Skip to content

wav2vec2_conformer

mindnlp.transformers.models.wav2vec2_conformer.configuration_wav2vec2_conformer

Wav2Vec2Conformer model configuration

mindnlp.transformers.models.wav2vec2_conformer.configuration_wav2vec2_conformer.Wav2Vec2ConformerConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [Wav2Vec2ConformerModel]. It is used to instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large architecture.

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
vocab_size

Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [Wav2Vec2ConformerModel]. Vocabulary size of the model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method of [Wav2Vec2ConformerModel].

TYPE: `int`, *optional* DEFAULT: None

hidden_size

Dimensionality of the encoder layers and the pooler layer.

TYPE: `int`, *optional*, defaults to 768 DEFAULT: 768

num_hidden_layers

Number of hidden layers in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

num_attention_heads

Number of attention heads for each attention layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 12 DEFAULT: 12

intermediate_size

Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 3072 DEFAULT: 3072

hidden_act

The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

TYPE: `str` or `function`, *optional*, defaults to `"gelu"` DEFAULT: 'gelu'

hidden_dropout

The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

activation_dropout

The dropout ratio for activations inside the fully connected layer.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

attention_dropout

The dropout ratio for the attention probabilities.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

final_dropout

The dropout probability for the final projection layer of [Wav2Vec2ConformerForCTC].

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

layerdrop

The LayerDrop probability. See the LayerDrop paper for more details.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

initializer_range

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

layer_norm_eps

The epsilon used by the layer normalization layers.

TYPE: `float`, *optional*, defaults to 1e-12 DEFAULT: 1e-05

feat_extract_norm

The norm to be applied to 1D convolutional layers in feature encoder. One of "group" for group normalization of only the first 1D convolutional layer or "layer" for layer normalization of all 1D convolutional layers.

TYPE: `str`, *optional*, defaults to `"group"` DEFAULT: 'group'

feat_proj_dropout

The dropout probability for output of the feature encoder.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

feat_extract_activation

The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

TYPE: `str, `optional`, defaults to `"gelu"` DEFAULT: 'gelu'

feat_quantizer_dropout

The dropout probability for quantized feature encoder states.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

conv_dim

A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of conv_dim defines the number of 1D convolutional layers.

TYPE: `Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)` DEFAULT: (512, 512, 512, 512, 512, 512, 512)

conv_stride

A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of conv_stride defines the number of convolutional layers and has to match the length of conv_dim.

TYPE: `Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)` DEFAULT: (5, 2, 2, 2, 2, 2, 2)

conv_kernel

A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of conv_kernel defines the number of convolutional layers and has to match the length of conv_dim.

TYPE: `Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)` DEFAULT: (10, 3, 3, 3, 3, 2, 2)

conv_bias

Whether the 1D convolutional layers have a bias.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

num_conv_pos_embeddings

Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer.

TYPE: `int`, *optional*, defaults to 128 DEFAULT: 128

num_conv_pos_embedding_groups

Number of groups of 1D convolutional positional embeddings layer.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

apply_spec_augment

Whether to apply SpecAugment data augmentation to the outputs of the feature encoder. For reference see SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

mask_time_prob

Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, mask_time_prob should be prob_vector_start*mask_time_length. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if apply_spec_augment is True.

TYPE: `float`, *optional*, defaults to 0.05 DEFAULT: 0.05

mask_time_length

Length of vector span along the time axis.

TYPE: `int`, *optional*, defaults to 10 DEFAULT: 10

mask_time_min_masks

The minimum number of masks of length mask_feature_length generated along the time axis, each time step, irrespectively of mask_feature_prob. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks''

TYPE: `int`, *optional*, defaults to 2), DEFAULT: 2

mask_feature_prob

Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, mask_feature_prob should be prob_vector_start*mask_feature_length. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if apply_spec_augment is True.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

mask_feature_length

Length of vector span along the feature axis.

TYPE: `int`, *optional*, defaults to 10 DEFAULT: 10

mask_feature_min_masks

The minimum number of masks of length mask_feature_length generated along the feature axis, each time step, irrespectively of mask_feature_prob. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''

TYPE: `int`, *optional*, defaults to 0), DEFAULT: 0

num_codevectors_per_group

Number of entries in each quantization codebook (group).

TYPE: `int`, *optional*, defaults to 320 DEFAULT: 320

num_codevector_groups

Number of codevector groups for product codevector quantization.

TYPE: `int`, *optional*, defaults to 2 DEFAULT: 2

contrastive_logits_temperature

The temperature kappa in the contrastive loss.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

feat_quantizer_dropout

The dropout probability for the output of the feature encoder that's used by the quantizer.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

num_negatives

Number of negative samples for the contrastive loss.

TYPE: `int`, *optional*, defaults to 100 DEFAULT: 100

codevector_dim

Dimensionality of the quantized feature vectors.

TYPE: `int`, *optional*, defaults to 256 DEFAULT: 256

proj_codevector_dim

Dimensionality of the final projection of both the quantized and the transformer features.

TYPE: `int`, *optional*, defaults to 256 DEFAULT: 256

diversity_loss_weight

The weight of the codebook diversity loss component.

TYPE: `int`, *optional*, defaults to 0.1 DEFAULT: 0.1

ctc_loss_reduction

Specifies the reduction to apply to the output of torch.nn.CTCLoss. Only relevant when training an instance of [Wav2Vec2ConformerForCTC].

TYPE: `str`, *optional*, defaults to `"sum"` DEFAULT: 'sum'

ctc_zero_infinity

Whether to zero infinite losses and the associated gradients of torch.nn.CTCLoss. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [Wav2Vec2ConformerForCTC].

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

use_weighted_layer_sum

Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [Wav2Vec2ConformerForSequenceClassification].

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

classifier_proj_size

Dimensionality of the projection before token mean-pooling for classification.

TYPE: `int`, *optional*, defaults to 256 DEFAULT: 256

tdnn_dim

A tuple of integers defining the number of output channels of each 1D convolutional layer in the TDNN module of the XVector model. The length of tdnn_dim defines the number of TDNN layers.

TYPE: `Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)` DEFAULT: (512, 512, 512, 512, 1500)

tdnn_kernel

A tuple of integers defining the kernel size of each 1D convolutional layer in the TDNN module of the XVector model. The length of tdnn_kernel has to match the length of tdnn_dim.

TYPE: `Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)` DEFAULT: (5, 3, 3, 1, 1)

tdnn_dilation

A tuple of integers defining the dilation factor of each 1D convolutional layer in TDNN module of the XVector model. The length of tdnn_dilation has to match the length of tdnn_dim.

TYPE: `Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)` DEFAULT: (1, 2, 3, 1, 1)

xvector_output_dim

Dimensionality of the XVector embedding vectors.

TYPE: `int`, *optional*, defaults to 512 DEFAULT: 512

add_adapter

Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

adapter_kernel_size

Kernel size of the convolutional layers in the adapter network. Only relevant if add_adapter is True.

TYPE: `int`, *optional*, defaults to 3 DEFAULT: 3

adapter_stride

Stride of the convolutional layers in the adapter network. Only relevant if add_adapter is True.

TYPE: `int`, *optional*, defaults to 2 DEFAULT: 2

num_adapter_layers

Number of convolutional layers that should be used in the adapter network. Only relevant if add_adapter is True.

TYPE: `int`, *optional*, defaults to 3 DEFAULT: 3

output_hidden_size

Dimensionality of the encoder output layer. If not defined, this defaults to hidden-size. Only relevant if add_adapter is True.

TYPE: `int`, *optional* DEFAULT: None

position_embeddings_type

Can be specified to relative or rotary for relative or rotary position embeddings respectively. If left None no relative position embedding is applied.

TYPE: `str`, *optional*, defaults to `"relative"` DEFAULT: 'relative'

rotary_embedding_base

If "rotary" position embeddings are used, defines the size of the embedding base.

TYPE: `int`, *optional*, defaults to 10000 DEFAULT: 10000

max_source_positions

if "relative" position embeddings are used, defines the maximum source input positions.

TYPE: `int`, *optional*, defaults to 5000 DEFAULT: 5000

conv_depthwise_kernel_size

Kernel size of convolutional depthwise 1D layer in Conformer blocks.

TYPE: `int`, defaults to 31 DEFAULT: 31

conformer_conv_dropout

The dropout probability for all convolutional layers in Conformer blocks.

