visual_bert
mindnlp.transformers.models.visual_bert.configuration_visual_bert
¶
VisualBERT model configuration
mindnlp.transformers.models.visual_bert.configuration_visual_bert.VisualBertConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [VisualBertModel
]. It is used to instantiate an
VisualBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the VisualBERT
uclanlp/visualbert-vqa-coco-pre architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the VisualBERT model. Defines the number of different tokens that can be represented by
the
TYPE:
|
hidden_size |
Dimensionality of the encoder layers and the pooler layer.
TYPE:
|
visual_embedding_dim |
Dimensionality of the visual embeddings to be passed to the model.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer encoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
intermediate_size |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the encoder and pooler. If string,
TYPE:
|
hidden_dropout_prob |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
attention_probs_dropout_prob |
The dropout ratio for the attention probabilities.
TYPE:
|
max_position_embeddings |
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
TYPE:
|
type_vocab_size |
The vocabulary size of the
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
layer_norm_eps |
The epsilon used by the layer normalization layers.
TYPE:
|
bypass_transformer |
Whether or not the model should bypass the transformer for the visual embeddings. If set to
TYPE:
|
special_visual_initialize |
Whether or not the visual token type and position type embedding weights should be initialized the same as
the textual token type and positive type embeddings. When set to
TYPE:
|
Example
>>> from transformers import VisualBertConfig, VisualBertModel
...
>>> # Initializing a VisualBERT visualbert-vqa-coco-pre style configuration
>>> configuration = VisualBertConfig.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
...
>>> # Initializing a model (with random weights) from the visualbert-vqa-coco-pre style configuration
>>> model = VisualBertModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/visual_bert/configuration_visual_bert.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert
¶
MindSpore VisualBERT model.
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertEmbeddings
¶
Bases: Module
Construct the embeddings from word, position and token_type embeddings and visual embeddings.
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForMultipleChoice
¶
Bases: VisualBertPreTrainedModel
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForMultipleChoice.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], MultipleChoiceModelOutput]
|
|
Example
>>> # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
>>> from transformers import AutoTokenizer, VisualBertForMultipleChoice
>>> import mindspore, ops
...
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = VisualBertForMultipleChoice.from_pretrained("uclanlp/visualbert-vcr")
...
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
...
>>> visual_embeds = get_visual_embeddings(image)
>>> # (batch_size, num_choices, visual_seq_length, visual_embedding_dim)
>>> visual_embeds = visual_embeds.expand(1, 2, *visual_embeds.shape)
>>> visual_token_type_ids = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.int64)
>>> visual_attention_mask = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.float32)
...
>>> labels = mindspore.Tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
...
>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors="pt", padding=True)
>>> # batch size is 1
>>> inputs_dict = {k: v.unsqueeze(0) for k, v in encoding.items()}
>>> inputs_dict.update(
... {
... "visual_embeds": visual_embeds,
... "visual_attention_mask": visual_attention_mask,
... "visual_token_type_ids": visual_token_type_ids,
... "labels": labels,
... }
... )
>>> outputs = model(**inputs_dict)
...
>>> loss = outputs.loss
>>> logits = outputs.logits
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForPreTraining
¶
Bases: VisualBertPreTrainedModel
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForPreTraining.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, sentence_image_labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the masked language modeling loss. Indices should be in
TYPE:
|
sentence_image_labels |
Labels for computing the sentence-image prediction (classification) loss. Input should be a sequence pair
(see
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], VisualBertForPreTrainingOutput]
|
|
Example
>>> # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
>>> from transformers import AutoTokenizer, VisualBertForPreTraining
...
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = VisualBertForPreTraining.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
...
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.int64)
>>> visual_attention_mask = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.float32)
...
>>> inputs.update(
... {
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask,
... }
... )
>>> max_length = inputs["input_ids"].shape[-1] + visual_embeds.shape[-2]
>>> labels = tokenizer(
... "The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length
... )["input_ids"]
>>> sentence_image_labels = mindspore.Tensor(1).unsqueeze(0) # Batch_size
...
