Skip to content

xlm_roberta_xl

mindnlp.transformers.models.xlm_roberta_xl.configuration_xlm_roberta_xl

XLM_ROBERTa_XL configuration

mindnlp.transformers.models.xlm_roberta_xl.configuration_xlm_roberta_xl.XLMRobertaXLConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [XLMRobertaXLModel] or a [TFXLMRobertaXLModel]. It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XLM_ROBERTA_XL facebook/xlm-roberta-xl architecture.

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

PARAMETER DESCRIPTION
vocab_size

Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [XLMRobertaXLModel].

TYPE: `int`, *optional*, defaults to 250880 DEFAULT: 250880

hidden_size

Dimensionality of the encoder layers and the pooler layer.

TYPE: `int`, *optional*, defaults to 2560 DEFAULT: 2560

num_hidden_layers

Number of hidden layers in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 36 DEFAULT: 36

num_attention_heads

Number of attention heads for each attention layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 32 DEFAULT: 32

intermediate_size

Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.

TYPE: `int`, *optional*, defaults to 10240 DEFAULT: 10240

hidden_act

The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

TYPE: `str` or `Callable`, *optional*, defaults to `"gelu"` DEFAULT: 'gelu'

hidden_dropout_prob

The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

attention_probs_dropout_prob

The dropout ratio for the attention probabilities.

TYPE: `float`, *optional*, defaults to 0.1 DEFAULT: 0.1

max_position_embeddings

The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

TYPE: `int`, *optional*, defaults to 514 DEFAULT: 514

type_vocab_size

The vocabulary size of the token_type_ids passed when calling [XLMRobertaXLModel] or [TFXLMRobertaXLModel].

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

initializer_range

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

TYPE: `float`, *optional*, defaults to 0.02 DEFAULT: 0.02

layer_norm_eps

The epsilon used by the layer normalization layers.

TYPE: `float`, *optional*, defaults to 1e-5 DEFAULT: 1e-05

position_embedding_type

Type of position embedding. Choose one of "absolute", "relative_key", "relative_key_query". For positional embeddings use "absolute". For more information on "relative_key", please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on "relative_key_query", please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

TYPE: `str`, *optional*, defaults to `"absolute"` DEFAULT: 'absolute'

use_cache

Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

classifier_dropout

The dropout ratio for the classification head.

TYPE: `float`, *optional* DEFAULT: None

Example
>>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel
...
>>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration
>>> configuration = XLMRobertaXLConfig()
...
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = XLMRobertaXLModel(configuration)
...
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in mindnlp/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class XLMRobertaXLConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`].
    It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
    XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 250880):
            Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`XLMRobertaXLModel`].
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 10240):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 514):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 1):
            The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or
            [`TFXLMRobertaXLModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Example:
        ```python
        >>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel
        ...
        >>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration
        >>> configuration = XLMRobertaXLConfig()
        ...
        >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
        >>> model = XLMRobertaXLModel(configuration)
        ...
        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """

    model_type = "xlm-roberta-xl"

    def __init__(
        self,
        vocab_size=250880,
        hidden_size=2560,
        num_hidden_layers=36,
        num_attention_heads=32,
        intermediate_size=10240,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=514,
        type_vocab_size=1,
        initializer_range=0.02,
        layer_norm_eps=1e-05,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        position_embedding_type="absolute",
        use_cache=True,
        classifier_dropout=None,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache
        self.classifier_dropout = classifier_dropout

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl

PyTorch XLM RoBERTa xl,xxl model.

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLClassificationHead

Bases: Module

Head for sentence-level classification tasks.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
class XLMRobertaXLClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(p=classifier_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = ops.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLEmbeddings

Bases: Module

Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
class XLMRobertaXLEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """
    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
    def __init__(self, config):
        """
        __init__

        Initializes a new instance of the XLMRobertaEmbeddings class.

        Args:
            self: The instance of the XLMRobertaEmbeddings class.
            config: An object containing configuration parameters for the XLMRoberta model.
                It includes the following attributes:

                - vocab_size (int): The size of the vocabulary.
                - hidden_size (int): The dimension of the hidden layers.
                - max_position_embeddings (int): The maximum number of positional embeddings.
                - type_vocab_size (int): The size of the token type vocabulary.
                - layer_norm_eps (float): The epsilon value for layer normalization.
                - hidden_dropout_prob (float): The dropout probability.
                - position_embedding_type (str, optional): The type of position embedding. Defaults to 'absolute'.
                - pad_token_id (int): The id of the padding token.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.position_ids = ops.arange(config.max_position_embeddings).broadcast_to((1, -1))
        self.token_type_ids = ops.zeros(self.position_ids.shape, dtype=mindspore.int64)

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )

    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
        """
        Class: XLMRobertaEmbeddings

        Method: forward

        This method forwards the embeddings for the XLM-Roberta model.

