Skip to content

t5

mindnlp.transformers.models.t5.modeling_t5

MindSpore T5 model.

mindnlp.transformers.models.t5.modeling_t5.T5Attention

Bases: Module

T5Attention

Source code in mindnlp/transformers/models/t5/modeling_t5.py
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
class T5Attention(nn.Module):
    """T5Attention"""
    def __init__(self, config: T5Config, has_relative_attention_bias=False):
        """
        Initializes an instance of the T5Attention class.

        Args:
            self: The object itself.
            config (T5Config):
                An instance of the T5Config class that holds the configuration parameters for the attention mechanism.
            has_relative_attention_bias (bool):
                A boolean value indicating whether the attention mechanism has relative attention bias.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim

        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        """
        Prunes the attention heads in the T5Attention class.

        Args:
            self (T5Attention): An instance of the T5Attention class.
            heads (list): A list of attention heads to be pruned.

        Returns:
            None.

        Raises:
            None.
        """
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
        )
        # Prune linear layers
        self.q = prune_linear_layer(self.q, index)
        self.k = prune_linear_layer(self.k, index)
        self.v = prune_linear_layer(self.v, index)
        self.o = prune_linear_layer(self.o, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.inner_dim = self.key_value_proj_dim * self.n_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

        Translate relative position to a bucket number for relative attention. The relative position is defined as
        memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
        position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
        small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
        positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
        This should allow for more graceful generalization to longer sequences than the model has been trained on

        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
            max_distance: an integer

        Returns:
            a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
        """
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(mindspore.int64) * num_buckets
            relative_position = ops.abs(relative_position)
        else:
            relative_position = -ops.minimum(relative_position, ops.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
            ops.log(relative_position.float() / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).to(mindspore.int64)
        relative_position_if_large = ops.minimum(
            relative_position_if_large, ops.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += ops.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length):
        """Compute binned relative position bias"""
        context_position = ops.arange(query_length, dtype=mindspore.int64)[:, None]
        memory_position = ops.arange(key_length, dtype=mindspore.int64)[None, :]
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # shape (query_length, key_length)
            bidirectional=(not self.is_decoder),
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
        return values

    def forward(
        self,
        hidden_states,
        mask=None,
        key_value_states=None,
        position_bias=None,
        past_key_value=None,
        layer_head_mask=None,
        query_length=None,
        use_cache=False,
        output_attentions=False,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
        batch_size, seq_length = hidden_states.shape[:2]

        real_seq_length = seq_length

        if past_key_value is not None:
            if len(past_key_value) != 2:
                raise ValueError(
                    f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
                )
            real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length

        key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]

        def shape(states):
            """projection"""
            return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).swapaxes(1, 2)

        def unshape(states):
            """reshape"""
            return states.swapaxes(1, 2).view(batch_size, -1, self.inner_dim)

        def project(hidden_states, proj_layer, key_value_states, past_key_value):
            """projects hidden states correctly to key/query states"""
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(hidden_states))
            elif past_key_value is None:
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))

            if past_key_value is not None:
                if key_value_states is None:
                    # self-attn
                    # (batch_size, n_heads, key_length, dim_per_head)
                    hidden_states = ops.cat([past_key_value, hidden_states], dim=2)
                elif past_key_value.shape[2] != key_value_states.shape[1]:
                    # checking that the `sequence_length` of the `past_key_value` is the same as
                    # the provided `key_value_states` to support prefix tuning
                    # cross-attn
                    # (batch_size, n_heads, seq_length, dim_per_head)
                    hidden_states = shape(proj_layer(key_value_states))
                else:
                    # cross-attn
                    hidden_states = past_key_value
            return hidden_states

        # get query states
        query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)
        # get key/value states
        key_states = project(
            hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
        )
        value_states = project(
            hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
        )

        # compute scores
        scores = ops.matmul(
            query_states, key_states.swapaxes(3, 2)
        )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
        if position_bias is None:
            if not self.has_relative_attention_bias:
                position_bias = ops.zeros(
                    1, self.n_heads, real_seq_length, key_length, dtype=scores.dtype
                )
            else:
                position_bias = self.compute_bias(real_seq_length, key_length)
            # if key and values are already calculated
            # we want only the last query position bias
            if past_key_value is not None:
                position_bias = position_bias[:, :, -hidden_states.shape[1] :, :]

            if mask is not None:
                position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)

        if self.pruned_heads:
            mask = ops.ones(position_bias.shape[1])
            mask[list(self.pruned_heads)] = 0
            position_bias_masked = position_bias[:, mask.bool()]
        else:
            position_bias_masked = position_bias

        scores += position_bias_masked
        attn_weights = ops.softmax(scores.float() + 1e-10, dim=-1).astype(
            scores.dtype
        )  # (batch_size, n_heads, seq_length, key_length)
        attn_weights = F.dropout(
            attn_weights, p=self.dropout, training=self.training
        )  # (batch_size, n_heads, seq_length, key_length)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        attn_output = unshape(ops.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)

        present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

        if output_attentions:
            outputs = outputs + (attn_weights,)
        return outputs

mindnlp.transformers.models.t5.modeling_t5.T5Attention.__init__(config, has_relative_attention_bias=False)

Initializes an instance of the T5Attention class.

PARAMETER DESCRIPTION
self

The object itself.

config

An instance of the T5Config class that holds the configuration parameters for the attention mechanism.

TYPE: T5Config

has_relative_attention_bias

A boolean value indicating whether the attention mechanism has relative attention bias.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def __init__(self, config: T5Config, has_relative_attention_bias=False):
    """
    Initializes an instance of the T5Attention class.

    Args:
        self: The object itself.
        config (T5Config):
            An instance of the T5Config class that holds the configuration parameters for the attention mechanism.
        has_relative_attention_bias (bool):
            A boolean value indicating whether the attention mechanism has relative attention bias.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.is_decoder = config.is_decoder
    self.has_relative_attention_bias = has_relative_attention_bias
    self.relative_attention_num_buckets = config.relative_attention_num_buckets
    self.relative_attention_max_distance = config.relative_attention_max_distance
    self.d_model = config.d_model
    self.key_value_proj_dim = config.d_kv
    self.n_heads = config.num_heads
    self.dropout = config.dropout_rate
    self.inner_dim = self.n_heads * self.key_value_proj_dim

    # Mesh TensorFlow initialization to avoid scaling before softmax
    self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
    self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

    if self.has_relative_attention_bias:
        self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
    self.pruned_heads = set()

mindnlp.transformers.models.t5.modeling_t5.T5Attention.compute_bias(query_length, key_length)

Compute binned relative position bias

Source code in mindnlp/transformers/models/t5/modeling_t5.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def compute_bias(self, query_length, key_length):
    """Compute binned relative position bias"""
    context_position = ops.arange(query_length, dtype=mindspore.int64)[:, None]
    memory_position = ops.arange(key_length, dtype=mindspore.int64)[None, :]
    relative_position = memory_position - context_position  # shape (query_length, key_length)
    relative_position_bucket = self._relative_position_bucket(
        relative_position,  # shape (query_length, key_length)
        bidirectional=(not self.is_decoder),
        num_buckets=self.relative_attention_num_buckets,
        max_distance=self.relative_attention_max_distance,
    )
    values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
    values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
    return values

mindnlp.transformers.models.t5.modeling_t5.T5Attention.forward(hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False)

Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).

Source code in mindnlp/transformers/models/t5/modeling_t5.py
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
def forward(
    self,
    hidden_states,
    mask=None,
    key_value_states=None,
    position_bias=None,
    past_key_value=None,
    layer_head_mask=None,
    query_length=None,
    use_cache=False,
    output_attentions=False,
):
    """
    Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
    """
    # Input is (batch_size, seq_length, dim)
    # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
    # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
    batch_size, seq_length = hidden_states.shape[:2]

    real_seq_length = seq_length

    if past_key_value is not None:
        if len(past_key_value) != 2:
            raise ValueError(
                f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
            )
        real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length

    key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]

    def shape(states):
        """projection"""
        return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).swapaxes(1, 2)

    def unshape(states):
        """reshape"""
        return states.swapaxes(1, 2).view(batch_size, -1, self.inner_dim)

    def project(hidden_states, proj_layer, key_value_states, past_key_value):
        """projects hidden states correctly to key/query states"""
        if key_value_states is None:
            # self-attn
            # (batch_size, n_heads, seq_length, dim_per_head)
            hidden_states = shape(proj_layer(hidden_states))
        elif past_key_value is None:
            # cross-attn
            # (batch_size, n_heads, seq_length, dim_per_head)
            hidden_states = shape(proj_layer(key_value_states))

        if past_key_value is not None:
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, key_length, dim_per_head)
                hidden_states = ops.cat([past_key_value, hidden_states], dim=2)
            elif past_key_value.shape[2] != key_value_states.shape[1]:
                # checking that the `sequence_length` of the `past_key_value` is the same as
                # the provided `key_value_states` to support prefix tuning
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))
            else:
                # cross-attn
                hidden_states = past_key_value
        return hidden_states

    # get query states
    query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)
    # get key/value states
    key_states = project(
        hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
    )
    value_states = project(
        hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
    )

    # compute scores
    scores = ops.matmul(
        query_states, key_states.swapaxes(3, 2)
    )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
    if position_bias is None:
        if not self.has_relative_attention_bias:
            position_bias = ops.zeros(
                1, self.n_heads, real_seq_length, key_length, dtype=scores.dtype
            )
        else:
            position_bias = self.compute_bias(real_seq_length, key_length)
        # if key and values are already calculated
        # we want only the last query position bias
        if past_key_value is not None:
            position_bias = position_bias[:, :, -hidden_states.shape[1] :, :]

        if mask is not None:
            position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)

    if self.pruned_heads:
        mask = ops.ones(position_bias.shape[1])
        mask[list(self.pruned_heads)] = 0
        position_bias_masked = position_bias[:, mask.bool()]
    else:
        position_bias_masked = position_bias

    scores += position_bias_masked
    attn_weights = ops.softmax(scores.float() + 1e-10, dim=-1).astype(
        scores.dtype
    )  # (batch_size, n_heads, seq_length, key_length)
    attn_weights = F.dropout(
        attn_weights, p=self.dropout, training=self.training
    )  # (batch_size, n_heads, seq_length, key_length)

    # Mask heads if we want to
    if layer_head_mask is not None:
        attn_weights = attn_weights * layer_head_mask

    attn_output = unshape(ops.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
    attn_output = self.o(attn_output)

    present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
    outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

    if output_attentions:
        outputs = outputs + (attn_weights,)
    return outputs

mindnlp.transformers.models.t5.modeling_t5.T5Attention.prune_heads(heads)

Prunes the attention heads in the T5Attention class.

PARAMETER DESCRIPTION
self

An instance of the T5Attention class.

TYPE: T5Attention

heads

A list of attention heads to be pruned.

TYPE: list

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def prune_heads(self, heads):
    """
    Prunes the attention heads in the T5Attention class.

    Args:
        self (T5Attention): An instance of the T5Attention class.
        heads (list): A list of attention heads to be pruned.

    Returns:
        None.

    Raises:
        None.
    """
    if len(heads) == 0:
        return
    heads, index = find_pruneable_heads_and_indices(
        heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
    )
    # Prune linear layers
    self.q = prune_linear_layer(self.q, index)
    self.k = prune_linear_layer(self.k, index)
    self.v = prune_linear_layer(self.v, index)
    self.o = prune_linear_layer(self.o, index, dim=1)
    # Update hyper params
    self.n_heads = self.n_heads - len(heads)
    self.inner_dim = self.key_value_proj_dim * self.n_heads
    self.pruned_heads = self.pruned_heads.union(heads)

mindnlp.transformers.models.t5.modeling_t5.T5Block

Bases: Module

T5Block

Source code in mindnlp/transformers/models/t5/modeling_t5.py
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
class T5Block(nn.Module):
    """T5Block"""
    def __init__(self, config, has_relative_attention_bias=False):
        """
        Initializes a new instance of the T5Block class.

        Args:
            self: The object itself.
            config (object): The configuration object containing the settings for the T5Block.
            has_relative_attention_bias (bool, optional): Specifies whether the attention bias is relative or not.
                Default is False.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.is_decoder = config.is_decoder
        self.layer = nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
        if self.is_decoder:
            self.layer.append(T5LayerCrossAttention(config))

        self.layer.append(T5LayerFF(config))

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
        # return_dict=True,
    ):
        """
        Constructs a T5Block.

        Args:
            self (T5Block): The T5Block instance.
            hidden_states (Tensor): The input hidden states.
            attention_mask (Tensor, optional): The attention mask tensor. Defaults to None.
            position_bias (Tensor, optional): The position bias tensor. Defaults to None.
            encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None.
            encoder_attention_mask (Tensor, optional): The encoder attention mask tensor. Defaults to None.
            encoder_decoder_position_bias (Tensor, optional): The encoder-decoder position bias tensor. Defaults to None.
            layer_head_mask (Tensor, optional): The layer head mask tensor. Defaults to None.
            cross_attn_layer_head_mask (Tensor, optional): The cross-attention layer head mask tensor. Defaults to None.
            past_key_value (Tuple[Tensor], optional): The past key-value states. Defaults to None.
            use_cache (bool, optional): Whether to use cache. Defaults to False.
            output_attentions (bool, optional): Whether to output attentions. Defaults to False.

        Returns:
            Tuple:
                A tuple containing the following elements:

                - hidden_states (Tensor): The output hidden states.
                - present_key_value_state (Tuple[Tensor], optional): The present key-value state. None if not available.
                - attention_outputs (Tuple[Tensor], optional): The attention outputs. None if not available.

        Raises:
            ValueError: If the number of past states is not as expected.
            Warning: If `past_key_values` is passed to the encoder.
        """
        if past_key_value is not None:
            if not self.is_decoder:
                logging.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
                    f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                    f"Got {len(past_key_value)} past key / value states"
                )

            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None
        self_attention_outputs = self.layer[0](
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states, present_key_value_state = self_attention_outputs[:2]
        attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
            clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        do_cross_attention = self.is_decoder and encoder_hidden_states is not None
        if do_cross_attention:
            # the actual query length is unknown for cross attention
            # if using past key value states. Need to inject it here
            if present_key_value_state is not None:
                query_length = present_key_value_state[0].shape[2]
            else:
                query_length = None

            cross_attention_outputs = self.layer[1](
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                query_length=query_length,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            hidden_states = cross_attention_outputs[0]

            # clamp inf values to enable fp16 training
            if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
                clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
                hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state = present_key_value_state + cross_attention_outputs[1]

            # Keep cross-attention outputs and relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[2:]

        # Apply Feed Forward layer
        hidden_states = self.layer[-1](hidden_states)

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
            clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if use_cache:
            outputs = outputs + (present_key_value_state,) + attention_outputs
        else:
            outputs = outputs + attention_outputs

        return outputs

mindnlp.transformers.models.t5.modeling_t5.T5Block.__init__(config, has_relative_attention_bias=False)

Initializes a new instance of the T5Block class.

PARAMETER DESCRIPTION
self

The object itself.

config

The configuration object containing the settings for the T5Block.

TYPE: object

has_relative_attention_bias

Specifies whether the attention bias is relative or not. Default is False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
def __init__(self, config, has_relative_attention_bias=False):
    """
    Initializes a new instance of the T5Block class.

    Args:
        self: The object itself.
        config (object): The configuration object containing the settings for the T5Block.
        has_relative_attention_bias (bool, optional): Specifies whether the attention bias is relative or not.
            Default is False.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.is_decoder = config.is_decoder
    self.layer = nn.ModuleList()
    self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
    if self.is_decoder:
        self.layer.append(T5LayerCrossAttention(config))

    self.layer.append(T5LayerFF(config))

mindnlp.transformers.models.t5.modeling_t5.T5Block.forward(hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False)

Constructs a T5Block.

PARAMETER DESCRIPTION
self

The T5Block instance.

TYPE: T5Block

hidden_states

The input hidden states.

