wav2vec2_conformer
mindnlp.transformers.models.wav2vec2_conformer.configuration_wav2vec2_conformer
¶
Wav2Vec2Conformer model configuration
mindnlp.transformers.models.wav2vec2_conformer.configuration_wav2vec2_conformer.Wav2Vec2ConformerConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [Wav2Vec2ConformerModel
]. It is used to
instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
facebook/wav2vec2-conformer-rel-pos-large
architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information.
PARAMETER | DESCRIPTION |
---|---|
vocab_size |
Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be
represented by the
TYPE:
|
hidden_size |
Dimensionality of the encoder layers and the pooler layer.
TYPE:
|
num_hidden_layers |
Number of hidden layers in the Transformer encoder.
TYPE:
|
num_attention_heads |
Number of attention heads for each attention layer in the Transformer encoder.
TYPE:
|
intermediate_size |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
TYPE:
|
hidden_act |
The non-linear activation function (function or string) in the encoder and pooler. If string,
TYPE:
|
hidden_dropout |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
TYPE:
|
activation_dropout |
The dropout ratio for activations inside the fully connected layer.
TYPE:
|
attention_dropout |
The dropout ratio for the attention probabilities.
TYPE:
|
final_dropout |
The dropout probability for the final projection layer of [
TYPE:
|
layerdrop |
The LayerDrop probability. See the LayerDrop paper for more details.
TYPE:
|
initializer_range |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
TYPE:
|
layer_norm_eps |
The epsilon used by the layer normalization layers.
TYPE:
|
feat_extract_norm |
The norm to be applied to 1D convolutional layers in feature encoder. One of
TYPE:
|
feat_proj_dropout |
The dropout probability for output of the feature encoder.
TYPE:
|
feat_extract_activation |
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string,
TYPE:
|
feat_quantizer_dropout |
The dropout probability for quantized feature encoder states.
TYPE:
|
conv_dim |
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of conv_dim defines the number of 1D convolutional layers.
TYPE:
|
conv_stride |
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of conv_stride defines the number of convolutional layers and has to match the length of conv_dim.
TYPE:
|
conv_kernel |
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of conv_kernel defines the number of convolutional layers and has to match the length of conv_dim.
TYPE:
|
conv_bias |
Whether the 1D convolutional layers have a bias.
TYPE:
|
num_conv_pos_embeddings |
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer.
TYPE:
|
num_conv_pos_embedding_groups |
Number of groups of 1D convolutional positional embeddings layer.
TYPE:
|
apply_spec_augment |
Whether to apply SpecAugment data augmentation to the outputs of the feature encoder. For reference see SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.
TYPE:
|
mask_time_prob |
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, mask_time_prob should be
TYPE:
|
mask_time_length |
Length of vector span along the time axis.
TYPE:
|
mask_time_min_masks |
The minimum number of masks of length
TYPE:
|
mask_feature_prob |
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, mask_feature_prob should be
TYPE:
|
mask_feature_length |
Length of vector span along the feature axis.
TYPE:
|
mask_feature_min_masks |
The minimum number of masks of length
TYPE:
|
num_codevectors_per_group |
Number of entries in each quantization codebook (group).
TYPE:
|
num_codevector_groups |
Number of codevector groups for product codevector quantization.
TYPE:
|
contrastive_logits_temperature |
The temperature kappa in the contrastive loss.
TYPE:
|
feat_quantizer_dropout |
The dropout probability for the output of the feature encoder that's used by the quantizer.
TYPE:
|
num_negatives |
Number of negative samples for the contrastive loss.
TYPE:
|
codevector_dim |
Dimensionality of the quantized feature vectors.
TYPE:
|
proj_codevector_dim |
Dimensionality of the final projection of both the quantized and the transformer features.
TYPE:
|
diversity_loss_weight |
The weight of the codebook diversity loss component.
TYPE:
|
ctc_loss_reduction |
Specifies the reduction to apply to the output of
TYPE:
|
ctc_zero_infinity |
Whether to zero infinite losses and the associated gradients of
TYPE:
|
use_weighted_layer_sum |
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [
TYPE:
|
classifier_proj_size |
Dimensionality of the projection before token mean-pooling for classification.
TYPE:
|
tdnn_dim |
A tuple of integers defining the number of output channels of each 1D convolutional layer in the TDNN module of the XVector model. The length of tdnn_dim defines the number of TDNN layers.
TYPE:
|
tdnn_kernel |
A tuple of integers defining the kernel size of each 1D convolutional layer in the TDNN module of the XVector model. The length of tdnn_kernel has to match the length of tdnn_dim.
TYPE:
|
tdnn_dilation |
A tuple of integers defining the dilation factor of each 1D convolutional layer in TDNN module of the XVector model. The length of tdnn_dilation has to match the length of tdnn_dim.
TYPE:
|
xvector_output_dim |
Dimensionality of the XVector embedding vectors.
TYPE:
|
add_adapter |
Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.
TYPE:
|
adapter_kernel_size |
Kernel size of the convolutional layers in the adapter network. Only relevant if
TYPE:
|
adapter_stride |
Stride of the convolutional layers in the adapter network. Only relevant if
TYPE:
|
num_adapter_layers |
Number of convolutional layers that should be used in the adapter network. Only relevant if
TYPE:
|
output_hidden_size |
Dimensionality of the encoder output layer. If not defined, this defaults to hidden-size. Only relevant
if
TYPE:
|
position_embeddings_type |
Can be specified to
TYPE:
|
rotary_embedding_base |
If
TYPE:
|
max_source_positions |
if
TYPE:
|
conv_depthwise_kernel_size |
Kernel size of convolutional depthwise 1D layer in Conformer blocks.