TYPE: `float`, defaults to 0.1 DEFAULT: 0.1

Example
>>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel
...
>>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> configuration = Wav2Vec2ConformerConfig()
...
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> model = Wav2Vec2ConformerModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class Wav2Vec2ConformerConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Wav2Vec2ConformerModel`]. It is used to
    instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
    [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*):
            Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`Wav2Vec2ConformerModel`]. Vocabulary size of the
            model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
            method of [`Wav2Vec2ConformerModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        activation_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for activations inside the fully connected layer.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        final_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the final projection layer of [`Wav2Vec2ConformerForCTC`].
        layerdrop (`float`, *optional*, defaults to 0.1):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        feat_extract_norm (`str`, *optional*, defaults to `"group"`):
            The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
            normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
            convolutional layers.
        feat_proj_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for output of the feature encoder.
        feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the 1D convolutional layers of the feature
            extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for quantized feature encoder states.
        conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
        conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
            of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
        conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
            length of *conv_kernel* defines the number of convolutional layers and has to match the length of
            *conv_dim*.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether the 1D convolutional layers have a bias.
        num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
            Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
            embeddings layer.
        num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
            Number of groups of 1D convolutional positional embeddings layer.
        apply_spec_augment (`bool`, *optional*, defaults to `True`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
            [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
            Recognition](https://arxiv.org/abs/1904.08779).
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
            reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
            actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2),:
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
            the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0),:
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
        num_codevectors_per_group (`int`, *optional*, defaults to 320):
            Number of entries in each quantization codebook (group).
        num_codevector_groups (`int`, *optional*, defaults to 2):
            Number of codevector groups for product codevector quantization.
        contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
            The temperature *kappa* in the contrastive loss.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for the output of the feature encoder that's used by the quantizer.
        num_negatives (`int`, *optional*, defaults to 100):
            Number of negative samples for the contrastive loss.
        codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the quantized feature vectors.
        proj_codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the final projection of both the quantized and the transformer features.
        diversity_loss_weight (`int`, *optional*, defaults to 0.1):
            The weight of the codebook diversity loss component.
        ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
            Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
            instance of [`Wav2Vec2ConformerForCTC`].
        ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
            Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
            occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
            of [`Wav2Vec2ConformerForCTC`].
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`Wav2Vec2ConformerForSequenceClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification.
        tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
            A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
            module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
        tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
            *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
        tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
            A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
            *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
        xvector_output_dim (`int`, *optional*, defaults to 512):
            Dimensionality of the *XVector* embedding vectors.
        add_adapter (`bool`, *optional*, defaults to `False`):
            Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very
            useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.
        adapter_kernel_size (`int`, *optional*, defaults to 3):
            Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        adapter_stride (`int`, *optional*, defaults to 2):
            Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        num_adapter_layers (`int`, *optional*, defaults to 3):
            Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
            True`.
        output_hidden_size (`int`, *optional*):
            Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
            if `add_adapter is True`.
        position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
            Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
            `None` no relative position embedding is applied.
        rotary_embedding_base (`int`, *optional*, defaults to 10000):
            If `"rotary"` position embeddings are used, defines the size of the embedding base.
        max_source_positions (`int`, *optional*, defaults to 5000):
            if `"relative"` position embeddings are used, defines the maximum source input positions.
        conv_depthwise_kernel_size (`int`, defaults to 31):
            Kernel size of convolutional depthwise 1D layer in Conformer blocks.
        conformer_conv_dropout (`float`, defaults to 0.1):
            The dropout probability for all convolutional layers in Conformer blocks.

    Example:
        ```python
        >>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel
        ...
        >>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
        >>> configuration = Wav2Vec2ConformerConfig()
        ...
        >>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
        >>> model = Wav2Vec2ConformerModel(configuration)
        ...
        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """

    model_type = "wav2vec2-conformer"

    def __init__(
        self,
        vocab_size=None,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout=0.1,
        activation_dropout=0.1,
        attention_dropout=0.1,
        feat_proj_dropout=0.0,
        feat_quantizer_dropout=0.0,
        final_dropout=0.1,
        layerdrop=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        feat_extract_norm="group",
        feat_extract_activation="gelu",
        conv_dim=(512, 512, 512, 512, 512, 512, 512),
        conv_stride=(5, 2, 2, 2, 2, 2, 2),
        conv_kernel=(10, 3, 3, 3, 3, 2, 2),
        conv_bias=False,
        num_conv_pos_embeddings=128,
        num_conv_pos_embedding_groups=16,
        apply_spec_augment=True,
        mask_time_prob=0.05,
        mask_time_length=10,
        mask_time_min_masks=2,
        mask_feature_prob=0.0,
        mask_feature_length=10,
        mask_feature_min_masks=0,
        num_codevectors_per_group=320,
        num_codevector_groups=2,
        contrastive_logits_temperature=0.1,
        num_negatives=100,
        codevector_dim=256,
        proj_codevector_dim=256,
        diversity_loss_weight=0.1,
        ctc_loss_reduction="sum",
        ctc_zero_infinity=False,
        use_weighted_layer_sum=False,
        classifier_proj_size=256,
        tdnn_dim=(512, 512, 512, 512, 1500),
        tdnn_kernel=(5, 3, 3, 1, 1),
        tdnn_dilation=(1, 2, 3, 1, 1),
        xvector_output_dim=512,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        add_adapter=False,
        adapter_kernel_size=3,
        adapter_stride=2,
        num_adapter_layers=3,
        output_hidden_size=None,
        position_embeddings_type="relative",
        rotary_embedding_base=10000,
        max_source_positions=5000,
        conv_depthwise_kernel_size=31,
        conformer_conv_dropout=0.1,
        **kwargs,
    ):
        super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = list(conv_dim)
        self.conv_stride = list(conv_stride)
        self.conv_kernel = list(conv_kernel)
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_feat_extract_layers = len(self.conv_dim)
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.feat_proj_dropout = feat_proj_dropout
        self.final_dropout = final_dropout
        self.layerdrop = layerdrop
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.use_weighted_layer_sum = use_weighted_layer_sum
        self.max_source_positions = max_source_positions
        self.position_embeddings_type = position_embeddings_type
        self.rotary_embedding_base = rotary_embedding_base

        if (
            (len(self.conv_stride) != self.num_feat_extract_layers)
            or (len(self.conv_kernel) != self.num_feat_extract_layers)
            or (len(self.conv_dim) != self.num_feat_extract_layers)
        ):
            raise ValueError(
                "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
                " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
                f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
                f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
            )

        # Conformer-block related
        self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
        self.conformer_conv_dropout = conformer_conv_dropout

        # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
        self.apply_spec_augment = apply_spec_augment
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
        self.mask_time_min_masks = mask_time_min_masks
        self.mask_feature_prob = mask_feature_prob
        self.mask_feature_length = mask_feature_length
        self.mask_feature_min_masks = mask_feature_min_masks

        # parameters for pretraining with codevector quantized representations
        self.num_codevectors_per_group = num_codevectors_per_group
        self.num_codevector_groups = num_codevector_groups
        self.contrastive_logits_temperature = contrastive_logits_temperature
        self.feat_quantizer_dropout = feat_quantizer_dropout
        self.num_negatives = num_negatives
        self.codevector_dim = codevector_dim
        self.proj_codevector_dim = proj_codevector_dim
        self.diversity_loss_weight = diversity_loss_weight

        # ctc loss
        self.ctc_loss_reduction = ctc_loss_reduction
        self.ctc_zero_infinity = ctc_zero_infinity

        # adapter
        self.add_adapter = add_adapter
        self.adapter_kernel_size = adapter_kernel_size
        self.adapter_stride = adapter_stride
        self.num_adapter_layers = num_adapter_layers
        self.output_hidden_size = output_hidden_size or hidden_size

        # SequenceClassification-specific parameter. Feel free to ignore for other classes.
        self.classifier_proj_size = classifier_proj_size

        # XVector-specific parameters. Feel free to ignore for other classes.
        self.tdnn_dim = list(tdnn_dim)
        self.tdnn_kernel = list(tdnn_kernel)
        self.tdnn_dilation = list(tdnn_dilation)
        self.xvector_output_dim = xvector_output_dim

    @property
    def inputs_to_logits_ratio(self):
        return functools.reduce(operator.mul, self.conv_stride, 1)

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer

mindnlp Wav2Vec2-Conformer model.