TYPE: Tensor

attention_mask

The attention mask tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

position_bias

The position bias tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

encoder_hidden_states

The encoder hidden states tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

encoder_attention_mask

The encoder attention mask tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

encoder_decoder_position_bias

The encoder-decoder position bias tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

layer_head_mask

The layer head mask tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

cross_attn_layer_head_mask

The cross-attention layer head mask tensor. Defaults to None.

TYPE: Tensor DEFAULT: None

past_key_value

The past key-value states. Defaults to None.

TYPE: Tuple[Tensor] DEFAULT: None

use_cache

Whether to use cache. Defaults to False.

TYPE: bool DEFAULT: False

output_attentions

Whether to output attentions. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
Tuple

A tuple containing the following elements:

  • hidden_states (Tensor): The output hidden states.
  • present_key_value_state (Tuple[Tensor], optional): The present key-value state. None if not available.
  • attention_outputs (Tuple[Tensor], optional): The attention outputs. None if not available.
RAISES DESCRIPTION
ValueError

If the number of past states is not as expected.

Warning

If past_key_values is passed to the encoder.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
def forward(
    self,
    hidden_states,
    attention_mask=None,
    position_bias=None,
    encoder_hidden_states=None,
    encoder_attention_mask=None,
    encoder_decoder_position_bias=None,
    layer_head_mask=None,
    cross_attn_layer_head_mask=None,
    past_key_value=None,
    use_cache=False,
    output_attentions=False,
    # return_dict=True,
):
    """
    Constructs a T5Block.

    Args:
        self (T5Block): The T5Block instance.
        hidden_states (Tensor): The input hidden states.
        attention_mask (Tensor, optional): The attention mask tensor. Defaults to None.
        position_bias (Tensor, optional): The position bias tensor. Defaults to None.
        encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None.
        encoder_attention_mask (Tensor, optional): The encoder attention mask tensor. Defaults to None.
        encoder_decoder_position_bias (Tensor, optional): The encoder-decoder position bias tensor. Defaults to None.
        layer_head_mask (Tensor, optional): The layer head mask tensor. Defaults to None.
        cross_attn_layer_head_mask (Tensor, optional): The cross-attention layer head mask tensor. Defaults to None.
        past_key_value (Tuple[Tensor], optional): The past key-value states. Defaults to None.
        use_cache (bool, optional): Whether to use cache. Defaults to False.
        output_attentions (bool, optional): Whether to output attentions. Defaults to False.

    Returns:
        Tuple:
            A tuple containing the following elements:

            - hidden_states (Tensor): The output hidden states.
            - present_key_value_state (Tuple[Tensor], optional): The present key-value state. None if not available.
            - attention_outputs (Tuple[Tensor], optional): The attention outputs. None if not available.

    Raises:
        ValueError: If the number of past states is not as expected.
        Warning: If `past_key_values` is passed to the encoder.
    """
    if past_key_value is not None:
        if not self.is_decoder:
            logging.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
        expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

        if len(past_key_value) != expected_num_past_key_values:
            raise ValueError(
                f"There should be {expected_num_past_key_values} past states. "
                f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                f"Got {len(past_key_value)} past key / value states"
            )

        self_attn_past_key_value = past_key_value[:2]
        cross_attn_past_key_value = past_key_value[2:]
    else:
        self_attn_past_key_value, cross_attn_past_key_value = None, None
    self_attention_outputs = self.layer[0](
        hidden_states,
        attention_mask=attention_mask,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        past_key_value=self_attn_past_key_value,
        use_cache=use_cache,
        output_attentions=output_attentions,
    )
    hidden_states, present_key_value_state = self_attention_outputs[:2]
    attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

    # clamp inf values to enable fp16 training
    if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
        clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
        hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

    do_cross_attention = self.is_decoder and encoder_hidden_states is not None
    if do_cross_attention:
        # the actual query length is unknown for cross attention
        # if using past key value states. Need to inject it here
        if present_key_value_state is not None:
            query_length = present_key_value_state[0].shape[2]
        else:
            query_length = None

        cross_attention_outputs = self.layer[1](
            hidden_states,
            key_value_states=encoder_hidden_states,
            attention_mask=encoder_attention_mask,
            position_bias=encoder_decoder_position_bias,
            layer_head_mask=cross_attn_layer_head_mask,
            past_key_value=cross_attn_past_key_value,
            query_length=query_length,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states = cross_attention_outputs[0]

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
            clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
            hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        # Combine self attn and cross attn key value states
        if present_key_value_state is not None:
            present_key_value_state = present_key_value_state + cross_attention_outputs[1]

        # Keep cross-attention outputs and relative position weights
        attention_outputs = attention_outputs + cross_attention_outputs[2:]

    # Apply Feed Forward layer
    hidden_states = self.layer[-1](hidden_states)

    # clamp inf values to enable fp16 training
    if hidden_states.dtype == mindspore.float16 and ops.isinf(hidden_states).any():
        clamp_value = mindspore.tensor(np.finfo(mindspore.dtype_to_nptype(hidden_states.dtype)).max) - 1000
        hidden_states = ops.clamp(hidden_states, min=-clamp_value, max=clamp_value)

    outputs = (hidden_states,)

    if use_cache:
        outputs = outputs + (present_key_value_state,) + attention_outputs
    else:
        outputs = outputs + attention_outputs

    return outputs

mindnlp.transformers.models.t5.modeling_t5.T5ClassificationHead

Bases: Module

Head for sentence-level classification tasks.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
class T5ClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""
    def __init__(self, config: T5Config):
        """
        Initializes a T5ClassificationHead instance.

        Args:
            self: The T5ClassificationHead instance.
            config (T5Config): The configuration for the T5 model. It specifies the model's architecture and parameters.

        Returns:
            None.

        Raises:
            TypeError: If the config parameter is not of type T5Config.
            ValueError: If the config parameters are not valid or if there are any issues during initialization.
        """
        super().__init__()
        self.dense = nn.Linear(config.d_model, config.d_model)
        self.dropout = nn.Dropout(p=config.classifier_dropout)
        self.out_proj = nn.Linear(config.d_model, config.num_labels)

    def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
        """
        Constructs the T5 classification head.

        Args:
            self: The T5ClassificationHead object.
            hidden_states (mindspore.Tensor): The input hidden states tensor.
                This tensor contains the hidden states from the T5 model.
                Shape of the tensor should be (batch_size, sequence_length, hidden_size).

        Returns:
            mindspore.Tensor: The output tensor after passing through the T5 classification head.
                Shape of the tensor is (batch_size, sequence_length, num_labels).

        Raises:
            None.
        """
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = ops.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5ClassificationHead.__init__(config)

Initializes a T5ClassificationHead instance.

PARAMETER DESCRIPTION
self

The T5ClassificationHead instance.

config

The configuration for the T5 model. It specifies the model's architecture and parameters.

TYPE: T5Config

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the config parameter is not of type T5Config.

ValueError

If the config parameters are not valid or if there are any issues during initialization.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
def __init__(self, config: T5Config):
    """
    Initializes a T5ClassificationHead instance.

    Args:
        self: The T5ClassificationHead instance.
        config (T5Config): The configuration for the T5 model. It specifies the model's architecture and parameters.

    Returns:
        None.

    Raises:
        TypeError: If the config parameter is not of type T5Config.
        ValueError: If the config parameters are not valid or if there are any issues during initialization.
    """
    super().__init__()
    self.dense = nn.Linear(config.d_model, config.d_model)
    self.dropout = nn.Dropout(p=config.classifier_dropout)
    self.out_proj = nn.Linear(config.d_model, config.num_labels)

mindnlp.transformers.models.t5.modeling_t5.T5ClassificationHead.forward(hidden_states)

Constructs the T5 classification head.

PARAMETER DESCRIPTION
self

The T5ClassificationHead object.

hidden_states

The input hidden states tensor. This tensor contains the hidden states from the T5 model. Shape of the tensor should be (batch_size, sequence_length, hidden_size).

TYPE: Tensor

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: The output tensor after passing through the T5 classification head. Shape of the tensor is (batch_size, sequence_length, num_labels).

Source code in mindnlp/transformers/models/t5/modeling_t5.py
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
def forward(self, hidden_states: mindspore.Tensor) -> mindspore.Tensor:
    """
    Constructs the T5 classification head.

    Args:
        self: The T5ClassificationHead object.
        hidden_states (mindspore.Tensor): The input hidden states tensor.
            This tensor contains the hidden states from the T5 model.
            Shape of the tensor should be (batch_size, sequence_length, hidden_size).

    Returns:
        mindspore.Tensor: The output tensor after passing through the T5 classification head.
            Shape of the tensor is (batch_size, sequence_length, num_labels).

    Raises:
        None.
    """
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.dense(hidden_states)
    hidden_states = ops.tanh(hidden_states)
    hidden_states = self.dropout(hidden_states)
    hidden_states = self.out_proj(hidden_states)
    return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5DenseActDense

Bases: Module

T5DenseActDense

Source code in mindnlp/transformers/models/t5/modeling_t5.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
class T5DenseActDense(nn.Module):
    """T5DenseActDense"""
    def __init__(self, config: T5Config):
        """
        Initializes an instance of the T5DenseActDense class.

        Args:
            self: The instance of the class.
            config (T5Config):
                The configuration object containing the model's settings.

                - The 'config' parameter is of type T5Config, which specifies the configuration for the T5 model.
                - It is used to set up the parameters for the dense layers and the dropout rate.
                - This parameter is required and has no default value.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(p=config.dropout_rate)
        self.act = ACT2FN[config.dense_act_fn]

    def forward(self, hidden_states):
        """
        This method forwards the hidden states by applying a series of transformations including linear mapping,
        activation function, dropout, and additional conversion based on weight data types.

        Args:
            self (T5DenseActDense): The instance of the T5DenseActDense class.
            hidden_states (Tensor): The input hidden states to be processed by the method.

        Returns:
            None.

        Raises:
            TypeError:
                If the data type of weights in self.wo does not match the data type of hidden_states or mindspore.int8.
        """
        hidden_states = self.wi(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.dropout(hidden_states)
        if self.wo.weight.dtype not in (hidden_states.dtype, mindspore.int8):
            hidden_states = hidden_states.astype(self.wo.weight.dtype)
        hidden_states = self.wo(hidden_states)
        return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5DenseActDense.__init__(config)

Initializes an instance of the T5DenseActDense class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing the model's settings.

  • The 'config' parameter is of type T5Config, which specifies the configuration for the T5 model.
  • It is used to set up the parameters for the dense layers and the dropout rate.
  • This parameter is required and has no default value.

TYPE: T5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def __init__(self, config: T5Config):
    """
    Initializes an instance of the T5DenseActDense class.

    Args:
        self: The instance of the class.
        config (T5Config):
            The configuration object containing the model's settings.

            - The 'config' parameter is of type T5Config, which specifies the configuration for the T5 model.
            - It is used to set up the parameters for the dense layers and the dropout rate.
            - This parameter is required and has no default value.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
    self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
    self.dropout = nn.Dropout(p=config.dropout_rate)
    self.act = ACT2FN[config.dense_act_fn]

mindnlp.transformers.models.t5.modeling_t5.T5DenseActDense.forward(hidden_states)

This method forwards the hidden states by applying a series of transformations including linear mapping, activation function, dropout, and additional conversion based on weight data types.

PARAMETER DESCRIPTION
self

The instance of the T5DenseActDense class.

TYPE: T5DenseActDense

hidden_states

The input hidden states to be processed by the method.

TYPE: Tensor

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the data type of weights in self.wo does not match the data type of hidden_states or mindspore.int8.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def forward(self, hidden_states):
    """
    This method forwards the hidden states by applying a series of transformations including linear mapping,
    activation function, dropout, and additional conversion based on weight data types.

    Args:
        self (T5DenseActDense): The instance of the T5DenseActDense class.
        hidden_states (Tensor): The input hidden states to be processed by the method.

    Returns:
        None.

    Raises:
        TypeError:
            If the data type of weights in self.wo does not match the data type of hidden_states or mindspore.int8.
    """
    hidden_states = self.wi(hidden_states)
    hidden_states = self.act(hidden_states)
    hidden_states = self.dropout(hidden_states)
    if self.wo.weight.dtype not in (hidden_states.dtype, mindspore.int8):
        hidden_states = hidden_states.astype(self.wo.weight.dtype)
    hidden_states = self.wo(hidden_states)
    return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5DenseGatedActDense

Bases: Module

T5DenseGatedActDense

Source code in mindnlp/transformers/models/t5/modeling_t5.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
class T5DenseGatedActDense(nn.Module):
    """T5DenseGatedActDense"""
    def __init__(self, config: T5Config):
        """
        Initializes an instance of the T5DenseGatedActDense class.

        Args:
            self: An instance of the T5DenseGatedActDense class.
            config (T5Config): The configuration object for the T5 model.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(p=config.dropout_rate)
        self.act = ACT2FN[config.dense_act_fn]

    def forward(self, hidden_states):
        """
        Constructs the hidden states of the T5DenseGatedActDense model.

        Args:
            self: The instance of the T5DenseGatedActDense class.
            hidden_states (Tensor): The input hidden states.
                It should have the shape (batch_size, sequence_length, hidden_size).

        Returns:
            None

        Raises:
            None
        """
        hidden_gelu = self.act(self.wi_0(hidden_states))
        hidden_linear = self.wi_1(hidden_states)
        hidden_states = hidden_gelu * hidden_linear
        hidden_states = self.dropout(hidden_states)

        if self.wo.weight.dtype not in (hidden_states.dtype, mindspore.int8):
            hidden_states = hidden_states.astype(self.wo.weight.dtype)

        hidden_states = self.wo(hidden_states)
        return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5DenseGatedActDense.__init__(config)

Initializes an instance of the T5DenseGatedActDense class.

PARAMETER DESCRIPTION
self

An instance of the T5DenseGatedActDense class.

config

The configuration object for the T5 model.

TYPE: T5Config

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def __init__(self, config: T5Config):
    """
    Initializes an instance of the T5DenseGatedActDense class.

    Args:
        self: An instance of the T5DenseGatedActDense class.
        config (T5Config): The configuration object for the T5 model.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
    self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
    self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
    self.dropout = nn.Dropout(p=config.dropout_rate)
    self.act = ACT2FN[config.dense_act_fn]

mindnlp.transformers.models.t5.modeling_t5.T5DenseGatedActDense.forward(hidden_states)

Constructs the hidden states of the T5DenseGatedActDense model.

PARAMETER DESCRIPTION
self

The instance of the T5DenseGatedActDense class.

hidden_states

The input hidden states. It should have the shape (batch_size, sequence_length, hidden_size).

TYPE: Tensor

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def forward(self, hidden_states):
    """
    Constructs the hidden states of the T5DenseGatedActDense model.

    Args:
        self: The instance of the T5DenseGatedActDense class.
        hidden_states (Tensor): The input hidden states.
            It should have the shape (batch_size, sequence_length, hidden_size).

    Returns:
        None

    Raises:
        None
    """
    hidden_gelu = self.act(self.wi_0(hidden_states))
    hidden_linear = self.wi_1(hidden_states)
    hidden_states = hidden_gelu * hidden_linear
    hidden_states = self.dropout(hidden_states)

    if self.wo.weight.dtype not in (hidden_states.dtype, mindspore.int8):
        hidden_states = hidden_states.astype(self.wo.weight.dtype)

    hidden_states = self.wo(hidden_states)
    return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5EncoderModel

Bases: T5PreTrainedModel

T5EncoderModel

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
class T5EncoderModel(T5PreTrainedModel):
    """T5EncoderModel"""
    _tied_weights_keys = ["encoder.embed_tokens.weight"]
    _keys_to_ignore_on_load_unexpected = [r"decoder"]

    def __init__(self, config: T5Config):
        """
        Initializes a T5EncoderModel instance.

        Args:
            self: The T5EncoderModel instance itself.
            config (T5Config): An instance of T5Config containing the configuration parameters for the model.
                It specifies the configuration settings such as vocab_size and d_model.
                This parameter is required for configuring the T5EncoderModel.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """
        Retrieve the input embeddings.

        This method is used to obtain the input embeddings for the T5EncoderModel class.

