dim |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.repeat_kv(hidden_states, n_rep)
¶
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
217 218 219 220 221 222 223 224 225 226 |
|
mindnlp.transformers.models.stablelm.modeling_stablelm.rotate_half(x)
¶
Rotates half the hidden dims of the input.
Source code in mindnlp/transformers/models/stablelm/modeling_stablelm.py
147 148 149 150 151 |
|