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerConvolutionModule

Bases: Module

Convolution block used in the conformer block

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
class Wav2Vec2ConformerConvolutionModule(nn.Module):
    """Convolution block used in the conformer block"""

    def __init__(self, config):
        super().__init__()
        if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
            raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
        self.layer_norm = nn.LayerNorm([config.hidden_size])
        self.pointwise_conv1 = nn.Conv1d(
            config.hidden_size,
            2 * config.hidden_size,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=False,
            pad_mode='valid'
        )
        self.glu = nn.GLU(axis=1)
        self.depthwise_conv = nn.Conv1d(
            config.hidden_size,
            config.hidden_size,
            config.conv_depthwise_kernel_size,
            stride=1,
            padding=(config.conv_depthwise_kernel_size - 1) // 2,
            group=config.hidden_size,
            bias=False,
            pad_mode='pad'
        )
        self.batch_norm = nn.BatchNorm1d(config.hidden_size)
        self.activation = ACT2FN[config.hidden_act]
        self.pointwise_conv2 = nn.Conv1d(
            config.hidden_size,
            config.hidden_size,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=False,
        )
        self.dropout = nn.Dropout(p = config.conformer_conv_dropout)

    def forward(self, hidden_states):
        hidden_states = self.layer_norm(hidden_states)
        # exchange the temporal dimension and the feature dimension
        hidden_states = hidden_states.swapaxes(1, 2)

        # GLU mechanism
        # => (batch, 2*channel, dim)
        hidden_states = self.pointwise_conv1(hidden_states)
        # => (batch, channel, dim)
        hidden_states = self.glu(hidden_states)

        # 1D Depthwise Conv
        hidden_states = self.depthwise_conv(hidden_states)
        hidden_states = self.batch_norm(hidden_states)
        hidden_states = self.activation(hidden_states)

        hidden_states = self.pointwise_conv2(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = hidden_states.swapaxes(1, 2)
        return hidden_states

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer

Bases: Module

Conformer block based on https://arxiv.org/abs/2005.08100.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
class Wav2Vec2ConformerEncoderLayer(nn.Module):
    """Conformer block based on https://arxiv.org/abs/2005.08100."""

    def __init__(self, config):
        super().__init__()
        embed_dim = config.hidden_size
        dropout = config.attention_dropout

        # Feed-forward 1
        self.ffn1_layer_norm = nn.LayerNorm([embed_dim])
        self.ffn1 = Wav2Vec2ConformerFeedForward(config)

        # Self-Attention
        self.self_attn_layer_norm = nn.LayerNorm([embed_dim])
        self.self_attn_dropout = nn.Dropout(p = dropout)
        self.self_attn = Wav2Vec2ConformerSelfAttention(config)

        # Conformer Convolution
        self.conv_module = Wav2Vec2ConformerConvolutionModule(config)

        # Feed-forward 2
        self.ffn2_layer_norm = nn.LayerNorm([embed_dim])
        self.ffn2 = Wav2Vec2ConformerFeedForward(config)
        self.final_layer_norm = nn.LayerNorm([embed_dim])

    def forward(
        self,
        hidden_states,
        attention_mask: Optional[mindspore.Tensor] = None,
        relative_position_embeddings: Optional[mindspore.Tensor] = None,
        output_attentions: bool = False,
    ):

        # 1. Feed-Forward 1 layer
        residual = hidden_states
        hidden_states = self.ffn1_layer_norm(hidden_states)
        hidden_states = self.ffn1(hidden_states)
        hidden_states = hidden_states * 0.5 + residual
        residual = hidden_states

        # 2. Self-Attention layer
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weigts = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            relative_position_embeddings=relative_position_embeddings,
            output_attentions=output_attentions,
        )
        hidden_states = self.self_attn_dropout(hidden_states)
        hidden_states = hidden_states + residual

        # 3. Convolutional Layer
        residual = hidden_states
        hidden_states = self.conv_module(hidden_states)
        hidden_states = residual + hidden_states

        # 4. Feed-Forward 2 Layer
        residual = hidden_states
        hidden_states = self.ffn2_layer_norm(hidden_states)
        hidden_states = self.ffn2(hidden_states)
        hidden_states = hidden_states * 0.5 + residual
        hidden_states = self.final_layer_norm(hidden_states)

        return hidden_states, attn_weigts

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerFeatureEncoder

Bases: Module

Construct the features from raw audio waveform

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
class Wav2Vec2ConformerFeatureEncoder(nn.Module):
    """Construct the features from raw audio waveform"""

    def __init__(self, config):
        super().__init__()

        if config.feat_extract_norm == "group":
            conv_layers = [Wav2Vec2ConformerGroupNormConvLayer(config, layer_id=0)] + [
                Wav2Vec2ConformerNoLayerNormConvLayer(config, layer_id=i + 1)
                for i in range(config.num_feat_extract_layers - 1)
            ]
        elif config.feat_extract_norm == "layer":
            conv_layers = [
                Wav2Vec2ConformerLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
            ]
        else:
            raise ValueError(
                f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
            )
        self.conv_layers = nn.ModuleList(conv_layers)
        # self.gradient_checkpointing = False
        self._requires_grad = True

    def _freeze_parameters(self):
        for _, param in self.parameters_and_names():
            param.requires_grad = False
        self._requires_grad = False

    def forward(self, input_values):
        hidden_states = input_values[:, None]
        for conv_layer in self.conv_layers:
            hidden_states = conv_layer(hidden_states)
        return hidden_states

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification

Bases: Wav2Vec2ConformerPreTrainedModel

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedModel):
    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER
    def __init__(self, config):
        super().__init__(config)

        if hasattr(config, "add_adapter") and config.add_adapter:
            raise ValueError(
                "Audio frame classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)"
            )
        self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = mindspore.Parameter(ops.ones(num_layers) / num_layers,'layer_weights')
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.num_labels = config.num_labels

        self.init_weights()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wav2vec2_conformer.feature_extractor._freeze_parameters()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_base_model with wav2vec2->wav2vec2_conformer
    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.wav2vec2_conformer.parameters():
            param.requires_grad = False

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->wav2vec2_conformer
    def forward(
        self,
        input_values: Optional[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.wav2vec2_conformer(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = ops.stack(hidden_states, axis=1)
            norm_weights = ops.softmax(self.layer_weights, axis=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(axis=1)
        else:
            hidden_states = outputs[0]

        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), ops.argmax(labels.view(-1, self.num_labels), dim=1))

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.forward(input_values, attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
def forward(
    self,
    input_values: Optional[mindspore.Tensor],
    attention_mask: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

    outputs = self.wav2vec2_conformer(
        input_values,
        attention_mask=attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    if self.config.use_weighted_layer_sum:
        hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
        hidden_states = ops.stack(hidden_states, axis=1)
        norm_weights = ops.softmax(self.layer_weights, axis=-1)
        hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(axis=1)
    else:
        hidden_states = outputs[0]

    logits = self.classifier(hidden_states)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(logits.view(-1, self.num_labels), ops.argmax(labels.view(-1, self.num_labels), dim=1))

    if not return_dict:
        output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
        return output

    return TokenClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_base_model()

Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1870
1871
1872
1873
1874
1875
1876
def freeze_base_model(self):
    """
    Calling this function will disable the gradient computation for the base model so that its parameters will not
    be updated during training. Only the classification head will be updated.
    """
    for param in self.wav2vec2_conformer.parameters():
        param.requires_grad = False

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_feature_encoder()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1862
1863
1864
1865
1866
1867
def freeze_feature_encoder(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    self.wav2vec2_conformer.feature_extractor._freeze_parameters()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC

Bases: Wav2Vec2ConformerPreTrainedModel

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel):
    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
    def __init__(self, config, target_lang: Optional[str] = None):
        super().__init__(config)

        self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
        self.dropout = nn.Dropout(p = config.final_dropout)

        self.target_lang = target_lang

        if config.vocab_size is None:
            raise ValueError(
                f"You are trying to instantiate {self.__class__} with a configuration that "
                "does not define the vocabulary size of the language model head. Please "
                "instantiate the model as follows: `Wav2Vec2ConformerForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
                "or define `vocab_size` of your model's configuration."
            )
        output_hidden_size = (
            config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
        )
        self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

    #Copied from wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
    def tie_weights(self):
        """
        This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
        passing `target_lang=...` to `from_pretrained(...)`.

        This method is **not** supposed to be called by the user and is prone to be changed in the future.
        """
        # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
        # correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to
        # [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is
        # ok to repurpose this function here.
        target_lang = self.target_lang

        if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
            raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
        elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
            logger.info("By default `target_lang` is set to 'eng'.")
        elif target_lang is not None:
            self.load_adapter(target_lang)

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wav2vec2_conformer.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for _, param in self.wav2vec2.parameters_and_names():
            param.requires_grad = False

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
    def forward(
        self,
        input_values: Optional[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[mindspore.Tensor] = None,
    ) -> Union[Tuple, CausalLMOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, target_length)`, *optional*):
                Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
                the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
                All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
                config.vocab_size - 1]`.
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.wav2vec2_conformer(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states)

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            if labels.max() >= self.config.vocab_size:
                raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
            # retrieve loss input_lengths from attention_mask
            attention_mask = (
                attention_mask if attention_mask is not None else ops.ones_like(input_values, dtype=mindspore.int64)
            )
            input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(mindspore.int64)

            # assuming that padded tokens are filled with -100
            # when not being attended to
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1)
            flattened_targets = labels.masked_select(labels_mask)

            # ctc_loss doesn't support fp16
            log_probs = ops.log_softmax(logits, axis=-1).swapaxes(0, 1)

            loss, log_alpha = ops.ctc_loss(
                log_probs,
                labels,     # flattened_targets
                input_lengths,
                target_lengths,
                blank=self.config.pad_token_id,
                reduction=self.config.ctc_loss_reduction,
                zero_infinity=self.config.ctc_zero_infinity,
            )

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)

PARAMETER DESCRIPTION
labels

Labels for connectionist temporal classification. Note that target_length has to be smaller or equal to the sequence length of the output logits. Indices are selected in [-100, 0, ..., config.vocab_size - 1]. All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size - 1].