        Args:
            self: An instance of the T5EncoderModel class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """
        Sets the input embeddings for the T5EncoderModel.

        Args:
            self (T5EncoderModel): The instance of the T5EncoderModel class.
            new_embeddings (torch.Tensor): The new input embeddings to be set.

        Returns:
            None

        Raises:
            None
        """
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        Ties the weights of the word embeddings in the T5EncoderModel.

        Args:
            self (T5EncoderModel): An instance of the T5EncoderModel class.

        Returns:
            None.

        Raises:
            None.
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)

    def get_encoder(self):
        """
        Get the encoder of the T5EncoderModel.

        Args:
            self (T5EncoderModel): An instance of the T5EncoderModel class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.encoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)

    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        head_mask = None,
        inputs_embeds = None,
        output_attentions = None,
        output_hidden_states = None,
        return_dict = None,
    ):
        """
        Constructs the T5EncoderModel.

        Args:
            self: The T5EncoderModel object.
            input_ids (optional): A tensor of shape (batch_size, sequence_length) containing the input token IDs.
                Defaults to None.
            attention_mask (optional): A tensor of shape (batch_size, sequence_length) containing the attention mask.
                Defaults to None.
            head_mask (optional): A tensor of shape (num_heads,) containing the head mask. Defaults to None.
            inputs_embeds (optional): A tensor of shape (batch_size, sequence_length, embedding_size)
                containing the input embeddings. Defaults to None.
            output_attentions (optional): A boolean indicating whether to return the attentions. Defaults to None.
            output_hidden_states (optional): A boolean indicating whether to return the hidden states. Defaults to None.
            return_dict (optional): A boolean indicating whether to return a dictionary. If not provided,
                it is determined by self.config.use_return_dict. Defaults to None.

        Returns:
            encoder_outputs: A tuple containing the encoder outputs.
                It typically consists of the following elements:

                - last_hidden_state: A tensor of shape (batch_size, sequence_length, hidden_size) containing the last
                hidden state of the encoder.
                - hidden_states: A tuple of tensors containing all the hidden states of the encoder. Each tensor has
                a shape of (batch_size, sequence_length, hidden_size).
                - attentions: A tuple of tensors containing the attentions of the encoder. Each tensor has a shape of
                (batch_size, num_heads, sequence_length, sequence_length).

        Raises:
            None.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return encoder_outputs

mindnlp.transformers.models.t5.modeling_t5.T5EncoderModel.__init__(config)

Initializes a T5EncoderModel instance.

PARAMETER DESCRIPTION
self

The T5EncoderModel instance itself.

config

An instance of T5Config containing the configuration parameters for the model. It specifies the configuration settings such as vocab_size and d_model. This parameter is required for configuring the T5EncoderModel.

TYPE: T5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
def __init__(self, config: T5Config):
    """
    Initializes a T5EncoderModel instance.

    Args:
        self: The T5EncoderModel instance itself.
        config (T5Config): An instance of T5Config containing the configuration parameters for the model.
            It specifies the configuration settings such as vocab_size and d_model.
            This parameter is required for configuring the T5EncoderModel.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = T5Stack(encoder_config)
    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.t5.modeling_t5.T5EncoderModel.forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the T5EncoderModel.

PARAMETER DESCRIPTION
self

The T5EncoderModel object.

input_ids

A tensor of shape (batch_size, sequence_length) containing the input token IDs. Defaults to None.

TYPE: optional DEFAULT: None

attention_mask

A tensor of shape (batch_size, sequence_length) containing the attention mask. Defaults to None.

TYPE: optional DEFAULT: None

head_mask

A tensor of shape (num_heads,) containing the head mask. Defaults to None.

TYPE: optional DEFAULT: None

inputs_embeds

A tensor of shape (batch_size, sequence_length, embedding_size) containing the input embeddings. Defaults to None.

TYPE: optional DEFAULT: None

output_attentions

A boolean indicating whether to return the attentions. Defaults to None.

TYPE: optional DEFAULT: None

output_hidden_states

A boolean indicating whether to return the hidden states. Defaults to None.

TYPE: optional DEFAULT: None

return_dict

A boolean indicating whether to return a dictionary. If not provided, it is determined by self.config.use_return_dict. Defaults to None.

TYPE: optional DEFAULT: None

RETURNS DESCRIPTION
encoder_outputs

A tuple containing the encoder outputs. It typically consists of the following elements:

  • last_hidden_state: A tensor of shape (batch_size, sequence_length, hidden_size) containing the last hidden state of the encoder.
  • hidden_states: A tuple of tensors containing all the hidden states of the encoder. Each tensor has a shape of (batch_size, sequence_length, hidden_size).
  • attentions: A tuple of tensors containing the attentions of the encoder. Each tensor has a shape of (batch_size, num_heads, sequence_length, sequence_length).
Source code in mindnlp/transformers/models/t5/modeling_t5.py
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
def forward(
    self,
    input_ids = None,
    attention_mask = None,
    head_mask = None,
    inputs_embeds = None,
    output_attentions = None,
    output_hidden_states = None,
    return_dict = None,
):
    """
    Constructs the T5EncoderModel.

    Args:
        self: The T5EncoderModel object.
        input_ids (optional): A tensor of shape (batch_size, sequence_length) containing the input token IDs.
            Defaults to None.
        attention_mask (optional): A tensor of shape (batch_size, sequence_length) containing the attention mask.
            Defaults to None.
        head_mask (optional): A tensor of shape (num_heads,) containing the head mask. Defaults to None.
        inputs_embeds (optional): A tensor of shape (batch_size, sequence_length, embedding_size)
            containing the input embeddings. Defaults to None.
        output_attentions (optional): A boolean indicating whether to return the attentions. Defaults to None.
        output_hidden_states (optional): A boolean indicating whether to return the hidden states. Defaults to None.
        return_dict (optional): A boolean indicating whether to return a dictionary. If not provided,
            it is determined by self.config.use_return_dict. Defaults to None.

    Returns:
        encoder_outputs: A tuple containing the encoder outputs.
            It typically consists of the following elements:

            - last_hidden_state: A tensor of shape (batch_size, sequence_length, hidden_size) containing the last
            hidden state of the encoder.
            - hidden_states: A tuple of tensors containing all the hidden states of the encoder. Each tensor has
            a shape of (batch_size, sequence_length, hidden_size).
            - attentions: A tuple of tensors containing the attentions of the encoder. Each tensor has a shape of
            (batch_size, num_heads, sequence_length, sequence_length).

    Raises:
        None.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    encoder_outputs = self.encoder(
        input_ids=input_ids,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        head_mask=head_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    return encoder_outputs

mindnlp.transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder()

Get the encoder of the T5EncoderModel.

PARAMETER DESCRIPTION
self

An instance of the T5EncoderModel class.

TYPE: T5EncoderModel

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
def get_encoder(self):
    """
    Get the encoder of the T5EncoderModel.

    Args:
        self (T5EncoderModel): An instance of the T5EncoderModel class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.encoder

mindnlp.transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings()

Retrieve the input embeddings.

This method is used to obtain the input embeddings for the T5EncoderModel class.

PARAMETER DESCRIPTION
self

An instance of the T5EncoderModel class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
def get_input_embeddings(self):
    """
    Retrieve the input embeddings.

    This method is used to obtain the input embeddings for the T5EncoderModel class.

    Args:
        self: An instance of the T5EncoderModel class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.shared

mindnlp.transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings(new_embeddings)

Sets the input embeddings for the T5EncoderModel.

PARAMETER DESCRIPTION
self

The instance of the T5EncoderModel class.

TYPE: T5EncoderModel

new_embeddings

The new input embeddings to be set.

TYPE: Tensor

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
def set_input_embeddings(self, new_embeddings):
    """
    Sets the input embeddings for the T5EncoderModel.

    Args:
        self (T5EncoderModel): The instance of the T5EncoderModel class.
        new_embeddings (torch.Tensor): The new input embeddings to be set.

    Returns:
        None

    Raises:
        None
    """
    self.shared = new_embeddings
    self.encoder.set_input_embeddings(new_embeddings)

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration

Bases: T5PreTrainedModel

T5ForConditionalGeneration

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
class T5ForConditionalGeneration(T5PreTrainedModel):
    """T5ForConditionalGeneration"""
    _keys_to_ignore_on_load_unexpected = [
        "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
    ]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]

    def __init__(self, config: T5Config):
        """
        Initializes an instance of the T5ForConditionalGeneration class.

        Args:
            self: The object instance.
            config (T5Config): The configuration object for the T5 model.
                It contains various parameters to customize the model's behavior, such as the model dimension,
                vocabulary size, and number of decoder layers.

        Returns:
            None

        Raises:
            None
        """
        super().__init__(config)
        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = T5Stack(decoder_config)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        self.post_init()

    def get_input_embeddings(self):
        """
        Returns the input embeddings for the T5 model.

        Args:
            self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """
        Set input embeddings for the T5 model.

        Args:
            self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
            new_embeddings (tensor): The new input embeddings to be set for the model.
                It should be a tensor of shape (vocab_size, hidden_size).

        Returns:
            None.

        Raises:
            TypeError: If the new_embeddings parameter is not a tensor.
            ValueError: If the shape of the new_embeddings tensor does not match the required shape
                (vocab_size, hidden_size).
        """
        self.shared = new_embeddings
        # self.encoder.set_input_embeddings(new_embeddings)
        # self.decoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        Method _tie_weights in the class T5ForConditionalGeneration ties or clones weights for word embeddings.

        Args:
            self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
                It represents the current object and is used to access attributes and methods within the class.

        Returns:
            None.

        Raises:
            None.
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

    def set_output_embeddings(self, new_embeddings):
        """
        Set the output embeddings for the T5 model.

        Args:
            self (T5ForConditionalGeneration): The T5 model instance.
            new_embeddings (torch.Tensor): The new embeddings to set as the output embeddings for the model.

        Returns:
            None: This method updates the output embeddings of the T5 model in place.

        Raises:
            TypeError: If the new_embeddings parameter is not a torch.Tensor.
            ValueError: If the shape of the new_embeddings does not match the expected shape for model output embeddings.
        """
        self.lm_head = new_embeddings

    def get_output_embeddings(self):
        """
        Returns the output embeddings for the T5 model.

        Args:
            self (T5ForConditionalGeneration): An instance of the T5ForConditionalGeneration class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.lm_head

    def get_encoder(self):
        """
        This method is part of the 'T5ForConditionalGeneration' class and is used to retrieve the encoder.

        Args:
            self (T5ForConditionalGeneration): An instance of the 'T5ForConditionalGeneration' class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.encoder

    def get_decoder(self):
        """
        Returns the decoder used by the T5 model for conditional generation.

        Args:
            self (T5ForConditionalGeneration): The current instance of the T5ForConditionalGeneration class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.decoder

    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        decoder_input_ids = None,
        decoder_attention_mask = None,
        head_mask = None,
        decoder_head_mask = None,
        cross_attn_head_mask = None,
        encoder_outputs = None,
        past_key_values = None,
        inputs_embeds = None,
        decoder_inputs_embeds = None,
        labels = None,
        use_cache = None,
        output_attentions = None,
        output_hidden_states = None,
        return_dict = None,
    ):
        """Constructs the T5 model for conditional generation.

        Args:
            self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
            input_ids (torch.Tensor, optional): The input sequence tensor of shape (batch_size, sequence_length).
                Defaults to None.
            attention_mask (torch.Tensor, optional): The attention mask tensor of shape (batch_size, sequence_length).
                Defaults to None.
            decoder_input_ids (torch.Tensor, optional): The decoder input sequence tensor of shape
                (batch_size, decoder_sequence_length).  Defaults to None.
            decoder_attention_mask (torch.Tensor, optional): The decoder attention mask tensor of shape
                (batch_size, decoder_sequence_length). Defaults to None.
            head_mask (torch.Tensor, optional): The head mask tensor of shape (num_layers, num_heads).
                Defaults to None.
            decoder_head_mask (torch.Tensor, optional): The decoder head mask tensor of shape (num_layers, num_heads).
                Defaults to None.
            cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask tensor of shape
                (num_layers, num_heads). Defaults to None.
            encoder_outputs (tuple, optional): The encoder outputs returned by the encoder model.
                Defaults to None.
            past_key_values (tuple, optional): The past key values returned by the decoder model.
                Defaults to None.
            inputs_embeds (torch.Tensor, optional): The input embeddings tensor of shape
                (batch_size, sequence_length, hidden_size). Defaults to None.
            decoder_inputs_embeds (torch.Tensor, optional): The decoder input embeddings tensor of shape
                (batch_size, decoder_sequence_length, hidden_size). Defaults to None.
            labels (torch.Tensor, optional): The labels tensor of shape (batch_size, sequence_length).
                Defaults to None.
            use_cache (bool, optional): Whether to use cache for the model.
                Defaults to None.
            output_attentions (bool, optional): Whether to output attentions.
                Defaults to None.
            output_hidden_states (bool, optional): Whether to output hidden states.
                Defaults to None.
            return_dict (bool, optional): Whether to return a dictionary as the output.
                Defaults to None.

        Returns:
            None.

        Raises:
            None.
        """
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            # Convert encoder inputs in embeddings if needed
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        hidden_states = encoder_outputs[0]
        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            # get decoder inputs from shifting lm labels to the right
            decoder_input_ids = self._shift_right(labels)
        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            sequence_output = sequence_output * (self.model_dim**-0.5)

        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1), ignore_index=-100)
            # TODO(thom): Add z_loss

        if not return_dict:
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        decoder_attention_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        """
        Prepare inputs for generation.

        Args:
            self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
            input_ids (torch.Tensor): The input tensor of shape (batch_size, sequence_length) containing input IDs.
            past_key_values (tuple, optional): The tuple of past key values for the transformer decoder. Default is None.
            attention_mask (torch.Tensor, optional): The attention mask tensor of shape (batch_size, sequence_length)
                indicating which tokens to attend to. Default is None.
            head_mask (torch.Tensor, optional): The head mask tensor of shape (num_layers, num_heads) indicating
                which heads to mask. Default is None.
            decoder_head_mask (torch.Tensor, optional): The decoder head mask tensor of shape (num_layers, num_heads)
                indicating which decoder heads to mask. Default is None.
            decoder_attention_mask (torch.Tensor, optional): The decoder attention mask tensor of shape
                (batch_size, sequence_length) indicating which tokens to attend to in the decoder. Default is None.
            cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask tensor of shape
                (num_layers, num_heads) indicating which cross-attention heads to mask. Default is None.
            use_cache (bool, optional): Whether to use cache. Default is None.
            encoder_outputs (torch.Tensor, optional): The encoder outputs tensor of shape
                (batch_size, sequence_length, hidden_size) containing the hidden states of the encoder. Default is None.

        Returns:
            dict:
                A dictionary containing the prepared inputs for generation with the following keys:

                - 'decoder_input_ids' (torch.Tensor): The decoder input tensor of shape (batch_size, sequence_length)
                containing input IDs.
                - 'past_key_values' (tuple): The tuple of past key values for the transformer decoder.
                - 'encoder_outputs' (torch.Tensor): The encoder outputs tensor of shape
                (batch_size, sequence_length, hidden_size) containing the hidden states of the encoder.
                - 'attention_mask' (torch.Tensor): The attention mask tensor of shape (batch_size, sequence_length)
                indicating which tokens to attend to.
                - 'head_mask' (torch.Tensor): The head mask tensor of shape (num_layers, num_heads) indicating
                which heads to mask.
                - 'decoder_head_mask' (torch.Tensor): The decoder head mask tensor of shape (num_layers, num_heads)
                indicating which decoder heads to mask.
                - 'decoder_attention_mask' (torch.Tensor): The decoder attention mask tensor of shape
                (batch_size, sequence_length) indicating which tokens to attend to in the decoder.
                - 'cross_attn_head_mask' (torch.Tensor): The cross-attention head mask tensor of shape
                (num_layers, num_heads) indicating which cross-attention heads to mask.
                - 'use_cache' (bool): Whether to use cache.