        Args:
            self: (object) The instance of the class.
            input_ids: (Tensor, optional) The input tensor containing the token ids. Default is None.
            token_type_ids: (Tensor, optional) The input tensor containing the token type ids. Default is None.
            position_ids: (Tensor, optional) The input tensor containing the position ids. Default is None.
            inputs_embeds: (Tensor, optional) The input embeddings tensor. Default is None.
            past_key_values_length: (int) The length of the past key values. Default is 0.

        Returns:
            embeddings: (Tensor) The forwarded embeddings for the XLM-Roberta model.

        Raises:
            ValueError: If both input_ids and inputs_embeds are None,
                or if an unsupported position_embedding_type is provided.
            IndexError: If input_ids or inputs_embeds do not have the expected shape.
            AttributeError: If the 'token_type_ids' attribute is missing in the class.
        """
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.shape
        else:
            input_shape = inputs_embeds.shape[:-1]

        seq_length = input_shape[1]

        # Setting the token_type_ids to the registered buffer in forwardor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: mindspore.Tensor

        Returns:
            mindspore.Tensor
        """
        input_shape = inputs_embeds.shape[:-1]
        sequence_length = input_shape[1]

        position_ids = ops.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=mindspore.int64)
        return position_ids.unsqueeze(0).broadcast_to(input_shape)

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLEmbeddings.__init__(config)

init

Initializes a new instance of the XLMRobertaEmbeddings class.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaEmbeddings class.

config

An object containing configuration parameters for the XLMRoberta model. It includes the following attributes:

  • vocab_size (int): The size of the vocabulary.
  • hidden_size (int): The dimension of the hidden layers.
  • max_position_embeddings (int): The maximum number of positional embeddings.
  • type_vocab_size (int): The size of the token type vocabulary.
  • layer_norm_eps (float): The epsilon value for layer normalization.
  • hidden_dropout_prob (float): The dropout probability.
  • position_embedding_type (str, optional): The type of position embedding. Defaults to 'absolute'.
  • pad_token_id (int): The id of the padding token.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def __init__(self, config):
    """
    __init__

    Initializes a new instance of the XLMRobertaEmbeddings class.

    Args:
        self: The instance of the XLMRobertaEmbeddings class.
        config: An object containing configuration parameters for the XLMRoberta model.
            It includes the following attributes:

            - vocab_size (int): The size of the vocabulary.
            - hidden_size (int): The dimension of the hidden layers.
            - max_position_embeddings (int): The maximum number of positional embeddings.
            - type_vocab_size (int): The size of the token type vocabulary.
            - layer_norm_eps (float): The epsilon value for layer normalization.
            - hidden_dropout_prob (float): The dropout probability.
            - position_embedding_type (str, optional): The type of position embedding. Defaults to 'absolute'.
            - pad_token_id (int): The id of the padding token.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__()
    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
    # any TensorFlow checkpoint file
    self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
    self.position_ids = ops.arange(config.max_position_embeddings).broadcast_to((1, -1))
    self.token_type_ids = ops.zeros(self.position_ids.shape, dtype=mindspore.int64)

    # End copy
    self.padding_idx = config.pad_token_id
    self.position_embeddings = nn.Embedding(
        config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLEmbeddings.create_position_ids_from_inputs_embeds(inputs_embeds)

We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

PARAMETER DESCRIPTION
inputs_embeds

mindspore.Tensor

RETURNS DESCRIPTION

mindspore.Tensor

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
    """
    We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

    Args:
        inputs_embeds: mindspore.Tensor

    Returns:
        mindspore.Tensor
    """
    input_shape = inputs_embeds.shape[:-1]
    sequence_length = input_shape[1]

    position_ids = ops.arange(
        self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=mindspore.int64)
    return position_ids.unsqueeze(0).broadcast_to(input_shape)

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLEmbeddings.forward(input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0)

Method: forward

This method forwards the embeddings for the XLM-Roberta model.

PARAMETER DESCRIPTION
self

(object) The instance of the class.

input_ids

(Tensor, optional) The input tensor containing the token ids. Default is None.

DEFAULT: None

token_type_ids

(Tensor, optional) The input tensor containing the token type ids. Default is None.