TYPE: `mindspore.Tensor` of shape `(batch_size, target_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
def forward(
    self,
    input_values: Optional[mindspore.Tensor],
    attention_mask: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    labels: Optional[mindspore.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, target_length)`, *optional*):
            Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
            the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
            All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size - 1]`.
    """

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.wav2vec2_conformer(
        input_values,
        attention_mask=attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    hidden_states = outputs[0]
    hidden_states = self.dropout(hidden_states)

    logits = self.lm_head(hidden_states)

    loss = None
    if labels is not None:
        if labels.max() >= self.config.vocab_size:
            raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
        # retrieve loss input_lengths from attention_mask
        attention_mask = (
            attention_mask if attention_mask is not None else ops.ones_like(input_values, dtype=mindspore.int64)
        )
        input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(mindspore.int64)

        # assuming that padded tokens are filled with -100
        # when not being attended to
        labels_mask = labels >= 0
        target_lengths = labels_mask.sum(-1)
        flattened_targets = labels.masked_select(labels_mask)

        # ctc_loss doesn't support fp16
        log_probs = ops.log_softmax(logits, axis=-1).swapaxes(0, 1)

        loss, log_alpha = ops.ctc_loss(
            log_probs,
            labels,     # flattened_targets
            input_lengths,
            target_lengths,
            blank=self.config.pad_token_id,
            reduction=self.config.ctc_loss_reduction,
            zero_infinity=self.config.ctc_zero_infinity,
        )

    if not return_dict:
        output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
        return ((loss,) + output) if loss is not None else output

    return CausalLMOutput(
        loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
    )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.freeze_base_model()

Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1665
1666
1667
1668
1669
1670
1671
def freeze_base_model(self):
    """
    Calling this function will disable the gradient computation for the base model so that its parameters will not
    be updated during training. Only the classification head will be updated.
    """
    for _, param in self.wav2vec2.parameters_and_names():
        param.requires_grad = False

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.freeze_feature_encoder()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1658
1659
1660
1661
1662
1663
def freeze_feature_encoder(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    self.wav2vec2_conformer.feature_extractor._freeze_parameters()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.freeze_feature_extractor()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
def freeze_feature_extractor(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    warnings.warn(
        "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
        "Please use the equivalent `freeze_feature_encoder` method instead.",
        FutureWarning,
    )
    self.freeze_feature_encoder()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.tie_weights()

This method overwrites [~PreTrainedModel.tie_weights] so that adapter weights can be correctly loaded when passing target_lang=... to from_pretrained(...).

This method is not supposed to be called by the user and is prone to be changed in the future.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
def tie_weights(self):
    """
    This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
    passing `target_lang=...` to `from_pretrained(...)`.

    This method is **not** supposed to be called by the user and is prone to be changed in the future.
    """
    # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
    # correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to
    # [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is
    # ok to repurpose this function here.
    target_lang = self.target_lang

    if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
        raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
    elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
        logger.info("By default `target_lang` is set to 'eng'.")
    elif target_lang is not None:
        self.load_adapter(target_lang)

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining

Bases: Wav2Vec2ConformerPreTrainedModel

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel):
    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
    def __init__(self, config: Wav2Vec2ConformerConfig):
        super().__init__(config)
        self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
        self.dropout_features = nn.Dropout(p = config.feat_quantizer_dropout)

        self.quantizer = Wav2Vec2ConformerGumbelVectorQuantizer(config)

        self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
        self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.set_gumbel_temperature
    def set_gumbel_temperature(self, temperature: int):
        """
        Set the Gumbel softmax temperature to a given value. Only necessary for training
        """
        self.quantizer.temperature = temperature

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wav2vec2_conformer.feature_extractor._freeze_parameters()

    @staticmethod
    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits
    def compute_contrastive_logits(
        target_features: mindspore.Tensor,
        negative_features: mindspore.Tensor,
        predicted_features: mindspore.Tensor,
        temperature: int = 0.1,
    ):
        """
        Compute logits for contrastive loss based using cosine similarity as the distance measure between
        `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
        """
        target_features = ops.cat([target_features, negative_features], axis=0)

        logits = ops.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
            target_features
        )

        # apply temperature
        logits = logits / temperature
        return logits

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,wav2vec2_conformer-base->wav2vec2-conformer-rel-pos-large
    def forward(
        self,
        input_values: Optional[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        mask_time_indices: Optional[mindspore.Tensor] = None,
        sampled_negative_indices: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]:
        r"""
        Args:
            mask_time_indices (`ops.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
                masked extracted features in *config.proj_codevector_dim* space.
            sampled_negative_indices (`ops.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
                Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
                Required input for pre-training.

        Returns:
            `Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]`

        Example:
            ```python
            >>> import torch
            >>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining
            >>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices
            >>> from datasets import load_dataset
            ...
            >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
            >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
            ...
            >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
            >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values  # Batch size 1
            ...
            >>> # compute masked indices
            >>> batch_size, raw_sequence_length = input_values.shape
            >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
            >>> mask_time_indices = _compute_mask_indices(
            ...     shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
            ... )
            >>> sampled_negative_indices = _sample_negative_indices(
            ...     features_shape=(batch_size, sequence_length),
            ...     num_negatives=model.config.num_negatives,
            ...     mask_time_indices=mask_time_indices,
            ... )
            >>> mask_time_indices = mindspore.Tensor(data=mask_time_indices, dtype=mindspore.int64)
            >>> sampled_negative_indices = mindspore.Tensor(
            ...     data=sampled_negative_indices, dtype=mindspore.int64
            ... )
            ...
            >>> with ops.no_grad():
            ...     outputs = model(input_values, mask_time_indices=mask_time_indices)
            ...
            >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
            >>> cosine_sim = ops.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
            ...
            >>> # show that cosine similarity is much higher than random
            >>> cosine_sim[mask_time_indices.to(ops.bool)].mean() > 0.5
            tensor(True)
            >>> # for contrastive loss training model should be put into train mode
            >>> model = model.train()
            >>> loss = model(
            ...     input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
            ... ).loss
            ```
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if mask_time_indices is not None:
            mask_time_indices = mask_time_indices.to(mindspore.bool_)

        outputs = self.wav2vec2_conformer(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            mask_time_indices=mask_time_indices,
            return_dict=return_dict,
        )

        # 1. project all transformed features (including masked) to final vq dim
        transformer_features = self.project_hid(outputs[0])

        # 2. quantize all (unmasked) extracted features and project to final vq dim
        extract_features = self.dropout_features(outputs[1])

        if attention_mask is not None:
            # compute reduced attention_mask correponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(
                extract_features.shape[1], attention_mask, add_adapter=False
            )

        quantized_features, codevector_perplexity = self.quantizer(
            extract_features, mask_time_indices=mask_time_indices
        )

        quantized_features = quantized_features.to(self.project_q.weight.dtype)
        quantized_features = self.project_q(quantized_features)

        loss = contrastive_loss = diversity_loss = None
        if sampled_negative_indices is not None:
            batch_size, sequence_length, hidden_size = quantized_features.shape

            # for training, we sample negatives
            # 3. sample K negatives (distractors) quantized states for contrastive loss
            # if attention_mask is passed, make sure that padded feature vectors cannot be sampled
            # sample negative quantized vectors BTC => (BxT)C
            negative_quantized_features = quantized_features.view(-1, hidden_size)[
                sampled_negative_indices.long().view(-1)
            ]
            negative_quantized_features = negative_quantized_features.view(
                batch_size, sequence_length, -1, hidden_size
            ).permute(2, 0, 1, 3)

            # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
            # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
            logits = self.compute_contrastive_logits(
                quantized_features[None, :],
                negative_quantized_features,
                transformer_features,
                self.config.contrastive_logits_temperature,
            )

            # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
            # its cosine similarity will be masked
            neg_is_pos = (quantized_features == negative_quantized_features).all(-1)

            if neg_is_pos.any():
                # NOTE: avoid loss NaN
                # float("-inf") => finfo(logits.dtype, 'min') := -3.40282e+38
                logits[1:][neg_is_pos] = -3.40282e+35

            # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
            # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
            logits = logits.swapaxes(0, 2).reshape(-1, logits.shape[0])
            target = ((1 - mask_time_indices.long()) * -100).swapaxes(0, 1).flatten()

            contrastive_loss = ops.cross_entropy(logits.float(), target, reduction="sum")
            # 7. compute diversity loss: \mathbf{L}_d
            num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups
            diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()

            # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d
            loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss

        if not return_dict:
            if loss is not None:
                return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
            return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]

        return Wav2Vec2ConformerForPreTrainingOutput(
            loss=loss,
            projected_states=transformer_features,
            projected_quantized_states=quantized_features,
            codevector_perplexity=codevector_perplexity,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            contrastive_loss=contrastive_loss,
            diversity_loss=diversity_loss,
        )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.compute_contrastive_logits(target_features, negative_features, predicted_features, temperature=0.1) staticmethod

Compute logits for contrastive loss based using cosine similarity as the distance measure between [positive_feature, negative_features] and [predicted_features]. Additionally, temperature can be applied.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
@staticmethod
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits
def compute_contrastive_logits(
    target_features: mindspore.Tensor,
    negative_features: mindspore.Tensor,
    predicted_features: mindspore.Tensor,
    temperature: int = 0.1,
):
    """
    Compute logits for contrastive loss based using cosine similarity as the distance measure between
    `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
    """
    target_features = ops.cat([target_features, negative_features], axis=0)

    logits = ops.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
        target_features
    )

    # apply temperature
    logits = logits / temperature
    return logits

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.forward(input_values, attention_mask=None, mask_time_indices=None, sampled_negative_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
mask_time_indices

Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in config.proj_codevector_dim space.