        Raises:
            None.
        """
        # cut decoder_input_ids if past_key_values is used
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        return {
            "decoder_input_ids": input_ids,
            "past_key_values": past_key_values,
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: mindspore.Tensor):
        """
        Prepare decoder input ids from labels.

        This method is used to prepare the input ids for the decoder by shifting the given labels sequence to the right.

        Args:
            self (T5ForConditionalGeneration): An instance of the T5ForConditionalGeneration class.
            labels (mindspore.Tensor): The labels tensor containing the sequence of labels.

        Returns:
            None: This method modifies the decoder input ids in-place.

        Raises:
            None.

        """
        return self._shift_right(labels)

    def _reorder_cache(self, past_key_values, beam_idx):
        """
        This method '_reorder_cache' is defined within the class 'T5ForConditionalGeneration' and is used to reorder
        the cache for decoding during the T5 model's conditional generation.

        Args:
            self (object): The instance of the class.
            past_key_values (tuple): The past key value states generated during the model's previous decoding steps.
                If set to None, a warning is logged to consider setting `use_cache=True` to speed up decoding.
            beam_idx (tensor): The indices of the beam to reorder the cache.

        Returns:
            tuple: The reordered past key value states for the decoder. If 'past_key_values' is None, it returns None.

        Raises:
            ValueError: If the shape of the reordered layer past states and the original layer past states mismatch.
            ValueError: If the length of the reordered layer past states and the original layer past states mismatch.
        """
        # if decoder past is not included in output
        # speedy decoding is disabled and no need to reorder
        if past_key_values is None:
            logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
            return past_key_values

        reordered_decoder_past = ()
        for layer_past_states in past_key_values:
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                reordered_layer_past_states = reordered_layer_past_states + (
                    layer_past_state.index_select(0, beam_idx),
                )

            if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
                raise ValueError(
                    f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
                )
            if len(reordered_layer_past_states) != len(layer_past_states):
                raise ValueError(
                    f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
                )

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
        return reordered_decoder_past

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.__init__(config)

Initializes an instance of the T5ForConditionalGeneration class.

PARAMETER DESCRIPTION
self

The object instance.

config

The configuration object for the T5 model. It contains various parameters to customize the model's behavior, such as the model dimension, vocabulary size, and number of decoder layers.

TYPE: T5Config

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
def __init__(self, config: T5Config):
    """
    Initializes an instance of the T5ForConditionalGeneration class.

    Args:
        self: The object instance.
        config (T5Config): The configuration object for the T5 model.
            It contains various parameters to customize the model's behavior, such as the model dimension,
            vocabulary size, and number of decoder layers.

    Returns:
        None

    Raises:
        None
    """
    super().__init__(config)
    self.model_dim = config.d_model

    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.is_decoder = False
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = T5Stack(encoder_config)

    decoder_config = copy.deepcopy(config)
    decoder_config.is_decoder = True
    decoder_config.is_encoder_decoder = False
    decoder_config.num_layers = config.num_decoder_layers
    self.decoder = T5Stack(decoder_config)

    self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

    self.post_init()

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the T5 model for conditional generation.

PARAMETER DESCRIPTION
self

The instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

input_ids

The input sequence tensor of shape (batch_size, sequence_length). Defaults to None.

TYPE: Tensor DEFAULT: None

attention_mask

The attention mask tensor of shape (batch_size, sequence_length). Defaults to None.

TYPE: Tensor DEFAULT: None

decoder_input_ids

The decoder input sequence tensor of shape (batch_size, decoder_sequence_length). Defaults to None.

TYPE: Tensor DEFAULT: None

decoder_attention_mask

The decoder attention mask tensor of shape (batch_size, decoder_sequence_length). Defaults to None.

TYPE: Tensor DEFAULT: None

head_mask

The head mask tensor of shape (num_layers, num_heads). Defaults to None.

TYPE: Tensor DEFAULT: None

decoder_head_mask

The decoder head mask tensor of shape (num_layers, num_heads). Defaults to None.

TYPE: Tensor DEFAULT: None

cross_attn_head_mask

The cross-attention head mask tensor of shape (num_layers, num_heads). Defaults to None.

TYPE: Tensor DEFAULT: None

encoder_outputs

The encoder outputs returned by the encoder model. Defaults to None.

TYPE: tuple DEFAULT: None

past_key_values

The past key values returned by the decoder model. Defaults to None.

TYPE: tuple DEFAULT: None

inputs_embeds

The input embeddings tensor of shape (batch_size, sequence_length, hidden_size). Defaults to None.

TYPE: Tensor DEFAULT: None

decoder_inputs_embeds

The decoder input embeddings tensor of shape (batch_size, decoder_sequence_length, hidden_size). Defaults to None.

TYPE: Tensor DEFAULT: None

labels

The labels tensor of shape (batch_size, sequence_length). Defaults to None.

TYPE: Tensor DEFAULT: None

use_cache

Whether to use cache for the model. Defaults to None.

TYPE: bool DEFAULT: None

output_attentions

Whether to output attentions. Defaults to None.

TYPE: bool DEFAULT: None

output_hidden_states

Whether to output hidden states. Defaults to None.

TYPE: bool DEFAULT: None

return_dict

Whether to return a dictionary as the output. Defaults to None.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
def forward(
    self,
    input_ids = None,
    attention_mask = None,
    decoder_input_ids = None,
    decoder_attention_mask = None,
    head_mask = None,
    decoder_head_mask = None,
    cross_attn_head_mask = None,
    encoder_outputs = None,
    past_key_values = None,
    inputs_embeds = None,
    decoder_inputs_embeds = None,
    labels = None,
    use_cache = None,
    output_attentions = None,
    output_hidden_states = None,
    return_dict = None,
):
    """Constructs the T5 model for conditional generation.

    Args:
        self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
        input_ids (torch.Tensor, optional): The input sequence tensor of shape (batch_size, sequence_length).
            Defaults to None.
        attention_mask (torch.Tensor, optional): The attention mask tensor of shape (batch_size, sequence_length).
            Defaults to None.
        decoder_input_ids (torch.Tensor, optional): The decoder input sequence tensor of shape
            (batch_size, decoder_sequence_length).  Defaults to None.
        decoder_attention_mask (torch.Tensor, optional): The decoder attention mask tensor of shape
            (batch_size, decoder_sequence_length). Defaults to None.
        head_mask (torch.Tensor, optional): The head mask tensor of shape (num_layers, num_heads).
            Defaults to None.
        decoder_head_mask (torch.Tensor, optional): The decoder head mask tensor of shape (num_layers, num_heads).
            Defaults to None.
        cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask tensor of shape
            (num_layers, num_heads). Defaults to None.
        encoder_outputs (tuple, optional): The encoder outputs returned by the encoder model.
            Defaults to None.
        past_key_values (tuple, optional): The past key values returned by the decoder model.
            Defaults to None.
        inputs_embeds (torch.Tensor, optional): The input embeddings tensor of shape
            (batch_size, sequence_length, hidden_size). Defaults to None.
        decoder_inputs_embeds (torch.Tensor, optional): The decoder input embeddings tensor of shape
            (batch_size, decoder_sequence_length, hidden_size). Defaults to None.
        labels (torch.Tensor, optional): The labels tensor of shape (batch_size, sequence_length).
            Defaults to None.
        use_cache (bool, optional): Whether to use cache for the model.
            Defaults to None.
        output_attentions (bool, optional): Whether to output attentions.
            Defaults to None.
        output_hidden_states (bool, optional): Whether to output hidden states.
            Defaults to None.
        return_dict (bool, optional): Whether to return a dictionary as the output.
            Defaults to None.

    Returns:
        None.

    Raises:
        None.
    """
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
    if head_mask is not None and decoder_head_mask is None:
        if self.config.num_layers == self.config.num_decoder_layers:
            decoder_head_mask = head_mask

    # Encode if needed (training, first prediction pass)
    if encoder_outputs is None:
        # Convert encoder inputs in embeddings if needed
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    hidden_states = encoder_outputs[0]
    if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
        # get decoder inputs from shifting lm labels to the right
        decoder_input_ids = self._shift_right(labels)
    # Decode
    decoder_outputs = self.decoder(
        input_ids=decoder_input_ids,
        attention_mask=decoder_attention_mask,
        inputs_embeds=decoder_inputs_embeds,
        past_key_values=past_key_values,
        encoder_hidden_states=hidden_states,
        encoder_attention_mask=attention_mask,
        head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = decoder_outputs[0]

    if self.config.tie_word_embeddings:
        # Rescale output before projecting on vocab
        sequence_output = sequence_output * (self.model_dim**-0.5)

    lm_logits = self.lm_head(sequence_output)

    loss = None
    if labels is not None:
        loss = F.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1), ignore_index=-100)
        # TODO(thom): Add z_loss

    if not return_dict:
        output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
        return ((loss,) + output) if loss is not None else output

    return Seq2SeqLMOutput(
        loss=loss,
        logits=lm_logits,
        past_key_values=decoder_outputs.past_key_values,
        decoder_hidden_states=decoder_outputs.hidden_states,
        decoder_attentions=decoder_outputs.attentions,
        cross_attentions=decoder_outputs.cross_attentions,
        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
        encoder_hidden_states=encoder_outputs.hidden_states,
        encoder_attentions=encoder_outputs.attentions,
    )

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder()

Returns the decoder used by the T5 model for conditional generation.

PARAMETER DESCRIPTION
self

The current instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
def get_decoder(self):
    """
    Returns the decoder used by the T5 model for conditional generation.

    Args:
        self (T5ForConditionalGeneration): The current instance of the T5ForConditionalGeneration class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.decoder

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder()

This method is part of the 'T5ForConditionalGeneration' class and is used to retrieve the encoder.

PARAMETER DESCRIPTION
self

An instance of the 'T5ForConditionalGeneration' class.

TYPE: T5ForConditionalGeneration

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
def get_encoder(self):
    """
    This method is part of the 'T5ForConditionalGeneration' class and is used to retrieve the encoder.

    Args:
        self (T5ForConditionalGeneration): An instance of the 'T5ForConditionalGeneration' class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.encoder

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings()

Returns the input embeddings for the T5 model.

PARAMETER DESCRIPTION
self

The instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
def get_input_embeddings(self):
    """
    Returns the input embeddings for the T5 model.

    Args:
        self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.shared

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings()

Returns the output embeddings for the T5 model.

PARAMETER DESCRIPTION
self

An instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
def get_output_embeddings(self):
    """
    Returns the output embeddings for the T5 model.

    Args:
        self (T5ForConditionalGeneration): An instance of the T5ForConditionalGeneration class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.lm_head

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels(labels)

Prepare decoder input ids from labels.

This method is used to prepare the input ids for the decoder by shifting the given labels sequence to the right.

PARAMETER DESCRIPTION
self

An instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

labels

The labels tensor containing the sequence of labels.

TYPE: Tensor

RETURNS DESCRIPTION
None

This method modifies the decoder input ids in-place.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
def prepare_decoder_input_ids_from_labels(self, labels: mindspore.Tensor):
    """
    Prepare decoder input ids from labels.

    This method is used to prepare the input ids for the decoder by shifting the given labels sequence to the right.

    Args:
        self (T5ForConditionalGeneration): An instance of the T5ForConditionalGeneration class.
        labels (mindspore.Tensor): The labels tensor containing the sequence of labels.

    Returns:
        None: This method modifies the decoder input ids in-place.

    Raises:
        None.

    """
    return self._shift_right(labels)

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, decoder_attention_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs)

Prepare inputs for generation.

PARAMETER DESCRIPTION
self

The instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

input_ids

The input tensor of shape (batch_size, sequence_length) containing input IDs.

TYPE: Tensor

past_key_values

The tuple of past key values for the transformer decoder. Default is None.

TYPE: tuple DEFAULT: None

attention_mask

The attention mask tensor of shape (batch_size, sequence_length) indicating which tokens to attend to. Default is None.

TYPE: Tensor DEFAULT: None

head_mask

The head mask tensor of shape (num_layers, num_heads) indicating which heads to mask. Default is None.

TYPE: Tensor DEFAULT: None

decoder_head_mask

The decoder head mask tensor of shape (num_layers, num_heads) indicating which decoder heads to mask. Default is None.

TYPE: Tensor DEFAULT: None

decoder_attention_mask

The decoder attention mask tensor of shape (batch_size, sequence_length) indicating which tokens to attend to in the decoder. Default is None.

TYPE: Tensor DEFAULT: None

cross_attn_head_mask

The cross-attention head mask tensor of shape (num_layers, num_heads) indicating which cross-attention heads to mask. Default is None.

TYPE: Tensor DEFAULT: None

use_cache

Whether to use cache. Default is None.

TYPE: bool DEFAULT: None

encoder_outputs

The encoder outputs tensor of shape (batch_size, sequence_length, hidden_size) containing the hidden states of the encoder. Default is None.

TYPE: Tensor DEFAULT: None

RETURNS DESCRIPTION
dict

A dictionary containing the prepared inputs for generation with the following keys:

  • 'decoder_input_ids' (torch.Tensor): The decoder input tensor of shape (batch_size, sequence_length) containing input IDs.
  • 'past_key_values' (tuple): The tuple of past key values for the transformer decoder.
  • 'encoder_outputs' (torch.Tensor): The encoder outputs tensor of shape (batch_size, sequence_length, hidden_size) containing the hidden states of the encoder.
  • 'attention_mask' (torch.Tensor): The attention mask tensor of shape (batch_size, sequence_length) indicating which tokens to attend to.
  • 'head_mask' (torch.Tensor): The head mask tensor of shape (num_layers, num_heads) indicating which heads to mask.
  • 'decoder_head_mask' (torch.Tensor): The decoder head mask tensor of shape (num_layers, num_heads) indicating which decoder heads to mask.
  • 'decoder_attention_mask' (torch.Tensor): The decoder attention mask tensor of shape (batch_size, sequence_length) indicating which tokens to attend to in the decoder.
  • 'cross_attn_head_mask' (torch.Tensor): The cross-attention head mask tensor of shape (num_layers, num_heads) indicating which cross-attention heads to mask.
  • 'use_cache' (bool): Whether to use cache.
Source code in mindnlp/transformers/models/t5/modeling_t5.py
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
def prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    decoder_attention_mask=None,
    cross_attn_head_mask=None,
    use_cache=None,
    encoder_outputs=None,
    **kwargs,
):
    """
    Prepare inputs for generation.

    Args:
        self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
        input_ids (torch.Tensor): The input tensor of shape (batch_size, sequence_length) containing input IDs.
        past_key_values (tuple, optional): The tuple of past key values for the transformer decoder. Default is None.
        attention_mask (torch.Tensor, optional): The attention mask tensor of shape (batch_size, sequence_length)
            indicating which tokens to attend to. Default is None.
        head_mask (torch.Tensor, optional): The head mask tensor of shape (num_layers, num_heads) indicating
            which heads to mask. Default is None.
        decoder_head_mask (torch.Tensor, optional): The decoder head mask tensor of shape (num_layers, num_heads)
            indicating which decoder heads to mask. Default is None.
        decoder_attention_mask (torch.Tensor, optional): The decoder attention mask tensor of shape
            (batch_size, sequence_length) indicating which tokens to attend to in the decoder. Default is None.
        cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask tensor of shape
            (num_layers, num_heads) indicating which cross-attention heads to mask. Default is None.
        use_cache (bool, optional): Whether to use cache. Default is None.
        encoder_outputs (torch.Tensor, optional): The encoder outputs tensor of shape
            (batch_size, sequence_length, hidden_size) containing the hidden states of the encoder. Default is None.