TYPE:
|
conformer_conv_dropout |
The dropout probability for all convolutional layers in Conformer blocks.
TYPE:
|
Example
>>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel
...
>>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> configuration = Wav2Vec2ConformerConfig()
...
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> model = Wav2Vec2ConformerModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer
¶
mindnlp Wav2Vec2-Conformer model.
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerConvolutionModule
¶
Bases: Module
Convolution block used in the conformer block
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer
¶
Bases: Module
Conformer block based on https://arxiv.org/abs/2005.08100.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerFeatureEncoder
¶
Bases: Module
Construct the features from raw audio waveform
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification
¶
Bases: Wav2Vec2ConformerPreTrainedModel
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.forward(input_values, attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_base_model()
¶
Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1870 1871 1872 1873 1874 1875 1876 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_feature_encoder()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1862 1863 1864 1865 1866 1867 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC
¶
Bases: Wav2Vec2ConformerPreTrainedModel
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for connectionist temporal classification. Note that
TYPE:
|
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.freeze_base_model()
¶
Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1665 1666 1667 1668 1669 1670 1671 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.freeze_feature_encoder()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1658 1659 1660 1661 1662 1663 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.freeze_feature_extractor()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.tie_weights()
¶
This method overwrites [~PreTrainedModel.tie_weights
] so that adapter weights can be correctly loaded when
passing target_lang=...
to from_pretrained(...)
.
This method is not supposed to be called by the user and is prone to be changed in the future.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining
¶
Bases: Wav2Vec2ConformerPreTrainedModel
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.compute_contrastive_logits(target_features, negative_features, predicted_features, temperature=0.1)
staticmethod
¶
Compute logits for contrastive loss based using cosine similarity as the distance measure between
[positive_feature, negative_features]
and [predicted_features]
. Additionally, temperature can be applied.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.forward(input_values, attention_mask=None, mask_time_indices=None, sampled_negative_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None)
¶
PARAMETER | DESCRIPTION |
---|---|
mask_time_indices |
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in config.proj_codevector_dim space.
TYPE:
|
sampled_negative_indices |
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]
|
|
Example
>>> import torch
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining
>>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices
>>> from datasets import load_dataset
...
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
>>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
...
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
...
>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
>>> mask_time_indices = _compute_mask_indices(
... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
... )
>>> sampled_negative_indices = _sample_negative_indices(
... features_shape=(batch_size, sequence_length),
... num_negatives=model.config.num_negatives,
... mask_time_indices=mask_time_indices,
... )
>>> mask_time_indices = mindspore.Tensor(data=mask_time_indices, dtype=mindspore.int64)
>>> sampled_negative_indices = mindspore.Tensor(
... data=sampled_negative_indices, dtype=mindspore.int64
... )
...
>>> with ops.no_grad():
... outputs = model(input_values, mask_time_indices=mask_time_indices)
...
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = ops.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
...
>>> # show that cosine similarity is much higher than random
>>> cosine_sim[mask_time_indices.to(ops.bool)].mean() > 0.5
tensor(True)
>>> # for contrastive loss training model should be put into train mode
>>> model = model.train()
>>> loss = model(
... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
... ).loss
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.freeze_feature_encoder()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1406 1407 1408 1409 1410 1411 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.set_gumbel_temperature(temperature)
¶
Set the Gumbel softmax temperature to a given value. Only necessary for training
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1399 1400 1401 1402 1403 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput
dataclass
¶
Bases: ModelOutput
Output type of [Wav2Vec2ConformerForPreTraining
], with potential hidden states and attentions.
PARAMETER | DESCRIPTION |
---|---|
loss |
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the official paper . (classification) loss.
TYPE:
|
projected_states |
Hidden-states of the model projected to config.proj_codevector_dim that can be used to predict the masked projected quantized states.
TYPE:
|
projected_quantized_states |
Quantized extracted feature vectors projected to config.proj_codevector_dim representing the positive target vectors for contrastive loss.
TYPE:
|
contrastive_loss |
The contrastive loss (L_m) as stated in the official paper .
TYPE:
|
diversity_loss |
The diversity loss (L_d) as stated in the official paper .
TYPE:
|
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification
¶
Bases: Wav2Vec2ConformerPreTrainedModel
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification.forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification.freeze_base_model()
¶
Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1772 1773 1774 1775 1776 1777 1778 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification.freeze_feature_encoder()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1765 1766 1767 1768 1769 1770 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector
¶
Bases: Wav2Vec2ConformerPreTrainedModel
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_base_model()
¶
Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
2017 2018 2019 2020 2021 2022 2023 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_feature_encoder()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
2009 2010 2011 2012 2013 2014 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerGumbelVectorQuantizer
¶
Bases: Module
Vector quantization using gumbel softmax. See `CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX for more information.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerModel
¶
Bases: Wav2Vec2ConformerPreTrainedModel
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerModel.freeze_feature_encoder()
¶
Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1273 1274 1275 1276 1277 1278 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding
¶
Bases: Module
Relative positional encoding module.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding
¶
Bases: Module
Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
|
mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention
¶
Bases: Module
Construct an Wav2Vec2ConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings.
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
|