TYPE: `ops.BoolTensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

sampled_negative_indices

Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training.

TYPE: `ops.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]

Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]

Example
>>> import torch
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining
>>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices
>>> from datasets import load_dataset
...
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
>>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
...
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values  # Batch size 1
...
>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
>>> mask_time_indices = _compute_mask_indices(
...     shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
... )
>>> sampled_negative_indices = _sample_negative_indices(
...     features_shape=(batch_size, sequence_length),
...     num_negatives=model.config.num_negatives,
...     mask_time_indices=mask_time_indices,
... )
>>> mask_time_indices = mindspore.Tensor(data=mask_time_indices, dtype=mindspore.int64)
>>> sampled_negative_indices = mindspore.Tensor(
...     data=sampled_negative_indices, dtype=mindspore.int64
... )
...
>>> with ops.no_grad():
...     outputs = model(input_values, mask_time_indices=mask_time_indices)
...
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = ops.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
...
>>> # show that cosine similarity is much higher than random
>>> cosine_sim[mask_time_indices.to(ops.bool)].mean() > 0.5
tensor(True)
>>> # for contrastive loss training model should be put into train mode
>>> model = model.train()
>>> loss = model(
...     input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
... ).loss
Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
def forward(
    self,
    input_values: Optional[mindspore.Tensor],
    attention_mask: Optional[mindspore.Tensor] = None,
    mask_time_indices: Optional[mindspore.Tensor] = None,
    sampled_negative_indices: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]:
    r"""
    Args:
        mask_time_indices (`ops.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
            masked extracted features in *config.proj_codevector_dim* space.
        sampled_negative_indices (`ops.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
            Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
            Required input for pre-training.

    Returns:
        `Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]`

    Example:
        ```python
        >>> import torch
        >>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining
        >>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices
        >>> from datasets import load_dataset
        ...
        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
        >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
        ...
        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values  # Batch size 1
        ...
        >>> # compute masked indices
        >>> batch_size, raw_sequence_length = input_values.shape
        >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
        >>> mask_time_indices = _compute_mask_indices(
        ...     shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
        ... )
        >>> sampled_negative_indices = _sample_negative_indices(
        ...     features_shape=(batch_size, sequence_length),
        ...     num_negatives=model.config.num_negatives,
        ...     mask_time_indices=mask_time_indices,
        ... )
        >>> mask_time_indices = mindspore.Tensor(data=mask_time_indices, dtype=mindspore.int64)
        >>> sampled_negative_indices = mindspore.Tensor(
        ...     data=sampled_negative_indices, dtype=mindspore.int64
        ... )
        ...
        >>> with ops.no_grad():
        ...     outputs = model(input_values, mask_time_indices=mask_time_indices)
        ...
        >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
        >>> cosine_sim = ops.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
        ...
        >>> # show that cosine similarity is much higher than random
        >>> cosine_sim[mask_time_indices.to(ops.bool)].mean() > 0.5
        tensor(True)
        >>> # for contrastive loss training model should be put into train mode
        >>> model = model.train()
        >>> loss = model(
        ...     input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
        ... ).loss
        ```
    """

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if mask_time_indices is not None:
        mask_time_indices = mask_time_indices.to(mindspore.bool_)

    outputs = self.wav2vec2_conformer(
        input_values,
        attention_mask=attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        mask_time_indices=mask_time_indices,
        return_dict=return_dict,
    )

    # 1. project all transformed features (including masked) to final vq dim
    transformer_features = self.project_hid(outputs[0])

    # 2. quantize all (unmasked) extracted features and project to final vq dim
    extract_features = self.dropout_features(outputs[1])

    if attention_mask is not None:
        # compute reduced attention_mask correponding to feature vectors
        attention_mask = self._get_feature_vector_attention_mask(
            extract_features.shape[1], attention_mask, add_adapter=False
        )

    quantized_features, codevector_perplexity = self.quantizer(
        extract_features, mask_time_indices=mask_time_indices
    )

    quantized_features = quantized_features.to(self.project_q.weight.dtype)
    quantized_features = self.project_q(quantized_features)

    loss = contrastive_loss = diversity_loss = None
    if sampled_negative_indices is not None:
        batch_size, sequence_length, hidden_size = quantized_features.shape

        # for training, we sample negatives
        # 3. sample K negatives (distractors) quantized states for contrastive loss
        # if attention_mask is passed, make sure that padded feature vectors cannot be sampled
        # sample negative quantized vectors BTC => (BxT)C
        negative_quantized_features = quantized_features.view(-1, hidden_size)[
            sampled_negative_indices.long().view(-1)
        ]
        negative_quantized_features = negative_quantized_features.view(
            batch_size, sequence_length, -1, hidden_size
        ).permute(2, 0, 1, 3)

        # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
        # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
        logits = self.compute_contrastive_logits(
            quantized_features[None, :],
            negative_quantized_features,
            transformer_features,
            self.config.contrastive_logits_temperature,
        )

        # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
        # its cosine similarity will be masked
        neg_is_pos = (quantized_features == negative_quantized_features).all(-1)

        if neg_is_pos.any():
            # NOTE: avoid loss NaN
            # float("-inf") => finfo(logits.dtype, 'min') := -3.40282e+38
            logits[1:][neg_is_pos] = -3.40282e+35

        # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
        # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
        logits = logits.swapaxes(0, 2).reshape(-1, logits.shape[0])
        target = ((1 - mask_time_indices.long()) * -100).swapaxes(0, 1).flatten()

        contrastive_loss = ops.cross_entropy(logits.float(), target, reduction="sum")
        # 7. compute diversity loss: \mathbf{L}_d
        num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups
        diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()

        # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d
        loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss

    if not return_dict:
        if loss is not None:
            return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
        return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]

    return Wav2Vec2ConformerForPreTrainingOutput(
        loss=loss,
        projected_states=transformer_features,
        projected_quantized_states=quantized_features,
        codevector_perplexity=codevector_perplexity,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        contrastive_loss=contrastive_loss,
        diversity_loss=diversity_loss,
    )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.freeze_feature_encoder()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1406
1407
1408
1409
1410
1411
def freeze_feature_encoder(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    self.wav2vec2_conformer.feature_extractor._freeze_parameters()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTraining.set_gumbel_temperature(temperature)

Set the Gumbel softmax temperature to a given value. Only necessary for training

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1399
1400
1401
1402
1403
def set_gumbel_temperature(self, temperature: int):
    """
    Set the Gumbel softmax temperature to a given value. Only necessary for training
    """
    self.quantizer.temperature = temperature

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput dataclass

Bases: ModelOutput

Output type of [Wav2Vec2ConformerForPreTraining], with potential hidden states and attentions.

PARAMETER DESCRIPTION
loss

Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the official paper . (classification) loss.

TYPE: *optional*, returned when `sample_negative_indices` are passed, `mindspore.Tensor` of shape `(1,)` DEFAULT: None

projected_states

Hidden-states of the model projected to config.proj_codevector_dim that can be used to predict the masked projected quantized states.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)` DEFAULT: None

projected_quantized_states

Quantized extracted feature vectors projected to config.proj_codevector_dim representing the positive target vectors for contrastive loss.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)` DEFAULT: None

contrastive_loss

The contrastive loss (L_m) as stated in the official paper .

TYPE: *optional*, returned when `sample_negative_indices` are passed, `mindspore.Tensor` of shape `(1,)` DEFAULT: None

diversity_loss

The diversity loss (L_d) as stated in the official paper .

TYPE: *optional*, returned when `sample_negative_indices` are passed, `mindspore.Tensor` of shape `(1,)` DEFAULT: None

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
@dataclass
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput with Wav2Vec2->Wav2Vec2Conformer
class Wav2Vec2ConformerForPreTrainingOutput(ModelOutput):
    """
    Output type of [`Wav2Vec2ConformerForPreTraining`], with potential hidden states and attentions.