    Returns:
        dict:
            A dictionary containing the prepared inputs for generation with the following keys:

            - 'decoder_input_ids' (torch.Tensor): The decoder input tensor of shape (batch_size, sequence_length)
            containing input IDs.
            - 'past_key_values' (tuple): The tuple of past key values for the transformer decoder.
            - 'encoder_outputs' (torch.Tensor): The encoder outputs tensor of shape
            (batch_size, sequence_length, hidden_size) containing the hidden states of the encoder.
            - 'attention_mask' (torch.Tensor): The attention mask tensor of shape (batch_size, sequence_length)
            indicating which tokens to attend to.
            - 'head_mask' (torch.Tensor): The head mask tensor of shape (num_layers, num_heads) indicating
            which heads to mask.
            - 'decoder_head_mask' (torch.Tensor): The decoder head mask tensor of shape (num_layers, num_heads)
            indicating which decoder heads to mask.
            - 'decoder_attention_mask' (torch.Tensor): The decoder attention mask tensor of shape
            (batch_size, sequence_length) indicating which tokens to attend to in the decoder.
            - 'cross_attn_head_mask' (torch.Tensor): The cross-attention head mask tensor of shape
            (num_layers, num_heads) indicating which cross-attention heads to mask.
            - 'use_cache' (bool): Whether to use cache.

    Raises:
        None.
    """
    # cut decoder_input_ids if past_key_values is used
    if past_key_values is not None:
        past_length = past_key_values[0][0].shape[2]

        # Some generation methods already pass only the last input ID
        if input_ids.shape[1] > past_length:
            remove_prefix_length = past_length
        else:
            # Default to old behavior: keep only final ID
            remove_prefix_length = input_ids.shape[1] - 1

        input_ids = input_ids[:, remove_prefix_length:]

    return {
        "decoder_input_ids": input_ids,
        "past_key_values": past_key_values,
        "encoder_outputs": encoder_outputs,
        "attention_mask": attention_mask,
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
        "decoder_attention_mask": decoder_attention_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
        "use_cache": use_cache,
    }

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings(new_embeddings)

Set input embeddings for the T5 model.

PARAMETER DESCRIPTION
self

The instance of the T5ForConditionalGeneration class.

TYPE: T5ForConditionalGeneration

new_embeddings

The new input embeddings to be set for the model. It should be a tensor of shape (vocab_size, hidden_size).

TYPE: tensor

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the new_embeddings parameter is not a tensor.

ValueError

If the shape of the new_embeddings tensor does not match the required shape (vocab_size, hidden_size).

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
def set_input_embeddings(self, new_embeddings):
    """
    Set input embeddings for the T5 model.

    Args:
        self (T5ForConditionalGeneration): The instance of the T5ForConditionalGeneration class.
        new_embeddings (tensor): The new input embeddings to be set for the model.
            It should be a tensor of shape (vocab_size, hidden_size).

    Returns:
        None.

    Raises:
        TypeError: If the new_embeddings parameter is not a tensor.
        ValueError: If the shape of the new_embeddings tensor does not match the required shape
            (vocab_size, hidden_size).
    """
    self.shared = new_embeddings

mindnlp.transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings(new_embeddings)

Set the output embeddings for the T5 model.

PARAMETER DESCRIPTION
self

The T5 model instance.

TYPE: T5ForConditionalGeneration

new_embeddings

The new embeddings to set as the output embeddings for the model.

TYPE: Tensor

RETURNS DESCRIPTION
None

This method updates the output embeddings of the T5 model in place.

RAISES DESCRIPTION
TypeError

If the new_embeddings parameter is not a torch.Tensor.

ValueError

If the shape of the new_embeddings does not match the expected shape for model output embeddings.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
def set_output_embeddings(self, new_embeddings):
    """
    Set the output embeddings for the T5 model.

    Args:
        self (T5ForConditionalGeneration): The T5 model instance.
        new_embeddings (torch.Tensor): The new embeddings to set as the output embeddings for the model.

    Returns:
        None: This method updates the output embeddings of the T5 model in place.

    Raises:
        TypeError: If the new_embeddings parameter is not a torch.Tensor.
        ValueError: If the shape of the new_embeddings does not match the expected shape for model output embeddings.
    """
    self.lm_head = new_embeddings

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering

Bases: T5PreTrainedModel

This class represents a T5 model for question answering tasks. It is designed specifically for question answering applications where the model takes input text and outputs answers to questions posed about the input. The model architecture includes an encoder and a decoder, both based on the T5Stack structure. The T5ForQuestionAnswering class provides methods for setting input embeddings, tying weights, accessing the encoder and decoder components, and forwarding the model for inference or training.

The forwardor initializes the T5ForQuestionAnswering model with a T5Config object, setting up the model dimensions, shared embeddings, encoder, decoder, and other necessary components. The model can be fine-tuned for specific question answering tasks by adjusting configurations and utilizing the provided methods.

The forward method executes the forward pass of the model, taking input tensors and generating outputs for question answering. It handles input embeddings, attention masks, decoder inputs, and various optional arguments to control the model's behavior during inference or training. The method returns the model's output, including predicted start and end positions for answering questions, loss values, and other relevant information.

Overall, the T5ForQuestionAnswering class encapsulates a T5 model tailored for question answering tasks, providing a convenient interface for utilizing and fine-tuning the model for specific applications.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
class T5ForQuestionAnswering(T5PreTrainedModel):

    """
    This class represents a T5 model for question answering tasks. It is designed specifically for question answering
    applications where the model takes input text and outputs answers to questions posed about the input.
    The model architecture includes an encoder and a decoder, both based on the T5Stack structure.
    The T5ForQuestionAnswering class provides methods for setting input embeddings, tying weights, accessing the encoder
    and decoder components, and forwarding the model for inference or training.

    The forwardor initializes the T5ForQuestionAnswering model with a T5Config object, setting up the model dimensions,
    shared embeddings, encoder, decoder, and other necessary components. The model can be fine-tuned for specific
    question answering tasks by adjusting configurations and utilizing the provided methods.

    The forward method executes the forward pass of the model, taking input tensors and generating outputs for
    question answering. It handles input embeddings, attention masks, decoder inputs, and various optional arguments
    to control the model's behavior during inference or training. The method returns the model's output,
    including predicted start and end positions for answering questions, loss values, and other relevant information.

    Overall, the T5ForQuestionAnswering class encapsulates a T5 model tailored for question answering tasks,
    providing a convenient interface for utilizing and fine-tuning the model for specific applications.
    """
    _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: T5Config):
        """
        Initializes an instance of the T5ForQuestionAnswering class.

        Args:
            self: The instance of the class.
            config (T5Config):
                The configuration object that defines the model's parameters.

                - The config parameter must be an instance of the T5Config class.
                - It is used to set up the model's architecture and hyperparameters.
                - This parameter is required.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = T5Stack(decoder_config)

        self.num_labels = config.num_labels
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        '''
        Description:
            This method returns the shared input embeddings of the T5 model for question answering.

        Args:
            self: The instance of the T5ForQuestionAnswering class.

        Returns:
            None

        Raises:
            None
        '''
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """
        Method to set new input embeddings for the T5 model used for Question Answering.

        Args:
            self (T5ForQuestionAnswering): The instance of the T5ForQuestionAnswering class.
                This parameter is automatically passed and refers to the current instance of the class.
            new_embeddings (object): The new input embeddings to be set for the model.
                This parameter represents the embeddings that will replace the existing ones in the model.

        Returns:
            None.

        Raises:
            None.
        """
        self.shared = new_embeddings
        # self.encoder.set_input_embeddings(new_embeddings)
        # self.decoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        Ties the weights of the word embeddings in the T5ForQuestionAnswering model.

        Args:
            self: An instance of the T5ForQuestionAnswering class.

        Returns:
            None.

        Raises:
            None.
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

    def get_encoder(self):
        """
        Returns the encoder used for T5 question answering.

        Args:
            self: An instance of the T5ForQuestionAnswering class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.encoder

    def get_decoder(self):
        """
        Returns the decoder for the T5 model used for question answering.

        Args:
            self: An instance of the T5ForQuestionAnswering class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.decoder

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        decoder_input_ids: Optional[mindspore.Tensor] = None,
        decoder_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        decoder_head_mask: Optional[mindspore.Tensor] = None,
        cross_attn_head_mask: Optional[mindspore.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], Seq2SeqQuestionAnsweringModelOutput]:
        r"""
        Args:
            start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the start of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
                are not taken into account for computing the loss.
            end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the end of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
                are not taken into account for computing the loss.

        Returns:
            `Union[Tuple[mindspore.Tensor], Seq2SeqQuestionAnsweringModelOutput]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if start_positions is not None and end_positions is not None:
            use_cache = False

        # Copied from models.bart.modeling_bart.BartModel.forward
        #   different to other models, T5 automatically creates decoder_input_ids from
        #   input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )
            decoder_input_ids = self._shift_right(input_ids)

        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                warnings.warn("""
                The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
                `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
                If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = ops.ones(num_layers,
                num_heads)`.
                """, FutureWarning)
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        hidden_states = encoder_outputs[0]

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=None,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = F.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = F.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
            return ((total_loss,) + output) if total_loss is not None else output

        return Seq2SeqQuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering.__init__(config)

Initializes an instance of the T5ForQuestionAnswering class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object that defines the model's parameters.

  • The config parameter must be an instance of the T5Config class.
  • It is used to set up the model's architecture and hyperparameters.
  • This parameter is required.

TYPE: T5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
def __init__(self, config: T5Config):
    """
    Initializes an instance of the T5ForQuestionAnswering class.

    Args:
        self: The instance of the class.
        config (T5Config):
            The configuration object that defines the model's parameters.

            - The config parameter must be an instance of the T5Config class.
            - It is used to set up the model's architecture and hyperparameters.
            - This parameter is required.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.model_dim = config.d_model

    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.is_decoder = False
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = T5Stack(encoder_config)

    decoder_config = copy.deepcopy(config)
    decoder_config.is_decoder = True
    decoder_config.is_encoder_decoder = False
    decoder_config.num_layers = config.num_decoder_layers
    self.decoder = T5Stack(decoder_config)

    self.num_labels = config.num_labels
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, start_positions=None, end_positions=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
start_positions

Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

end_positions

Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple[Tensor], Seq2SeqQuestionAnsweringModelOutput]

Union[Tuple[mindspore.Tensor], Seq2SeqQuestionAnsweringModelOutput]

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    decoder_input_ids: Optional[mindspore.Tensor] = None,
    decoder_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    decoder_head_mask: Optional[mindspore.Tensor] = None,
    cross_attn_head_mask: Optional[mindspore.Tensor] = None,
    encoder_outputs: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], Seq2SeqQuestionAnsweringModelOutput]:
    r"""
    Args:
        start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
            are not taken into account for computing the loss.

    Returns:
        `Union[Tuple[mindspore.Tensor], Seq2SeqQuestionAnsweringModelOutput]`
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    if start_positions is not None and end_positions is not None:
        use_cache = False

    # Copied from models.bart.modeling_bart.BartModel.forward
    #   different to other models, T5 automatically creates decoder_input_ids from
    #   input_ids if no decoder_input_ids are provided
    if decoder_input_ids is None and decoder_inputs_embeds is None:
        if input_ids is None:
            raise ValueError(
                "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                "passed, `input_ids` cannot be `None`. Please pass either "
                "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
            )
        decoder_input_ids = self._shift_right(input_ids)

    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
    if head_mask is not None and decoder_head_mask is None:
        if self.config.num_layers == self.config.num_decoder_layers:
            warnings.warn("""
            The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
            `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
            If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = ops.ones(num_layers,
            num_heads)`.
            """, FutureWarning)
            decoder_head_mask = head_mask

    # Encode if needed (training, first prediction pass)
    if encoder_outputs is None:
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
    elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
        encoder_outputs = BaseModelOutput(
            last_hidden_state=encoder_outputs[0],
            hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
            attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
        )

    hidden_states = encoder_outputs[0]

    # Decode
    decoder_outputs = self.decoder(
        input_ids=decoder_input_ids,
        attention_mask=decoder_attention_mask,
        inputs_embeds=decoder_inputs_embeds,
        past_key_values=None,
        encoder_hidden_states=hidden_states,
        encoder_attention_mask=attention_mask,
        head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = decoder_outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = F.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = F.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
        return ((total_loss,) + output) if total_loss is not None else output

    return Seq2SeqQuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        past_key_values=decoder_outputs.past_key_values,
        decoder_hidden_states=decoder_outputs.hidden_states,
        decoder_attentions=decoder_outputs.attentions,
        cross_attentions=decoder_outputs.cross_attentions,
        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
        encoder_hidden_states=encoder_outputs.hidden_states,
        encoder_attentions=encoder_outputs.attentions,
    )

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder()

Returns the decoder for the T5 model used for question answering.

PARAMETER DESCRIPTION
self

An instance of the T5ForQuestionAnswering class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
def get_decoder(self):
    """
    Returns the decoder for the T5 model used for question answering.

    Args:
        self: An instance of the T5ForQuestionAnswering class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.decoder

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder()

Returns the encoder used for T5 question answering.

PARAMETER DESCRIPTION
self

An instance of the T5ForQuestionAnswering class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
def get_encoder(self):
    """
    Returns the encoder used for T5 question answering.

    Args:
        self: An instance of the T5ForQuestionAnswering class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.encoder

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings()

Description

This method returns the shared input embeddings of the T5 model for question answering.

PARAMETER DESCRIPTION
self

The instance of the T5ForQuestionAnswering class.

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
def get_input_embeddings(self):
    '''
    Description:
        This method returns the shared input embeddings of the T5 model for question answering.

    Args:
        self: The instance of the T5ForQuestionAnswering class.

    Returns:
        None

    Raises:
        None
    '''
    return self.shared

mindnlp.transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings(new_embeddings)

Method to set new input embeddings for the T5 model used for Question Answering.

PARAMETER DESCRIPTION
self

The instance of the T5ForQuestionAnswering class. This parameter is automatically passed and refers to the current instance of the class.

TYPE: T5ForQuestionAnswering

new_embeddings

The new input embeddings to be set for the model. This parameter represents the embeddings that will replace the existing ones in the model.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
def set_input_embeddings(self, new_embeddings):
    """
    Method to set new input embeddings for the T5 model used for Question Answering.

    Args:
        self (T5ForQuestionAnswering): The instance of the T5ForQuestionAnswering class.
            This parameter is automatically passed and refers to the current instance of the class.
        new_embeddings (object): The new input embeddings to be set for the model.
            This parameter represents the embeddings that will replace the existing ones in the model.

    Returns:
        None.

    Raises:
        None.
    """
    self.shared = new_embeddings

mindnlp.transformers.models.t5.modeling_t5.T5ForSequenceClassification

Bases: T5PreTrainedModel

T5ForSequenceClassification class implements a T5 model for sequence classification tasks. It inherits from the T5PreTrainedModel class.

This class includes methods for initializing the model with a T5 configuration, forwarding the model for sequence classification tasks, and computing the loss based on the provided labels.

The init method initializes the T5ForSequenceClassification instance with a T5 configuration. The forward method forwards the model for sequence classification tasks and returns the computed loss and logits.

The forward method takes various input arguments such as input_ids, attention_mask, decoder_input_ids, labels, and other optional parameters to customize the behavior of the model during inference.

If labels are provided, the model computes the loss based on the problem type specified in the T5 configuration. The loss can be computed for regression, single-label classification, or multi-label classification tasks.

This class provides flexibility in handling different types of sequence classification tasks and supports customization through the T5 configuration settings.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
class T5ForSequenceClassification(T5PreTrainedModel):

    """
    T5ForSequenceClassification class implements a T5 model for sequence classification tasks.
    It inherits from the T5PreTrainedModel class.

    This class includes methods for initializing the model with a T5 configuration, forwarding the model for
    sequence classification tasks, and computing the loss based on the provided labels.

    The __init__ method initializes the T5ForSequenceClassification instance with a T5 configuration.
    The forward method forwards the model for sequence classification tasks and returns the computed loss and logits.

    The forward method takes various input arguments such as input_ids, attention_mask, decoder_input_ids, labels,
    and other optional parameters to customize the behavior of the model during inference.

    If labels are provided, the model computes the loss based on the problem type specified in the T5 configuration.
    The loss can be computed for regression, single-label classification, or multi-label classification tasks.

    This class provides flexibility in handling different types of sequence classification tasks and supports
    customization through the T5 configuration settings.

    """
    _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: T5Config):
        """
        Initializes an instance of the T5ForSequenceClassification class.

        Args:
            self: An instance of the T5ForSequenceClassification class.
            config (T5Config): The configuration object that contains the model's hyperparameters and settings.