>>> outputs = model(**inputs, labels=labels, sentence_image_labels=sentence_image_labels)
>>> loss = outputs.loss
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForPreTrainingOutput
dataclass
¶
Bases: ModelOutput
Output type of [VisualBertForPreTraining
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Total loss as the sum of the masked language modeling loss and the sentence-image prediction (classification) loss.
TYPE:
|
prediction_logits |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
TYPE:
|
seq_relationship_logits |
Prediction scores of the sentence-image prediction (classification) head (scores of True/False continuation before SoftMax).
TYPE:
|
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForQuestionAnswering
¶
Bases: VisualBertPreTrainedModel
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], SequenceClassifierOutput]
|
|
Example
>>> # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
>>> from transformers import AutoTokenizer, VisualBertForQuestionAnswering
>>> import mindspore, ops
...
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa")
...
>>> text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.int64)
>>> visual_attention_mask = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.float32)
...
>>> inputs.update(
... {
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask,
... }
... )
...
>>> labels = mindspore.Tensor([[0.0, 1.0]]).unsqueeze(0) # Batch size 1, Num labels 2
...
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> scores = outputs.logits
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForRegionToPhraseAlignment
¶
Bases: VisualBertPreTrainedModel
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForRegionToPhraseAlignment.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, region_to_phrase_position=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
region_to_phrase_position |
The positions depicting the position of the image embedding corresponding to the textual tokens.
TYPE:
|
labels |
Labels for computing the masked language modeling loss. KLDivLoss is computed against these labels and the outputs from the attention layer.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], SequenceClassifierOutput]
|
|
Example
>>> # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
>>> from transformers import AutoTokenizer, VisualBertForRegionToPhraseAlignment
>>> import mindspore
...
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = VisualBertForRegionToPhraseAlignment.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
...
>>> text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors="ms")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.int64)
>>> visual_attention_mask = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.float32)
>>> region_to_phrase_position = ops.ones((1, inputs["input_ids"].shape[-1] + visual_embeds.shape[-2]))
...
>>> inputs.update(
... {
... "region_to_phrase_position": region_to_phrase_position,
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask,
... }
... )
...
>>> labels = ops.ones(
... (1, inputs["input_ids"].shape[-1] + visual_embeds.shape[-2], visual_embeds.shape[-2])
... ) # Batch size 1
...
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> scores = outputs.logits
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForVisualReasoning
¶
Bases: VisualBertPreTrainedModel
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertForVisualReasoning.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], SequenceClassifierOutput]
|
|
Example
>>> # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
>>> from transformers import AutoTokenizer, VisualBertForVisualReasoning
>>> import mindspore
...
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = VisualBertForVisualReasoning.from_pretrained("uclanlp/visualbert-nlvr2")
...
>>> text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.int64)
>>> visual_attention_mask = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.float32)
...
>>> inputs.update(
... {
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask,
... }
... )
...
>>> labels = mindspore.Tensor(1).unsqueeze(0) # Batch size 1, Num choices 2
...
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> scores = outputs.logits
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertModel
¶
Bases: VisualBertPreTrainedModel
The model can behave as an encoder (with only self-attention) following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertModel.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
RETURNS | DESCRIPTION |
---|---|
Union[Tuple[Tensor], BaseModelOutputWithPooling]
|
|
Example
>>> # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image.
>>> from transformers import AutoTokenizer, VisualBertModel
>>> import mindspore, ops
...
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
...
>>> inputs = tokenizer("The capital of France is Paris.", return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.int64)
>>> visual_attention_mask = ops.ones(visual_embeds.shape[:-1], dtype=mindspore.float32)
...
>>> inputs.update(
... {
... "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask,
... }
... )
...
>>> outputs = model(**inputs)
...
>>> last_hidden_states = outputs.last_hidden_state
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
|
mindnlp.transformers.models.visual_bert.modeling_visual_bert.VisualBertPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/visual_bert/modeling_visual_bert.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|