    Args:
        loss (*optional*, returned when `sample_negative_indices` are passed, `mindspore.Tensor` of shape `(1,)`):
            Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
            paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
        projected_states (`mindspore.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
            Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
            projected quantized states.
        projected_quantized_states (`mindspore.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
            Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
            target vectors for contrastive loss.
        hidden_states (`tuple(mindspore.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):
            Tuple of `mindspore.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(mindspore.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when
            `config.output_attentions=True`):
            Tuple of `mindspore.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `mindspore.Tensor` of shape `(1,)`):
            The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
        diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `mindspore.Tensor` of shape `(1,)`):
            The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
    """

    loss: Optional[mindspore.Tensor] = None
    projected_states: mindspore.Tensor = None
    projected_quantized_states: mindspore.Tensor = None
    codevector_perplexity: mindspore.Tensor = None
    hidden_states: Optional[Tuple[mindspore.Tensor]] = None
    attentions: Optional[Tuple[mindspore.Tensor]] = None
    contrastive_loss: Optional[mindspore.Tensor] = None
    diversity_loss: Optional[mindspore.Tensor] = None

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification

Bases: Wav2Vec2ConformerPreTrainedModel

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedModel):
    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer
    def __init__(self, config):
        super().__init__(config)

        if hasattr(config, "add_adapter") and config.add_adapter:
            raise ValueError(
                "Sequence classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)"
            )
        self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = mindspore.Parameter(ops.ones(num_layers) / num_layers,'layer_weights')
        self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
        self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wav2vec2_conformer.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for _, param in self.wav2vec2_conformer.parameters_and_names():
            param.requires_grad = False

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER
    def forward(
        self,
        input_values: Optional[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[mindspore.Tensor] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.wav2vec2_conformer(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = ops.stack(hidden_states, axis=1)
            norm_weights = ops.softmax(self.layer_weights, axis=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
        else:
            hidden_states = outputs[0]

        hidden_states = self.projector(hidden_states)
        if attention_mask is None:
            pooled_output = hidden_states.mean(axis=1)
        else:
            padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
            hidden_states[~padding_mask] = 0.0
            pooled_output = hidden_states.sum(axis=1) / padding_mask.sum(axis=1).view(-1, 1)

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            loss = ops.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification.forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
def forward(
    self,
    input_values: Optional[mindspore.Tensor],
    attention_mask: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    labels: Optional[mindspore.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

    outputs = self.wav2vec2_conformer(
        input_values,
        attention_mask=attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    if self.config.use_weighted_layer_sum:
        hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
        hidden_states = ops.stack(hidden_states, axis=1)
        norm_weights = ops.softmax(self.layer_weights, axis=-1)
        hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
    else:
        hidden_states = outputs[0]

    hidden_states = self.projector(hidden_states)
    if attention_mask is None:
        pooled_output = hidden_states.mean(axis=1)
    else:
        padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
        hidden_states[~padding_mask] = 0.0
        pooled_output = hidden_states.sum(axis=1) / padding_mask.sum(axis=1).view(-1, 1)

    logits = self.classifier(pooled_output)

    loss = None
    if labels is not None:
        loss = ops.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))

    if not return_dict:
        output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification.freeze_base_model()

Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1772
1773
1774
1775
1776
1777
1778
def freeze_base_model(self):
    """
    Calling this function will disable the gradient computation for the base model so that its parameters will not
    be updated during training. Only the classification head will be updated.
    """
    for _, param in self.wav2vec2_conformer.parameters_and_names():
        param.requires_grad = False

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForSequenceClassification.freeze_feature_encoder()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1765
1766
1767
1768
1769
1770
def freeze_feature_encoder(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    self.wav2vec2_conformer.feature_extractor._freeze_parameters()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector

Bases: Wav2Vec2ConformerPreTrainedModel

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.wav2vec2_conformer = Wav2Vec2ConformerModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = mindspore.Parameter(ops.ones(num_layers) / num_layers)
        self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])

        tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
        self.tdnn = nn.ModuleList(tdnn_layers)

        self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
        self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)

        self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)

        self.init_weights()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_feature_encoder with wav2vec2->wav2vec2_conformer
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wav2vec2_conformer.feature_extractor._freeze_parameters()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_base_model with wav2vec2->wav2vec2_conformer
    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for _, param in self.wav2vec2_conformer.parameters_and_names():
            param.requires_grad = False

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector._get_tdnn_output_lengths with wav2vec2->wav2vec2_conformer
    def _get_tdnn_output_lengths(self, input_lengths: Union[mindspore.Tensor, int]):
        """
        Computes the output length of the TDNN layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pyops.org/docs/stable/generated/ops.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size in self.config.tdnn_kernel:
            input_lengths = _conv_out_length(input_lengths, kernel_size, 1)

        return input_lengths

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER
    def forward(
        self,
        input_values: Optional[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[mindspore.Tensor] = None,
    ) -> Union[Tuple, XVectorOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.wav2vec2_conformer(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = ops.stack(hidden_states, axis=1)
            norm_weights = ops.softmax(self.layer_weights, axis=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(axis=1)
        else:
            hidden_states = outputs[0]

        hidden_states = self.projector(hidden_states)

        for tdnn_layer in self.tdnn:
            hidden_states = tdnn_layer(hidden_states)

        # Statistic Pooling
        if attention_mask is None:
            mean_features = hidden_states.mean(axis=1)
            std_features = ops.std(hidden_states, axis=1, keepdims=True).squeeze(1)
        else:
            feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
            tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
            mean_features = []
            std_features = []
            for i, length in enumerate(tdnn_output_lengths):
                mean_features.append(hidden_states[i, :length].mean(dim=0))
                std_features.append(hidden_states[i, :length].std(dim=0))
            mean_features = ops.stack(mean_features)
            std_features = ops.stack(std_features)
        statistic_pooling = ops.cat([mean_features, std_features], axis=-1)

        output_embeddings = self.feature_extractor(statistic_pooling)
        logits = self.classifier(output_embeddings)

        loss = None
        if labels is not None:
            labels = labels.astype(mindspore.int32)
            loss = self.objective(logits, labels)

        if not return_dict:
            output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return XVectorOutput(
            loss=loss,
            logits=logits,
            embeddings=output_embeddings,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
def forward(
    self,
    input_values: Optional[mindspore.Tensor],
    attention_mask: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    labels: Optional[mindspore.Tensor] = None,
) -> Union[Tuple, XVectorOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

    outputs = self.wav2vec2_conformer(
        input_values,
        attention_mask=attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    if self.config.use_weighted_layer_sum:
        hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
        hidden_states = ops.stack(hidden_states, axis=1)
        norm_weights = ops.softmax(self.layer_weights, axis=-1)
        hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(axis=1)
    else:
        hidden_states = outputs[0]

    hidden_states = self.projector(hidden_states)

    for tdnn_layer in self.tdnn:
        hidden_states = tdnn_layer(hidden_states)

    # Statistic Pooling
    if attention_mask is None:
        mean_features = hidden_states.mean(axis=1)
        std_features = ops.std(hidden_states, axis=1, keepdims=True).squeeze(1)
    else:
        feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
        tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
        mean_features = []
        std_features = []
        for i, length in enumerate(tdnn_output_lengths):
            mean_features.append(hidden_states[i, :length].mean(dim=0))
            std_features.append(hidden_states[i, :length].std(dim=0))
        mean_features = ops.stack(mean_features)
        std_features = ops.stack(std_features)
    statistic_pooling = ops.cat([mean_features, std_features], axis=-1)

    output_embeddings = self.feature_extractor(statistic_pooling)
    logits = self.classifier(output_embeddings)

    loss = None
    if labels is not None:
        labels = labels.astype(mindspore.int32)
        loss = self.objective(logits, labels)

    if not return_dict:
        output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
        return ((loss,) + output) if loss is not None else output

    return XVectorOutput(
        loss=loss,
        logits=logits,
        embeddings=output_embeddings,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_base_model()

Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
2017
2018
2019
2020
2021
2022
2023
def freeze_base_model(self):
    """
    Calling this function will disable the gradient computation for the base model so that its parameters will not
    be updated during training. Only the classification head will be updated.
    """
    for _, param in self.wav2vec2_conformer.parameters_and_names():
        param.requires_grad = False

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_feature_encoder()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
2009
2010
2011
2012
2013
2014
def freeze_feature_encoder(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    self.wav2vec2_conformer.feature_extractor._freeze_parameters()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerGumbelVectorQuantizer

Bases: Module

Vector quantization using gumbel softmax. See `CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX for more information.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
class Wav2Vec2ConformerGumbelVectorQuantizer(nn.Module):
    """
    Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
    GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
    """

    def __init__(self, config):
        super().__init__()
        self.num_groups = config.num_codevector_groups
        self.num_vars = config.num_codevectors_per_group

        if config.codevector_dim % self.num_groups != 0:
            raise ValueError(
                f"`config.codevector_dim {config.codevector_dim} must be divisible "
                f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
            )

        # storage for codebook variables (codewords)
        self.codevectors = Parameter(
            ops.zeros((1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups))
        )
        self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)