        Returns:
            None

        Raises:
            None

        Description:
            This method initializes an instance of the T5ForSequenceClassification class by setting up the necessary
            components for sequence classification tasks. It takes in the self parameter, which refers to the instance
            of the class itself, and the config parameter, which is an instance of the T5Config class.

            The config parameter is of type T5Config and represents the configuration object that contains various
            hyperparameters and settings for the T5 model. It is used to initialize the transformer and
            classification_head attributes of the T5ForSequenceClassification instance.

            The transformer attribute is of type T5Model and is responsible for the main transformer model used for
            sequence classification. It is initialized with the provided config object.

            The classification_head attribute is of type T5ClassificationHead and represents the classification head
            that is added on top of the transformer model. It is also initialized with the provided config object.

            After initializing the transformer and classification_head attributes, the post_init method is called to
            perform any additional setup or customization required.

        Note:
            This method is automatically called when creating a new instance of the T5ForSequenceClassification class.
        """
        super().__init__(config)
        self.transformer = T5Model(config)
        self.classification_head = T5ClassificationHead(config)
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: mindspore.Tensor = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        decoder_input_ids: Optional[mindspore.Tensor] = None,
        decoder_attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        decoder_head_mask: Optional[mindspore.Tensor] = None,
        cross_attn_head_mask: Optional[mindspore.Tensor] = None,
        encoder_outputs: Optional[List[mindspore.Tensor]] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:
            Union[Tuple, Seq2SeqSequenceClassifierOutput]
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        if input_ids is None and inputs_embeds is not None:
            raise NotImplementedError(
                f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
            )

        # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
        # decoder_input_ids from input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )
            decoder_input_ids = self._shift_right(input_ids)

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]

        eos_mask = input_ids.eq(self.config.eos_token_id)

        # if len(ops.unique_consecutive(eos_mask.sum(1))) > 1:
        #     raise ValueError("All examples must have the same number of <eos> tokens.")
        batch_size, _, hidden_size = sequence_output.shape
        sentence_representation = sequence_output[eos_mask].view(batch_size, -1, hidden_size)[:, -1, :]
        logits = self.classification_head(sentence_representation)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.config.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.config.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.config.num_labels == 1:
                    loss = F.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = F.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = F.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = F.binary_cross_entropy_with_logits(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

mindnlp.transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__(config)

Initializes an instance of the T5ForSequenceClassification class.

PARAMETER DESCRIPTION
self

An instance of the T5ForSequenceClassification class.

config

The configuration object that contains the model's hyperparameters and settings.

TYPE: T5Config

RETURNS DESCRIPTION

None

Description

This method initializes an instance of the T5ForSequenceClassification class by setting up the necessary components for sequence classification tasks. It takes in the self parameter, which refers to the instance of the class itself, and the config parameter, which is an instance of the T5Config class.

The config parameter is of type T5Config and represents the configuration object that contains various hyperparameters and settings for the T5 model. It is used to initialize the transformer and classification_head attributes of the T5ForSequenceClassification instance.

The transformer attribute is of type T5Model and is responsible for the main transformer model used for sequence classification. It is initialized with the provided config object.

The classification_head attribute is of type T5ClassificationHead and represents the classification head that is added on top of the transformer model. It is also initialized with the provided config object.

After initializing the transformer and classification_head attributes, the post_init method is called to perform any additional setup or customization required.

Note

This method is automatically called when creating a new instance of the T5ForSequenceClassification class.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
def __init__(self, config: T5Config):
    """
    Initializes an instance of the T5ForSequenceClassification class.

    Args:
        self: An instance of the T5ForSequenceClassification class.
        config (T5Config): The configuration object that contains the model's hyperparameters and settings.

    Returns:
        None

    Raises:
        None

    Description:
        This method initializes an instance of the T5ForSequenceClassification class by setting up the necessary
        components for sequence classification tasks. It takes in the self parameter, which refers to the instance
        of the class itself, and the config parameter, which is an instance of the T5Config class.

        The config parameter is of type T5Config and represents the configuration object that contains various
        hyperparameters and settings for the T5 model. It is used to initialize the transformer and
        classification_head attributes of the T5ForSequenceClassification instance.

        The transformer attribute is of type T5Model and is responsible for the main transformer model used for
        sequence classification. It is initialized with the provided config object.

        The classification_head attribute is of type T5ClassificationHead and represents the classification head
        that is added on top of the transformer model. It is also initialized with the provided config object.

        After initializing the transformer and classification_head attributes, the post_init method is called to
        perform any additional setup or customization required.

    Note:
        This method is automatically called when creating a new instance of the T5ForSequenceClassification class.
    """
    super().__init__(config)
    self.transformer = T5Model(config)
    self.classification_head = T5ClassificationHead(config)
    # Initialize weights and apply final processing
    self.post_init()

mindnlp.transformers.models.t5.modeling_t5.T5ForSequenceClassification.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, Seq2SeqSequenceClassifierOutput]

Union[Tuple, Seq2SeqSequenceClassifierOutput]

Source code in mindnlp/transformers/models/t5/modeling_t5.py
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
def forward(
    self,
    input_ids: mindspore.Tensor = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    decoder_input_ids: Optional[mindspore.Tensor] = None,
    decoder_attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    decoder_head_mask: Optional[mindspore.Tensor] = None,
    cross_attn_head_mask: Optional[mindspore.Tensor] = None,
    encoder_outputs: Optional[List[mindspore.Tensor]] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    decoder_inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

    Returns:
        Union[Tuple, Seq2SeqSequenceClassifierOutput]
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    if labels is not None:
        use_cache = False

    if input_ids is None and inputs_embeds is not None:
        raise NotImplementedError(
            f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
        )

    # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
    # decoder_input_ids from input_ids if no decoder_input_ids are provided
    if decoder_input_ids is None and decoder_inputs_embeds is None:
        if input_ids is None:
            raise ValueError(
                "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                "passed, `input_ids` cannot be `None`. Please pass either "
                "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
            )
        decoder_input_ids = self._shift_right(input_ids)

    outputs = self.transformer(
        input_ids,
        attention_mask=attention_mask,
        decoder_input_ids=decoder_input_ids,
        decoder_attention_mask=decoder_attention_mask,
        head_mask=head_mask,
        decoder_head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        encoder_outputs=encoder_outputs,
        inputs_embeds=inputs_embeds,
        decoder_inputs_embeds=decoder_inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]

    eos_mask = input_ids.eq(self.config.eos_token_id)

    # if len(ops.unique_consecutive(eos_mask.sum(1))) > 1:
    #     raise ValueError("All examples must have the same number of <eos> tokens.")
    batch_size, _, hidden_size = sequence_output.shape
    sentence_representation = sequence_output[eos_mask].view(batch_size, -1, hidden_size)[:, -1, :]
    logits = self.classification_head(sentence_representation)

    loss = None
    if labels is not None:
        if self.config.problem_type is None:
            if self.config.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.config.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.config.num_labels == 1:
                loss = F.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = F.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = F.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = F.binary_cross_entropy_with_logits(logits, labels)
    if not return_dict:
        output = (logits,) + outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return Seq2SeqSequenceClassifierOutput(
        loss=loss,
        logits=logits,
        past_key_values=outputs.past_key_values,
        decoder_hidden_states=outputs.decoder_hidden_states,
        decoder_attentions=outputs.decoder_attentions,
        cross_attentions=outputs.cross_attentions,
        encoder_last_hidden_state=outputs.encoder_last_hidden_state,
        encoder_hidden_states=outputs.encoder_hidden_states,
        encoder_attentions=outputs.encoder_attentions,
    )

mindnlp.transformers.models.t5.modeling_t5.T5LayerCrossAttention

Bases: Module

T5LayerCrossAttention

Source code in mindnlp/transformers/models/t5/modeling_t5.py
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
class T5LayerCrossAttention(nn.Module):
    """T5LayerCrossAttention"""
    def __init__(self, config):
        """
        Initializes an instance of the T5LayerCrossAttention class.

        Args:
            self: The object instance.
            config: An instance of the configuration class that contains the model's hyperparameters and settings.
                It is of type 'Any' and is used to configure the behavior of the cross-attention layer.
                The configuration object must have the following attributes:

                - d_model: An integer representing the dimensionality of the model's hidden states.
                - layer_norm_epsilon: A small float value used to stabilize the layer normalization process.
                - dropout_rate: A float value between 0 and 1, denoting the dropout rate for the layer.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(
        self,
        hidden_states,
        key_value_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        query_length=None,
        output_attentions=False,
    ):
        """
        This method forwards the T5 layer cross-attention mechanism.

        Args:
            self: Reference to the current instance of the class.
            hidden_states: Tensor representing the input hidden states.
            key_value_states: Tensor representing the key-value states for the attention mechanism.
            attention_mask: Optional tensor specifying the attention mask. Defaults to None.
            position_bias: Optional tensor providing positional bias information. Defaults to None.
            layer_head_mask: Optional tensor masking specific attention heads. Defaults to None.
            past_key_value: Optional tensor containing cached key-value states from previous steps. Defaults to None.
            use_cache: Boolean indicating whether to use cache for key-value states. Defaults to False.
            query_length: Optional integer specifying the length of the query. Defaults to None.
            output_attentions: Boolean indicating whether to output attentions. Defaults to False.

        Returns:
            Tuple containing the layer output and additional attention outputs.

        Raises:
            None
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.EncDecAttention(
            normed_hidden_states,
            mask=attention_mask,
            key_value_states=key_value_states,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            query_length=query_length,
            output_attentions=output_attentions,
        )
        layer_output = hidden_states + self.dropout(attention_output[0])
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
        return outputs

mindnlp.transformers.models.t5.modeling_t5.T5LayerCrossAttention.__init__(config)

Initializes an instance of the T5LayerCrossAttention class.

PARAMETER DESCRIPTION
self

The object instance.

config

An instance of the configuration class that contains the model's hyperparameters and settings. It is of type 'Any' and is used to configure the behavior of the cross-attention layer. The configuration object must have the following attributes:

  • d_model: An integer representing the dimensionality of the model's hidden states.
  • layer_norm_epsilon: A small float value used to stabilize the layer normalization process.
  • dropout_rate: A float value between 0 and 1, denoting the dropout rate for the layer.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
def __init__(self, config):
    """
    Initializes an instance of the T5LayerCrossAttention class.

    Args:
        self: The object instance.
        config: An instance of the configuration class that contains the model's hyperparameters and settings.
            It is of type 'Any' and is used to configure the behavior of the cross-attention layer.
            The configuration object must have the following attributes:

            - d_model: An integer representing the dimensionality of the model's hidden states.
            - layer_norm_epsilon: A small float value used to stabilize the layer normalization process.
            - dropout_rate: A float value between 0 and 1, denoting the dropout rate for the layer.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
    self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.t5.modeling_t5.T5LayerCrossAttention.forward(hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False)

This method forwards the T5 layer cross-attention mechanism.

PARAMETER DESCRIPTION
self

Reference to the current instance of the class.

hidden_states

Tensor representing the input hidden states.

key_value_states

Tensor representing the key-value states for the attention mechanism.

attention_mask

Optional tensor specifying the attention mask. Defaults to None.

DEFAULT: None

position_bias

Optional tensor providing positional bias information. Defaults to None.

DEFAULT: None

layer_head_mask

Optional tensor masking specific attention heads. Defaults to None.

DEFAULT: None

past_key_value

Optional tensor containing cached key-value states from previous steps. Defaults to None.

DEFAULT: None

use_cache

Boolean indicating whether to use cache for key-value states. Defaults to False.

DEFAULT: False

query_length

Optional integer specifying the length of the query. Defaults to None.

DEFAULT: None

output_attentions

Boolean indicating whether to output attentions. Defaults to False.

DEFAULT: False

RETURNS DESCRIPTION

Tuple containing the layer output and additional attention outputs.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
def forward(
    self,
    hidden_states,
    key_value_states,
    attention_mask=None,
    position_bias=None,
    layer_head_mask=None,
    past_key_value=None,
    use_cache=False,
    query_length=None,
    output_attentions=False,
):
    """
    This method forwards the T5 layer cross-attention mechanism.

    Args:
        self: Reference to the current instance of the class.
        hidden_states: Tensor representing the input hidden states.
        key_value_states: Tensor representing the key-value states for the attention mechanism.
        attention_mask: Optional tensor specifying the attention mask. Defaults to None.
        position_bias: Optional tensor providing positional bias information. Defaults to None.
        layer_head_mask: Optional tensor masking specific attention heads. Defaults to None.
        past_key_value: Optional tensor containing cached key-value states from previous steps. Defaults to None.
        use_cache: Boolean indicating whether to use cache for key-value states. Defaults to False.
        query_length: Optional integer specifying the length of the query. Defaults to None.
        output_attentions: Boolean indicating whether to output attentions. Defaults to False.

    Returns:
        Tuple containing the layer output and additional attention outputs.

    Raises:
        None
    """
    normed_hidden_states = self.layer_norm(hidden_states)
    attention_output = self.EncDecAttention(
        normed_hidden_states,
        mask=attention_mask,
        key_value_states=key_value_states,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        past_key_value=past_key_value,
        use_cache=use_cache,
        query_length=query_length,
        output_attentions=output_attentions,
    )
    layer_output = hidden_states + self.dropout(attention_output[0])
    outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
    return outputs

mindnlp.transformers.models.t5.modeling_t5.T5LayerFF

Bases: Module

T5LayerFF

Source code in mindnlp/transformers/models/t5/modeling_t5.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
class T5LayerFF(nn.Module):
    """T5LayerFF"""
    def __init__(self, config: T5Config):
        """
        Initializes an instance of the T5LayerFF class.

        Args:
            self: The instance of the T5LayerFF class.
            config (T5Config): The configuration object for the T5 model.
                It contains various parameters and settings for the model.

        Returns:
            None

        Raises:
            None.
        """
        super().__init__()
        if config.is_gated_act:
            self.DenseReluDense = T5DenseGatedActDense(config)
        else:
            self.DenseReluDense = T5DenseActDense(config)

        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(self, hidden_states):
        """
        Constructs the forward pass of the T5LayerFF class.

        Args:
            self (T5LayerFF): An instance of the T5LayerFF class.
            hidden_states (Tensor): The hidden states input tensor.
                Shape (batch_size, sequence_length, hidden_size).

        Returns:
            None

        Raises:
            None
        """
        forwarded_states = self.layer_norm(hidden_states)
        forwarded_states = self.DenseReluDense(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5LayerFF.__init__(config)

Initializes an instance of the T5LayerFF class.

PARAMETER DESCRIPTION
self

The instance of the T5LayerFF class.

config

The configuration object for the T5 model. It contains various parameters and settings for the model.

TYPE: T5Config

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def __init__(self, config: T5Config):
    """
    Initializes an instance of the T5LayerFF class.

    Args:
        self: The instance of the T5LayerFF class.
        config (T5Config): The configuration object for the T5 model.
            It contains various parameters and settings for the model.

    Returns:
        None

    Raises:
        None.
    """
    super().__init__()
    if config.is_gated_act:
        self.DenseReluDense = T5DenseGatedActDense(config)
    else:
        self.DenseReluDense = T5DenseActDense(config)

    self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.t5.modeling_t5.T5LayerFF.forward(hidden_states)

Constructs the forward pass of the T5LayerFF class.

PARAMETER DESCRIPTION
self

An instance of the T5LayerFF class.

TYPE: T5LayerFF

hidden_states

The hidden states input tensor. Shape (batch_size, sequence_length, hidden_size).

TYPE: Tensor

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def forward(self, hidden_states):
    """
    Constructs the forward pass of the T5LayerFF class.

    Args:
        self (T5LayerFF): An instance of the T5LayerFF class.
        hidden_states (Tensor): The hidden states input tensor.
            Shape (batch_size, sequence_length, hidden_size).