        # can be decayed for training
        self.temperature = 2

    @staticmethod
    def _compute_perplexity(probs, mask=None):
        if mask is not None:
            mask_extended = mask.flatten()[:, None, None].broadcast_to((probs.shape))
            probs = ops.where(mask_extended, probs, ops.zeros_like(probs))
            marginal_probs = probs.sum(axis=0) / mask.sum()
        else:
            marginal_probs = probs.mean(axis=0)

        perplexity = ops.exp(-ops.sum(marginal_probs * ops.log(marginal_probs + 1e-7), dim=-1)).sum()
        return perplexity

    def forward(self, hidden_states, mask_time_indices=None):
        batch_size, sequence_length, hidden_size = hidden_states.shape

        # project to codevector dim
        hidden_states = self.weight_proj(hidden_states)
        hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)

        if self.training:
            # sample code vector probs via gumbel in differentiateable way
            codevector_probs = ops.gumbel_softmax(
                hidden_states.float(), tau=self.temperature, hard=True
            ).type_as(hidden_states)

            # compute perplexity
            codevector_soft_dist = ops.softmax(
                hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), axis=-1
            )
            perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
        else:
            # take argmax in non-differentiable way
            # comptute hard codevector distribution (one hot)
            codevector_idx = ops.argmax(hidden_states,dim=-1)
            x = hidden_states.new_zeros(hidden_states.shape)    # (364, 320)
            index = codevector_idx.view(-1, 1)
            update = ops.ones_like(index, dtype=hidden_states.dtype)    # fill with onehot
            codevector_probs = ops.tensor_scatter_elements(x, index, update, axis=-1)
            codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) # (182, 2, 320)

            perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)

        codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
        # use probs to retrieve codevectors
        codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
        codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
        codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)

        return codevectors, perplexity

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerModel

Bases: Wav2Vec2ConformerPreTrainedModel

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel):
    def __init__(self, config: Wav2Vec2ConformerConfig):
        super().__init__(config)
        self.config = config
        self.feature_extractor = Wav2Vec2ConformerFeatureEncoder(config)
        self.feature_projection = Wav2Vec2ConformerFeatureProjection(config)

        # model only needs masking vector if mask prob is > 0.0
        if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
            self.masked_spec_embed = Parameter(initializer(Normal(), [config.hidden_size]), 'masked_spec_embed')

        self.encoder = Wav2Vec2ConformerEncoder(config)

        self.adapter = Wav2Vec2ConformerAdapter(config) if config.add_adapter else None

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.freeze_feature_encoder
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.feature_extractor._freeze_parameters()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
    def _mask_hidden_states(
        self,
        hidden_states: mindspore.Tensor,
        mask_time_indices: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
    ):
        """
        Masks extracted features along time axis and/or along feature axis according to
        [SpecAugment](https://arxiv.org/abs/1904.08779).
        """

        # `config.apply_spec_augment` can set masking to False
        if not getattr(self.config, "apply_spec_augment", True):
            return hidden_states

        # generate indices & apply SpecAugment along time axis
        batch_size, sequence_length, hidden_size = hidden_states.shape

        if mask_time_indices is not None:
            # apply SpecAugment along time axis with given mask_time_indices
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
        elif self.config.mask_time_prob > 0 and self.training:
            mask_time_indices = _compute_mask_indices(
                (batch_size, sequence_length),
                mask_prob=self.config.mask_time_prob,
                mask_length=self.config.mask_time_length,
                attention_mask=attention_mask,
                min_masks=self.config.mask_time_min_masks,
            )
            mask_time_indices = mindspore.Tensor(mask_time_indices, dtype=mindspore.bool_)
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)

        if self.config.mask_feature_prob > 0 and self.training:
            # generate indices & apply SpecAugment along feature axis
            mask_feature_indices = _compute_mask_indices(
                (batch_size, hidden_size),
                mask_prob=self.config.mask_feature_prob,
                mask_length=self.config.mask_feature_length,
                min_masks=self.config.mask_feature_min_masks,
            )
            mask_feature_indices = mindspore.Tensor(mask_feature_indices, dtype=mindspore.bool_)
            mask_feature_indices = mask_feature_indices[:, None].broadcast_to((-1, sequence_length, -1))
            hidden_states[mask_feature_indices] = 0

        return hidden_states

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.forward with wav2vec2->wav2vec2_conformer
    def forward(
        self,
        input_values: Optional[mindspore.Tensor],
        attention_mask: Optional[mindspore.Tensor] = None,
        mask_time_indices: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict


        extract_features = self.feature_extractor(input_values)
        extract_features = extract_features.swapaxes(1, 2)


        if attention_mask is not None:
            # compute reduced attention_mask corresponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(
                extract_features.shape[1], attention_mask, add_adapter=False
            )


        hidden_states, extract_features = self.feature_projection(extract_features)
        hidden_states = self._mask_hidden_states(
            hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
        )
        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = encoder_outputs[0]

        if self.adapter is not None:
            hidden_states = self.adapter(hidden_states)

        if not return_dict:
            return (hidden_states, extract_features) + encoder_outputs[1:]

        return Wav2Vec2BaseModelOutput(
            last_hidden_state=hidden_states,
            extract_features=extract_features,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerModel.freeze_feature_encoder()

Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1273
1274
1275
1276
1277
1278
def freeze_feature_encoder(self):
    """
    Calling this function will disable the gradient computation for the feature encoder so that its parameter will
    not be updated during training.
    """
    self.feature_extractor._freeze_parameters()

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = Wav2Vec2ConformerConfig
    base_model_prefix = "wav2vec2_conformer"
    main_input_name = "input_values"
    supports_gradient_checkpointing = True


    def _init_weights(self, cell):
        """Initialize the weights"""
        # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init.
        if isinstance(cell, Wav2Vec2ConformerForPreTraining):
            cell.project_hid._is_hf_initialized = True
            cell.project_q._is_hf_initialized = True
        # gumbel softmax requires special init
        elif isinstance(cell, Wav2Vec2ConformerGumbelVectorQuantizer):
            cell.weight_proj.weight.set_data(initializer(Normal(1.0), cell.weight_proj.weight.shape, cell.weight_proj.weight.dtype))
            cell.weight_proj.bias.set_data(initializer('zeros', cell.weight_proj.bias.shape, cell.weight_proj.bias.dtype))
            cell.codevectors.set_data(initializer('uniform', cell.codevectors.shape, cell.codevectors.dtype))
        elif isinstance(cell, Wav2Vec2ConformerSelfAttention):
            if hasattr(cell, "pos_bias_u"):
                cell.pos_bias_u.set_data(initializer('XavierUniform', cell.pos_bias_u.shape, cell.pos_bias_u.dtype))
            if hasattr(cell, "pos_bias_v"):
                cell.pos_bias_v.set_data(initializer('XavierUniform', cell.pos_bias_u.shape, cell.pos_bias_u.dtype))
        elif isinstance(cell, Wav2Vec2ConformerPositionalConvEmbedding):
            cell.conv.weight.set_data(
                initializer(Normal(2 * math.sqrt(1 / (cell.conv.kernel_size[0] * cell.conv.in_channels))),
                            cell.conv.weight.shape, cell.conv.weight.dtype))
            cell.conv.bias.set_data(initializer('zeros', cell.conv.bias.shape, cell.conv.bias.dtype))
        elif isinstance(cell, Wav2Vec2ConformerFeatureProjection):
            k = math.sqrt(1 / cell.projection.in_channels)
            cell.projection.weight.set_data(
                initializer(Uniform(k), cell.projection.weight.shape, cell.projection.weight.dtype))
            cell.projection.bias.set_data(
                initializer(Uniform(k), cell.projection.bias.shape, cell.projection.bias.dtype))
        elif isinstance(cell, nn.Linear):
            cell.weight.set_data(initializer(Normal(self.config.initializer_range), cell.weight.shape, cell.weight.dtype))
            if cell.bias is not None:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, (nn.LayerNorm, nn.GroupNorm)):
            cell.weight.set_data(initializer('ones', cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Conv1d):
            cell.weight.set_data(initializer('he_normal', cell.weight.shape, cell.weight.dtype))
            if cell.bias is not None:
                k = math.sqrt(cell.group / (cell.in_channels * cell.kernel_size[0]))
                cell.bias.set_data(initializer(Uniform(k), cell.bias.shape, cell.bias.dtype))

    def _get_feat_extract_output_lengths(
        self, input_lengths: Union[mindspore.Tensor, int], add_adapter: Optional[bool] = None
    ):
        """
        Computes the output length of the convolutional layers
        """

        add_adapter = self.config.add_adapter if add_adapter is None else add_adapter

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pyops.org/docs/stable/generated/ops.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        if add_adapter:
            for _ in range(self.config.num_adapter_layers):
                input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)

        return input_lengths

    def _get_feature_vector_attention_mask(
        self, feature_vector_length: int, attention_mask: mindspore.Tensor, add_adapter=None
    ):
        # Effectively attention_mask.sum(-1), but not inplace to be able to run
        # on inference mode.
        non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]

        output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
        output_lengths = output_lengths.to(mindspore.int64)

        batch_size = attention_mask.shape[0]

        attention_mask = ops.zeros(
            (batch_size, feature_vector_length), dtype=attention_mask.dtype
        )
        # these two operations makes sure that all values before the output lengths idxs are attended to
        attention_mask[(ops.arange(attention_mask.shape[0]), output_lengths - 1)] = 1
        attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
        return attention_mask

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding

Bases: Module

Relative positional encoding module.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
    """Relative positional encoding module."""

    def __init__(self, config):
        super().__init__()
        self.max_len = config.max_source_positions
        self.d_model = config.hidden_size
        self.pe = None
        self.extend_pe(mindspore.Tensor(0.0).broadcast_to((1, self.max_len)))

    def extend_pe(self, x):
        # Reset the positional encodings
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.shape[1] >= x.shape[1] * 2 - 1:
                if self.pe.dtype != x.dtype :
                    self.pe = self.pe.to(dtype=x.dtype)
                return
        # Suppose `i` is the position of query vector and `j` is the
        # position of key vector. We use positive relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        pe_positive = ops.zeros(x.shape[1], self.d_model)
        pe_negative = ops.zeros(x.shape[1], self.d_model)
        position = ops.arange(0, x.shape[1], dtype=mindspore.int64).float().unsqueeze(1)
        div_term = ops.exp(
            ops.arange(0, self.d_model, 2, dtype=mindspore.int64).float() * -(math.log(10000.0) / self.d_model)
        )
        pe_positive[:, 0::2] = ops.sin(position * div_term)
        pe_positive[:, 1::2] = ops.cos(position * div_term)
        pe_negative[:, 0::2] = ops.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = ops.cos(-1 * position * div_term)

        # Reverse the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = ops.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = ops.cat([pe_positive, pe_negative], axis=1)
        self.pe = pe.to(dtype=x.dtype)

    def forward(self, hidden_states: mindspore.Tensor):
        self.extend_pe(hidden_states)
        start_idx = self.pe.shape[1] // 2 - hidden_states.shape[1] + 1
        end_idx = self.pe.shape[1] // 2 + hidden_states.shape[1]
        relative_position_embeddings = self.pe[:, start_idx:end_idx]

        return relative_position_embeddings

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding

Bases: Module

Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module):
    """Rotary positional embedding
    Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
    """

    def __init__(self, config):
        super().__init__()
        dim = config.hidden_size // config.num_attention_heads
        base = config.rotary_embedding_base

        inv_freq = 1.0 / (base ** (ops.arange(0, dim, 2, dtype=mindspore.int64).float() / dim))
        self.inv_freq = inv_freq
        self.cached_sequence_length = None
        self.cached_rotary_positional_embedding = None

    def forward(self, hidden_states):
        sequence_length = hidden_states.shape[1]

        if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
            return self.cached_rotary_positional_embedding

        self.cached_sequence_length = sequence_length
        # Embeddings are computed in the dtype of the inv_freq constant
        time_stamps = ops.arange(sequence_length).type_as(self.inv_freq)
        freqs = ops.einsum("i,j->ij", time_stamps, self.inv_freq)
        embeddings = ops.cat((freqs, freqs), axis=-1)

        cos_embeddings = embeddings.cos()[:, None, None, :]
        sin_embeddings = embeddings.sin()[:, None, None, :]
        # Computed embeddings are cast to the dtype of the hidden state inputs
        self.cached_rotary_positional_embedding = ops.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
        return self.cached_rotary_positional_embedding

mindnlp.transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention

Bases: Module

Construct an Wav2Vec2ConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings.

Source code in mindnlp/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
class Wav2Vec2ConformerSelfAttention(nn.Module):
    """
    Construct an Wav2Vec2ConformerSelfAttention object.
    Can be enhanced with rotary or relative position embeddings.
    """

    def __init__(self, config):
        super().__init__()

        self.head_size = config.hidden_size // config.num_attention_heads
        self.num_heads = config.num_attention_heads
        self.position_embeddings_type = config.position_embeddings_type

        self.linear_q = nn.Linear(config.hidden_size, config.hidden_size)
        self.linear_k = nn.Linear(config.hidden_size, config.hidden_size)
        self.linear_v = nn.Linear(config.hidden_size, config.hidden_size)
        self.linear_out = nn.Linear(config.hidden_size, config.hidden_size)

        self.dropout = nn.Dropout(p=config.attention_dropout)

        if self.position_embeddings_type == "relative":
            # linear transformation for positional encoding
            self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
            # these two learnable bias are used in matrix c and matrix d
            # as described in https://arxiv.org/abs/1901.02860 Section 3.3
            self.pos_bias_u = mindspore.Parameter(ops.zeros(self.num_heads, self.head_size),'pos_bias_u')
            self.pos_bias_v = mindspore.Parameter(ops.zeros(self.num_heads, self.head_size),'pos_bias_v')

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: Optional[mindspore.Tensor] = None,
        relative_position_embeddings: Optional[mindspore.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[mindspore.Tensor, Optional[mindspore.Tensor], Optional[Tuple[mindspore.Tensor]]]:
        # self-attention mechanism
        batch_size, sequence_length, hidden_size = hidden_states.shape

        # make sure query/key states can be != value states
        query_key_states = hidden_states
        value_states = hidden_states

        if self.position_embeddings_type == "rotary":
            if relative_position_embeddings is None:
                raise ValueError(
                    "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
                )
            query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)

        # project query_key_states and value_states
        query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
        key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
        value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)

        # => (batch, head, time1, d_k)
        query = query.swapaxes(1, 2)
        key = key.swapaxes(1, 2)
        value = value.swapaxes(1, 2)

        if self.position_embeddings_type == "relative":
            if relative_position_embeddings is None:
                raise ValueError(
                    "`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
                    " 'relative'"
                )
            # apply relative_position_embeddings to qk scores
            # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
            scores = self._apply_relative_embeddings(
                query=query, key=key, relative_position_embeddings=relative_position_embeddings
            )
        else:
            scores = ops.matmul(query, key.swapaxes(-2, -1)) / math.sqrt(self.head_size)

        # apply attention_mask if necessary
        if attention_mask is not None:
            scores = scores + attention_mask

        # => (batch, head, time1, time2)
        probs = ops.softmax(scores, axis=-1)
        probs = self.dropout(probs)

        # => (batch, head, time1, d_k)
        hidden_states = ops.matmul(probs, value)

        # => (batch, time1, hidden_size)
        hidden_states = hidden_states.swapaxes(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
        hidden_states = self.linear_out(hidden_states)

        return hidden_states, probs

    def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
        batch_size, sequence_length, hidden_size = hidden_states.shape
        hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)

        cos = relative_position_embeddings[0, :sequence_length, ...]
        sin = relative_position_embeddings[1, :sequence_length, ...]

        # rotate hidden_states with rotary embeddings
        hidden_states = hidden_states.swapaxes(0, 1)
        rotated_states_begin = hidden_states[..., : self.head_size // 2]
        rotated_states_end = hidden_states[..., self.head_size // 2 :]
        rotated_states = ops.cat((-rotated_states_end, rotated_states_begin), axis=rotated_states_begin.ndim - 1)
        hidden_states = (hidden_states * cos) + (rotated_states * sin)
        hidden_states = hidden_states.swapaxes(0, 1)

        hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)

        return hidden_states

    def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
        # 1. project positional embeddings
        # => (batch, head, 2*time1-1, d_k)
        proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
        proj_relative_position_embeddings = proj_relative_position_embeddings.view(
            relative_position_embeddings.shape[0], -1, self.num_heads, self.head_size
        )
        proj_relative_position_embeddings = proj_relative_position_embeddings.swapaxes(1, 2)
        proj_relative_position_embeddings = proj_relative_position_embeddings.swapaxes(2, 3)

        # 2. Add bias to query
        # => (batch, head, time1, d_k)
        query = query.swapaxes(1, 2)
        q_with_bias_u = (query + self.pos_bias_u).swapaxes(1, 2)
        q_with_bias_v = (query + self.pos_bias_v).swapaxes(1, 2)

        # 3. attention score: first compute matrix a and matrix c
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        # => (batch, head, time1, time2)
        scores_ac = ops.matmul(q_with_bias_u, key.swapaxes(-2, -1))

        # 4. then compute matrix b and matrix d
        # => (batch, head, time1, 2*time1-1)
        scores_bd = ops.matmul(q_with_bias_v, proj_relative_position_embeddings)

        # 5. shift matrix b and matrix d
        zero_pad = ops.zeros((*scores_bd.shape[:3], 1), dtype=scores_bd.dtype)
        scores_bd_padded = ops.cat([zero_pad, scores_bd], axis=-1)
        scores_bd_padded_shape = scores_bd.shape[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
        scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
        scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
        scores_bd = scores_bd[:, :, :, : scores_bd.shape[-1] // 2 + 1]

        # 6. sum matrices
        # => (batch, head, time1, time2)
        scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)

        return scores