    Returns:
        None

    Raises:
        None
    """
    forwarded_states = self.layer_norm(hidden_states)
    forwarded_states = self.DenseReluDense(forwarded_states)
    hidden_states = hidden_states + self.dropout(forwarded_states)
    return hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5LayerNorm

Bases: Module

T5LayerNorm

Source code in mindnlp/transformers/models/t5/modeling_t5.py
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class T5LayerNorm(nn.Module):
    """T5LayerNorm"""
    def __init__(self, hidden_size, eps=1e-6):
        """
        Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
        """
        super().__init__()
        self.weight = Parameter(initializer('zeros', (hidden_size,), mindspore.float32), 'weight')
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        """
        This method 'forward' is a part of the class 'T5LayerNorm' and is used to perform layer normalization
        on the input hidden states.

        Args:
            self (T5LayerNorm): The instance of the T5LayerNorm class.
            hidden_states (numpy.ndarray): The input hidden states to be normalized.
                It is expected to be an array of numerical values.

        Returns:
            None.

        Raises:
            ValueError: If the input hidden_states is not a valid numerical array.
            TypeError: If the input hidden_states or self.weight is not of the expected data type.
            RuntimeError: If there is an issue with the normalization process.
        """
        variance = hidden_states.astype(mindspore.float32).pow(2).mean(-1, keep_dims=True)
        hidden_states = hidden_states / ops.sqrt(variance + self.variance_epsilon)
        # convert into half-precision if necessary
        if self.weight.dtype in [mindspore.float16, mindspore.bfloat16]:
            hidden_states = hidden_states.astype(self.weight.dtype)
        return self.weight * hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5LayerNorm.__init__(hidden_size, eps=1e-06)

Construct a layernorm module in the T5 style. No bias and no subtraction of mean.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
66
67
68
69
70
71
72
def __init__(self, hidden_size, eps=1e-6):
    """
    Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
    """
    super().__init__()
    self.weight = Parameter(initializer('zeros', (hidden_size,), mindspore.float32), 'weight')
    self.variance_epsilon = eps

mindnlp.transformers.models.t5.modeling_t5.T5LayerNorm.forward(hidden_states)

This method 'forward' is a part of the class 'T5LayerNorm' and is used to perform layer normalization on the input hidden states.

PARAMETER DESCRIPTION
self

The instance of the T5LayerNorm class.

TYPE: T5LayerNorm

hidden_states

The input hidden states to be normalized. It is expected to be an array of numerical values.

TYPE: ndarray

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
ValueError

If the input hidden_states is not a valid numerical array.

TypeError

If the input hidden_states or self.weight is not of the expected data type.

RuntimeError

If there is an issue with the normalization process.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def forward(self, hidden_states):
    """
    This method 'forward' is a part of the class 'T5LayerNorm' and is used to perform layer normalization
    on the input hidden states.

    Args:
        self (T5LayerNorm): The instance of the T5LayerNorm class.
        hidden_states (numpy.ndarray): The input hidden states to be normalized.
            It is expected to be an array of numerical values.

    Returns:
        None.

    Raises:
        ValueError: If the input hidden_states is not a valid numerical array.
        TypeError: If the input hidden_states or self.weight is not of the expected data type.
        RuntimeError: If there is an issue with the normalization process.
    """
    variance = hidden_states.astype(mindspore.float32).pow(2).mean(-1, keep_dims=True)
    hidden_states = hidden_states / ops.sqrt(variance + self.variance_epsilon)
    # convert into half-precision if necessary
    if self.weight.dtype in [mindspore.float16, mindspore.bfloat16]:
        hidden_states = hidden_states.astype(self.weight.dtype)
    return self.weight * hidden_states

mindnlp.transformers.models.t5.modeling_t5.T5LayerSelfAttention

Bases: Module

T5LayerSelfAttention

Source code in mindnlp/transformers/models/t5/modeling_t5.py
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
class T5LayerSelfAttention(nn.Module):
    """T5LayerSelfAttention"""
    def __init__(self, config, has_relative_attention_bias=False):
        """Initialize the T5LayerSelfAttention.

        Args:
            self (T5LayerSelfAttention): An instance of the T5LayerSelfAttention class.
            config (Config): An object containing the configuration parameters.
            has_relative_attention_bias (bool, optional): A flag indicating whether the attention bias is relative or not.
                Defaults to False.

        Returns:
            None

        Raises:
            None
        """
        super().__init__()
        self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
    ):
        """
        This method 'forward' in the class 'T5LayerSelfAttention' forwards the output of a T5 self-attention layer.

        Args:
            self: The instance of the class.
            hidden_states (Tensor): The hidden states of the input sequence.
            attention_mask (Optional[Tensor]): An optional tensor for masking out certain positions in the input
                sequence during attention calculation.
            position_bias (Optional[Tensor]): An optional tensor providing additional bias to attention scores
                based on position.
            layer_head_mask (Optional[Tensor]): An optional tensor for masking out certain heads in the attention
                calculation.
            past_key_value (Optional[Tuple[Tensor]]): An optional tuple of key and value tensors from the previous
                time steps for faster decoding.
            use_cache (bool): A flag indicating whether to use caching for faster decoding.
            output_attentions (bool): A flag indicating whether to output attention weights.

        Returns:
            Tuple[Tensor]: A tuple containing the updated hidden states after self-attention and any additional outputs
                from the attention mechanism.

        Raises:
            None
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.SelfAttention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
        return outputs

mindnlp.transformers.models.t5.modeling_t5.T5LayerSelfAttention.__init__(config, has_relative_attention_bias=False)

Initialize the T5LayerSelfAttention.

PARAMETER DESCRIPTION
self

An instance of the T5LayerSelfAttention class.

TYPE: T5LayerSelfAttention

config

An object containing the configuration parameters.

TYPE: Config

has_relative_attention_bias

A flag indicating whether the attention bias is relative or not. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def __init__(self, config, has_relative_attention_bias=False):
    """Initialize the T5LayerSelfAttention.

    Args:
        self (T5LayerSelfAttention): An instance of the T5LayerSelfAttention class.
        config (Config): An object containing the configuration parameters.
        has_relative_attention_bias (bool, optional): A flag indicating whether the attention bias is relative or not.
            Defaults to False.

    Returns:
        None

    Raises:
        None
    """
    super().__init__()
    self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
    self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
    self.dropout = nn.Dropout(p=config.dropout_rate)

mindnlp.transformers.models.t5.modeling_t5.T5LayerSelfAttention.forward(hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False)

This method 'forward' in the class 'T5LayerSelfAttention' forwards the output of a T5 self-attention layer.

PARAMETER DESCRIPTION
self

The instance of the class.

hidden_states

The hidden states of the input sequence.

TYPE: Tensor

attention_mask

An optional tensor for masking out certain positions in the input sequence during attention calculation.

TYPE: Optional[Tensor] DEFAULT: None

position_bias

An optional tensor providing additional bias to attention scores based on position.

TYPE: Optional[Tensor] DEFAULT: None

layer_head_mask

An optional tensor for masking out certain heads in the attention calculation.

TYPE: Optional[Tensor] DEFAULT: None

past_key_value

An optional tuple of key and value tensors from the previous time steps for faster decoding.

TYPE: Optional[Tuple[Tensor]] DEFAULT: None

use_cache

A flag indicating whether to use caching for faster decoding.

TYPE: bool DEFAULT: False

output_attentions

A flag indicating whether to output attention weights.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

Tuple[Tensor]: A tuple containing the updated hidden states after self-attention and any additional outputs from the attention mechanism.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def forward(
    self,
    hidden_states,
    attention_mask=None,
    position_bias=None,
    layer_head_mask=None,
    past_key_value=None,
    use_cache=False,
    output_attentions=False,
):
    """
    This method 'forward' in the class 'T5LayerSelfAttention' forwards the output of a T5 self-attention layer.

    Args:
        self: The instance of the class.
        hidden_states (Tensor): The hidden states of the input sequence.
        attention_mask (Optional[Tensor]): An optional tensor for masking out certain positions in the input
            sequence during attention calculation.
        position_bias (Optional[Tensor]): An optional tensor providing additional bias to attention scores
            based on position.
        layer_head_mask (Optional[Tensor]): An optional tensor for masking out certain heads in the attention
            calculation.
        past_key_value (Optional[Tuple[Tensor]]): An optional tuple of key and value tensors from the previous
            time steps for faster decoding.
        use_cache (bool): A flag indicating whether to use caching for faster decoding.
        output_attentions (bool): A flag indicating whether to output attention weights.

    Returns:
        Tuple[Tensor]: A tuple containing the updated hidden states after self-attention and any additional outputs
            from the attention mechanism.

    Raises:
        None
    """
    normed_hidden_states = self.layer_norm(hidden_states)
    attention_output = self.SelfAttention(
        normed_hidden_states,
        mask=attention_mask,
        position_bias=position_bias,
        layer_head_mask=layer_head_mask,
        past_key_value=past_key_value,
        use_cache=use_cache,
        output_attentions=output_attentions,
    )
    hidden_states = hidden_states + self.dropout(attention_output[0])
    outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
    return outputs

mindnlp.transformers.models.t5.modeling_t5.T5Model

Bases: T5PreTrainedModel

T5Model

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
class T5Model(T5PreTrainedModel):
    """T5Model"""
    _keys_to_ignore_on_load_unexpected = [
        "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
    ]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: T5Config):
        """
        __init__ method in the T5Model class initializes a new instance of the class.

        Args:
            self: A reference to the instance of the class.
            config (T5Config): An instance of T5Config class containing configuration parameters for the T5 model.
                It includes parameters such as vocab_size, d_model, is_decoder, use_cache, is_encoder_decoder,
                and num_decoder_layers.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = T5Stack(decoder_config)

        self.post_init()

    def get_input_embeddings(self):
        """
        Get the input embeddings for the T5Model.

        Args:
            self: The instance of the T5Model class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        """
        Sets the input embeddings for the T5Model.

        Args:
            self (T5Model): The instance of the T5Model class.
            new_embeddings: The new input embeddings to be set for the model.
                This should be a tensor of shape (vocab_size, hidden_size).

        Returns:
            None.

        Raises:
            None.
        """
        self.shared = new_embeddings
        # self.encoder.set_input_embeddings(new_embeddings)
        # self.decoder.set_input_embeddings(new_embeddings)

    def _tie_weights(self):
        """
        Tie the weights of the T5Model if specified in the configuration.

        Args:
            self (T5Model):
                The instance of the T5Model class.

                - This parameter represents the T5Model object on which the method is called.

        Returns:
            None.

        Raises:
            None
        """
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

    def get_encoder(self):
        """
        This method returns the encoder for the T5Model.

        Args:
            self: The instance of the T5Model class.

        Returns:
            encoder:
                Returns the encoder associated with the T5Model.

        Raises:
            None.
        """
        return self.encoder

    def get_decoder(self):
        """
        Method to retrieve the decoder of the T5Model.

        Args:
            self (T5Model): The T5Model instance on which the method is called.

        Returns:
            decoder: The method returns the decoder attribute of the T5Model instance.

        Raises:
            This method does not raise any exceptions.
        """
        return self.decoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        decoder_input_ids = None,
        decoder_attention_mask = None,
        head_mask = None,
        decoder_head_mask = None,
        cross_attn_head_mask = None,
        encoder_outputs = None,
        past_key_values = None,
        inputs_embeds = None,
        decoder_inputs_embeds = None,
        use_cache = None,
        output_attentions = None,
        output_hidden_states = None,
        return_dict = None,
    ):
        """
        Constructs the T5 model for sequence-to-sequence tasks.

        Args:
            self (T5Model): The instance of the T5Model class.
            input_ids (torch.Tensor, optional): The input sequence tensor IDs. Default: None.
            attention_mask (torch.Tensor, optional): The attention mask tensor. Default: None.
            decoder_input_ids (torch.Tensor, optional): The decoder input sequence tensor IDs. Default: None.
            decoder_attention_mask (torch.Tensor, optional): The decoder attention mask tensor. Default: None.
            head_mask (torch.Tensor, optional): The head mask tensor. Default: None.
            decoder_head_mask (torch.Tensor, optional): The decoder head mask tensor. Default: None.
            cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask tensor. Default: None.
            encoder_outputs (tuple, optional): The encoder outputs. Default: None.
            past_key_values (tuple, optional): The past key values. Default: None.
            inputs_embeds (torch.Tensor, optional): The input embeddings tensor. Default: None.
            decoder_inputs_embeds (torch.Tensor, optional): The decoder input embeddings tensor. Default: None.
            use_cache (bool, optional): Whether to use cache. Default: None.
            output_attentions (bool, optional): Whether to output attentions. Default: None.
            output_hidden_states (bool, optional): Whether to output hidden states. Default: None.
            return_dict (bool, optional): Whether to return a dictionary. Default: None.

        Returns:
            None

        Raises:
            None
        """
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                # warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        hidden_states = encoder_outputs[0]

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

mindnlp.transformers.models.t5.modeling_t5.T5Model.__init__(config)

init method in the T5Model class initializes a new instance of the class.

PARAMETER DESCRIPTION
self

A reference to the instance of the class.

config

An instance of T5Config class containing configuration parameters for the T5 model. It includes parameters such as vocab_size, d_model, is_decoder, use_cache, is_encoder_decoder, and num_decoder_layers.

TYPE: T5Config

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
def __init__(self, config: T5Config):
    """
    __init__ method in the T5Model class initializes a new instance of the class.

    Args:
        self: A reference to the instance of the class.
        config (T5Config): An instance of T5Config class containing configuration parameters for the T5 model.
            It includes parameters such as vocab_size, d_model, is_decoder, use_cache, is_encoder_decoder,
            and num_decoder_layers.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.shared = nn.Embedding(config.vocab_size, config.d_model)

    encoder_config = copy.deepcopy(config)
    encoder_config.is_decoder = False
    encoder_config.use_cache = False
    encoder_config.is_encoder_decoder = False
    self.encoder = T5Stack(encoder_config)

    decoder_config = copy.deepcopy(config)
    decoder_config.is_decoder = True
    decoder_config.is_encoder_decoder = False
    decoder_config.num_layers = config.num_decoder_layers
    self.decoder = T5Stack(decoder_config)

    self.post_init()

mindnlp.transformers.models.t5.modeling_t5.T5Model.forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

Constructs the T5 model for sequence-to-sequence tasks.

PARAMETER DESCRIPTION
self

The instance of the T5Model class.

TYPE: T5Model

input_ids

The input sequence tensor IDs. Default: None.

TYPE: Tensor DEFAULT: None

attention_mask

The attention mask tensor. Default: None.

TYPE: Tensor DEFAULT: None

decoder_input_ids

The decoder input sequence tensor IDs. Default: None.

TYPE: Tensor DEFAULT: None

decoder_attention_mask

The decoder attention mask tensor. Default: None.

TYPE: Tensor DEFAULT: None

head_mask

The head mask tensor. Default: None.

TYPE: Tensor DEFAULT: None

decoder_head_mask

The decoder head mask tensor. Default: None.

TYPE: Tensor DEFAULT: None

cross_attn_head_mask

The cross-attention head mask tensor. Default: None.

TYPE: Tensor DEFAULT: None

encoder_outputs

The encoder outputs. Default: None.

TYPE: tuple DEFAULT: None

past_key_values

The past key values. Default: None.

TYPE: tuple DEFAULT: None

inputs_embeds

The input embeddings tensor. Default: None.

TYPE: Tensor DEFAULT: None

decoder_inputs_embeds

The decoder input embeddings tensor. Default: None.

TYPE: Tensor DEFAULT: None

use_cache

Whether to use cache. Default: None.

TYPE: bool DEFAULT: None

output_attentions

Whether to output attentions. Default: None.

TYPE: bool DEFAULT: None

output_hidden_states

Whether to output hidden states. Default: None.

TYPE: bool DEFAULT: None

return_dict

Whether to return a dictionary. Default: None.

TYPE: bool DEFAULT: None

RETURNS DESCRIPTION

None

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
def forward(
    self,
    input_ids = None,
    attention_mask = None,
    decoder_input_ids = None,
    decoder_attention_mask = None,
    head_mask = None,
    decoder_head_mask = None,
    cross_attn_head_mask = None,
    encoder_outputs = None,
    past_key_values = None,
    inputs_embeds = None,
    decoder_inputs_embeds = None,
    use_cache = None,
    output_attentions = None,
    output_hidden_states = None,
    return_dict = None,
):
    """
    Constructs the T5 model for sequence-to-sequence tasks.

    Args:
        self (T5Model): The instance of the T5Model class.
        input_ids (torch.Tensor, optional): The input sequence tensor IDs. Default: None.
        attention_mask (torch.Tensor, optional): The attention mask tensor. Default: None.
        decoder_input_ids (torch.Tensor, optional): The decoder input sequence tensor IDs. Default: None.
        decoder_attention_mask (torch.Tensor, optional): The decoder attention mask tensor. Default: None.
        head_mask (torch.Tensor, optional): The head mask tensor. Default: None.
        decoder_head_mask (torch.Tensor, optional): The decoder head mask tensor. Default: None.
        cross_attn_head_mask (torch.Tensor, optional): The cross-attention head mask tensor. Default: None.
        encoder_outputs (tuple, optional): The encoder outputs. Default: None.
        past_key_values (tuple, optional): The past key values. Default: None.
        inputs_embeds (torch.Tensor, optional): The input embeddings tensor. Default: None.
        decoder_inputs_embeds (torch.Tensor, optional): The decoder input embeddings tensor. Default: None.
        use_cache (bool, optional): Whether to use cache. Default: None.
        output_attentions (bool, optional): Whether to output attentions. Default: None.
        output_hidden_states (bool, optional): Whether to output hidden states. Default: None.
        return_dict (bool, optional): Whether to return a dictionary. Default: None.

    Returns:
        None

    Raises:
        None
    """
    use_cache = use_cache if use_cache is not None else self.config.use_cache
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
    if head_mask is not None and decoder_head_mask is None:
        if self.config.num_layers == self.config.num_decoder_layers:
            # warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
            decoder_head_mask = head_mask

    # Encode if needed (training, first prediction pass)
    if encoder_outputs is None:
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    hidden_states = encoder_outputs[0]

    # Decode
    decoder_outputs = self.decoder(
        input_ids=decoder_input_ids,
        attention_mask=decoder_attention_mask,
        inputs_embeds=decoder_inputs_embeds,
        past_key_values=past_key_values,
        encoder_hidden_states=hidden_states,
        encoder_attention_mask=attention_mask,
        head_mask=decoder_head_mask,
        cross_attn_head_mask=cross_attn_head_mask,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    if not return_dict:
        return decoder_outputs + encoder_outputs

    return Seq2SeqModelOutput(
        last_hidden_state=decoder_outputs.last_hidden_state,
        past_key_values=decoder_outputs.past_key_values,
        decoder_hidden_states=decoder_outputs.hidden_states,
        decoder_attentions=decoder_outputs.attentions,
        cross_attentions=decoder_outputs.cross_attentions,
        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
        encoder_hidden_states=encoder_outputs.hidden_states,
        encoder_attentions=encoder_outputs.attentions,
    )

mindnlp.transformers.models.t5.modeling_t5.T5Model.get_decoder()

Method to retrieve the decoder of the T5Model.

PARAMETER DESCRIPTION
self

The T5Model instance on which the method is called.

TYPE: T5Model

RETURNS DESCRIPTION
decoder

The method returns the decoder attribute of the T5Model instance.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
def get_decoder(self):
    """
    Method to retrieve the decoder of the T5Model.

    Args:
        self (T5Model): The T5Model instance on which the method is called.

    Returns:
        decoder: The method returns the decoder attribute of the T5Model instance.

    Raises:
        This method does not raise any exceptions.
    """
    return self.decoder

mindnlp.transformers.models.t5.modeling_t5.T5Model.get_encoder()

This method returns the encoder for the T5Model.

PARAMETER DESCRIPTION
self

The instance of the T5Model class.

RETURNS DESCRIPTION
encoder

Returns the encoder associated with the T5Model.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
def get_encoder(self):
    """
    This method returns the encoder for the T5Model.

    Args:
        self: The instance of the T5Model class.

    Returns:
        encoder:
            Returns the encoder associated with the T5Model.

    Raises:
        None.
    """
    return self.encoder

mindnlp.transformers.models.t5.modeling_t5.T5Model.get_input_embeddings()

Get the input embeddings for the T5Model.

PARAMETER DESCRIPTION
self

The instance of the T5Model class.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
def get_input_embeddings(self):
    """
    Get the input embeddings for the T5Model.

    Args:
        self: The instance of the T5Model class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.shared

mindnlp.transformers.models.t5.modeling_t5.T5Model.set_input_embeddings(new_embeddings)

Sets the input embeddings for the T5Model.

PARAMETER DESCRIPTION
self

The instance of the T5Model class.

TYPE: T5Model

new_embeddings

The new input embeddings to be set for the model. This should be a tensor of shape (vocab_size, hidden_size).

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
def set_input_embeddings(self, new_embeddings):
    """
    Sets the input embeddings for the T5Model.

    Args:
        self (T5Model): The instance of the T5Model class.
        new_embeddings: The new input embeddings to be set for the model.
            This should be a tensor of shape (vocab_size, hidden_size).

    Returns:
        None.

    Raises:
        None.
    """
    self.shared = new_embeddings

mindnlp.transformers.models.t5.modeling_t5.T5PreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/t5/modeling_t5.py
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
class T5PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = T5Config
    base_model_prefix = "transformer"

    is_parallelizable = True
    supports_gradient_checkpointing = True
    _no_split_modules = ["T5Block"]
    _keep_in_fp32_modules = ["wo"]

    @property
    def dummy_inputs(self):
        """
        Method: dummy_inputs

        Description:
            This method generates dummy input data for the T5PreTrainedModel.

        Args:
            self: An instance of the T5PreTrainedModel class.

        Returns:
            `dict`:

                - Type: None
                - Purpose: This method returns a dictionary containing dummy input data for the model.

                The dictionary includes the following keys:

                - 'decoder_input_ids': Tensor containing dummy input IDs.
                - 'input_ids': Tensor containing dummy input IDs.
                - 'decoder_attention_mask': Tensor containing dummy mask data.

        Raises:
            This method does not raise any exceptions.
        """
        input_ids = mindspore.tensor(DUMMY_INPUTS)
        input_mask = mindspore.tensor(DUMMY_MASK)
        dummy_inputs = {
            "decoder_input_ids": input_ids,
            "input_ids": input_ids,
            "decoder_attention_mask": input_mask,
        }
        return dummy_inputs

    def _init_weights(self, cell):
        """Initialize the weights"""
        factor = self.config.initializer_factor  # Used for testing weights initialization
        if isinstance(cell, T5LayerNorm):
            cell.weight.set_data(initializer(Constant(factor * 1.0), cell.weight.shape, cell.weight.dtype))
        elif isinstance(
            cell,
            (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering),
        ):
            # Mesh TensorFlow embeddings initialization
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
            cell.shared.weight.set_data(initializer(Normal(factor * 1.0),
                                                cell.shared.weight.shape, cell.shared.weight.dtype))
            if hasattr(cell, "lm_head") and not self.config.tie_word_embeddings:
                cell.lm_head.weight.set_data(initializer(Normal(factor * 1.0), cell.lm_head.weight.shape, cell.lm_head.weight.dtype))
            if hasattr(cell, "qa_outputs"):
                cell.qa_outputs.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                            cell.qa_outputs.weight.shape, cell.qa_outputs.weight.dtype))
                cell.qa_outputs.bias.set_data(initializer('zeros', cell.qa_outputs.bias.shape, cell.qa_outputs.bias.dtype))
        elif isinstance(cell, T5ClassificationHead):
            cell.dense.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                cell.dense.weight.shape, cell.dense.weight.dtype))

            if hasattr(cell.dense, "bias") and cell.dense.bias is not None:
                cell.dense.bias.set_data(initializer('zeros', cell.dense.bias.shape, cell.dense.bias.dtype))
            cell.out_proj.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                cell.out_proj.weight.shape, cell.out_proj.weight.dtype))

            if hasattr(cell.out_proj, "bias") and cell.out_proj.bias is not None:
                cell.out_proj.bias.set_data(initializer('zeros', cell.out_proj.bias.shape, cell.out_proj.bias.dtype))
        elif isinstance(cell, T5DenseActDense):
            # Mesh TensorFlow FF initialization
            # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
            # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
            cell.wi.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                cell.wi.weight.shape, cell.wi.weight.dtype))
            if hasattr(cell.wi, "bias") and cell.wi.bias is not None:
                cell.wi.bias.set_data(initializer('zeros', cell.wi.bias.shape, cell.wi.bias.dtype))

            cell.wo.weight.set_data(initializer(Normal(factor * ((self.config.d_ff) ** -0.5)),
                                                cell.wo.weight.shape, cell.wo.weight.dtype))

            if hasattr(cell.wo, "bias") and cell.wo.bias is not None:
                cell.wo.bias.set_data(initializer('zeros', cell.wo.bias.shape, cell.wo.bias.dtype))
        elif isinstance(cell, T5DenseGatedActDense):
            cell.wi_0.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                cell.wi_0.weight.shape, cell.wi_0.weight.dtype))
            if hasattr(cell.wi_0, "bias") and cell.wi_0.bias is not None:
                cell.wi_0.bias.set_data(initializer('zeros', cell.wi_0.bias.shape, cell.wi_0.bias.dtype))

            cell.wi_1.weight.set_data(initializer(Normal(factor * ((self.config.d_model) ** -0.5)),
                                                cell.wi_1.weight.shape, cell.wi_1.weight.dtype))
            if hasattr(cell.wi_1, "bias") and cell.wi_1.bias is not None:
                cell.wi_1.bias.set_data(initializer('zeros', cell.wi_1.bias.shape, cell.wi_1.bias.dtype))

            cell.wo.weight.set_data(initializer(Normal(factor * ((self.config.d_ff) ** -0.5)),
                                                cell.wo.weight.shape, cell.wo.weight.dtype))

            if hasattr(cell.wo, "bias") and cell.wo.bias is not None:
                cell.wo.bias.set_data(initializer('zeros', cell.wo.bias.shape, cell.wo.bias.dtype))
        elif isinstance(cell, T5Attention):
            # Mesh TensorFlow attention initialization to avoid scaling before softmax
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
            d_model = self.config.d_model
            key_value_proj_dim = self.config.d_kv
            n_heads = self.config.num_heads

            cell.q.weight.set_data(initializer(Normal(factor * ((d_model * key_value_proj_dim) ** -0.5)),
                                                cell.q.weight.shape, cell.q.weight.dtype))
            cell.k.weight.set_data(initializer(Normal(factor * (d_model**-0.5)),
                                                cell.k.weight.shape, cell.k.weight.dtype))
            cell.v.weight.set_data(initializer(Normal(factor * (d_model**-0.5)),
                                                cell.v.weight.shape, cell.v.weight.dtype))
            cell.o.weight.set_data(initializer(Normal(factor * ((n_heads * key_value_proj_dim) ** -0.5)),
                                                cell.o.weight.shape, cell.o.weight.dtype))
            if cell.has_relative_attention_bias:
                cell.relative_attention_bias.weight.set_data(initializer(Normal(factor * (d_model**-0.5)),
                                                    cell.relative_attention_bias.weight.shape, cell.relative_attention_bias.weight.dtype))

    def _shift_right(self, input_ids):
        """
        Shifts the input IDs to the right by one position, inserting the decoder start token ID at the beginning.

        Args:
            self (T5PreTrainedModel): An instance of the T5PreTrainedModel class.
            input_ids (torch.Tensor): A tensor of shape (batch_size, sequence_length) containing the input IDs.

        Returns:
            torch.Tensor: A tensor of shape (batch_size, sequence_length) representing the shifted input IDs.

        Raises:
            ValueError: If `self.model.config.decoder_start_token_id` is not defined
                or if `self.model.config.pad_token_id` is not defined.
        """
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

        if decoder_start_token_id is None:
            raise ValueError(
                "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
                "See T5 docs for more information."
            )

        # shift inputs to the right
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].copy()
        shifted_input_ids[..., 0] = decoder_start_token_id

        if pad_token_id is None:
            raise ValueError("self.model.config.pad_token_id has to be defined.")
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids = shifted_input_ids.masked_fill(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids

mindnlp.transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs property

Description

This method generates dummy input data for the T5PreTrainedModel.

PARAMETER DESCRIPTION
self

An instance of the T5PreTrainedModel class.

RETURNS DESCRIPTION

dict:

  • Type: None
  • Purpose: This method returns a dictionary containing dummy input data for the model.

The dictionary includes the following keys:

  • 'decoder_input_ids': Tensor containing dummy input IDs.
  • 'input_ids': Tensor containing dummy input IDs.
  • 'decoder_attention_mask': Tensor containing dummy mask data.

mindnlp.transformers.models.t5.modeling_t5.T5Stack

Bases: T5PreTrainedModel

T5Stack

Source code in mindnlp/transformers/models/t5/modeling_t5.py
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
class T5Stack(T5PreTrainedModel):
    """T5Stack"""
    def __init__(self, config):
        """
        Initializes an instance of the T5Stack class.

        Args:
            self: The instance of the T5Stack class.
            config: An object containing the configuration parameters for the T5Stack.
                It should have the following attributes:

                - vocab_size (int): The size of the vocabulary.
                - d_model (int): The dimensionality of the model.
                - is_decoder (bool): Indicates whether the T5Stack is used as a decoder.
                num_layers (int): The number of layers in the T5Stack.
                - layer_norm_epsilon (float): The epsilon value for layer normalization.
                - dropout_rate (float): The dropout rate.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
        self.is_decoder = config.is_decoder

        self.block = nn.ModuleList(
            [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
        )
        self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(p=config.dropout_rate)

        self.post_init()

    def get_input_embeddings(self):
        """Return the input embeddings of the T5Stack.

        Args:
            self: An instance of the T5Stack class.

        Returns:
            embed_tokens: This method returns the input embeddings of the T5Stack.
                The input embeddings are the embedded tokens used as input for the T5 model.

        Raises:
            None.
        """
        return self.embed_tokens

    def set_input_embeddings(self, new_embeddings):
        """
        Method to set new input embeddings for the T5Stack model.

        Args:
            self (T5Stack): The instance of the T5Stack class.
            new_embeddings (object): The new embeddings to set for the input.
                It should be compatible with the model's input format.

        Returns:
            None: This method updates the input embeddings of the T5Stack model in place.

        Raises:
            None.
        """
        self.embed_tokens = new_embeddings

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        """
        Constructs the T5Stack model.

        Args:
            self (T5Stack): The instance of the T5Stack class.
            input_ids (Tensor, optional): The input token IDs. Default: None.
            attention_mask (Tensor, optional): The attention mask tensor. Default: None.
            encoder_hidden_states (Tensor, optional): The hidden states of the encoder. Default: None.
            encoder_attention_mask (Tensor, optional): The attention mask for encoder hidden states. Default: None.
            inputs_embeds (Tensor, optional): The embedded inputs. Default: None.
            head_mask (list, optional): The mask for attention heads. Default: None.
            cross_attn_head_mask (list, optional): The mask for cross-attention heads. Default: None.
            past_key_values (list, optional): The past key values for caching. Default: None.
            use_cache (bool, optional): Whether to use caching. Default: None.
            output_attentions (bool, optional): Whether to output attentions. Default: None.
            output_hidden_states (bool, optional): Whether to output hidden states. Default: None.
            return_dict (bool, optional): Whether to return a dictionary. Default: None.

        Returns:
            None

        Raises:
            ValueError: If both input_ids and inputs_embeds are specified at the same time.
            ValueError: If neither input_ids nor inputs_embeds are specified.
            AssertionError: If the model is not initialized with valid token embeddings.
            AssertionError: If use_cache is set to True and the model is not used as a decoder.

        """
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
                f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
            )

        if input_ids is not None:
            input_shape = input_ids.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")

        if inputs_embeds is None:
            assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
            inputs_embeds = self.embed_tokens(input_ids.astype(mindspore.int64))

        batch_size, seq_length = input_shape

        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length

        if use_cache is True:
            assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"

        if attention_mask is None:
            attention_mask = ops.ones(batch_size, mask_seq_length,