DEFAULT: None

position_ids

(Tensor, optional) The input tensor containing the position ids. Default is None.

DEFAULT: None

inputs_embeds

(Tensor, optional) The input embeddings tensor. Default is None.

DEFAULT: None

past_key_values_length

(int) The length of the past key values. Default is 0.

DEFAULT: 0

RETURNS DESCRIPTION
embeddings

(Tensor) The forwarded embeddings for the XLM-Roberta model.

RAISES DESCRIPTION
ValueError

If both input_ids and inputs_embeds are None, or if an unsupported position_embedding_type is provided.

IndexError

If input_ids or inputs_embeds do not have the expected shape.

AttributeError

If the 'token_type_ids' attribute is missing in the class.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def forward(
    self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
    """
    Class: XLMRobertaEmbeddings

    Method: forward

    This method forwards the embeddings for the XLM-Roberta model.

    Args:
        self: (object) The instance of the class.
        input_ids: (Tensor, optional) The input tensor containing the token ids. Default is None.
        token_type_ids: (Tensor, optional) The input tensor containing the token type ids. Default is None.
        position_ids: (Tensor, optional) The input tensor containing the position ids. Default is None.
        inputs_embeds: (Tensor, optional) The input embeddings tensor. Default is None.
        past_key_values_length: (int) The length of the past key values. Default is 0.

    Returns:
        embeddings: (Tensor) The forwarded embeddings for the XLM-Roberta model.

    Raises:
        ValueError: If both input_ids and inputs_embeds are None,
            or if an unsupported position_embedding_type is provided.
        IndexError: If input_ids or inputs_embeds do not have the expected shape.
        AttributeError: If the 'token_type_ids' attribute is missing in the class.
    """
    if position_ids is None:
        if input_ids is not None:
            # Create the position ids from the input token ids. Any padded tokens remain padded.
            position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
        else:
            position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

    if input_ids is not None:
        input_shape = input_ids.shape
    else:
        input_shape = inputs_embeds.shape[:-1]

    seq_length = input_shape[1]

    # Setting the token_type_ids to the registered buffer in forwardor where it is all zeros, which usually occurs
    # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
    # issue #5664
    if token_type_ids is None:
        if hasattr(self, "token_type_ids"):
            buffered_token_type_ids = self.token_type_ids[:, :seq_length]
            buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
            token_type_ids = buffered_token_type_ids_expanded
        else:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

    if inputs_embeds is None:
        inputs_embeds = self.word_embeddings(input_ids)
    token_type_embeddings = self.token_type_embeddings(token_type_ids)

    embeddings = inputs_embeds + token_type_embeddings
    if self.position_embedding_type == "absolute":
        position_embeddings = self.position_embeddings(position_ids)
        embeddings += position_embeddings
    embeddings = self.dropout(embeddings)
    return embeddings

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForCausalLM

Bases: XLMRobertaXLPreTrainedModel

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
class XLMRobertaXLForCausalLM(XLMRobertaXLPreTrainedModel):
    _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]

    def __init__(self, config):
        """
        Initializes an instance of the XLMRobertaForCausalLM class.

        Args:
            self: The instance of the class.
            config: An object representing the configuration for the XLMRobertaForCausalLM model.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        if not config.is_decoder:
            logger.warning("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
        self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
        self.lm_head = XLMRobertaXLLMHead(config)

        # Initialize weights and apply final processing
        self.init_weights()

    def get_output_embeddings(self):
        """
        Method to retrieve the output embeddings from XLMRobertaForCausalLM model.

        Args:
            self (XLMRobertaForCausalLM): The instance of the XLMRobertaForCausalLM class.
                It is used to access the decoder of the model to get the output embeddings.

        Returns:
            None: This method does not return any value but directly provides access to the output embeddings through
                the decoder.

        Raises:
            None.
        """
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        """
        Sets the output embeddings for the XLMRobertaForCausalLM model.

        Args:
            self (XLMRobertaForCausalLM): The instance of the XLMRobertaForCausalLM class.
            new_embeddings (torch.nn.Module): The new embeddings to be set as the output embeddings for the model.

        Returns:
            None.

        Raises:
            None.

        Note:
            The output embeddings are used in the decoder layer of the XLMRobertaForCausalLM model.
            By setting new embeddings, users can customize the output layer of the model according to their specific
            requirements.

        Example:
            ```python
            >>> model = XLMRobertaForCausalLM.from_pretrained('xlm-roberta-base')
            >>> new_embeddings = torch.nn.Embedding(10, 768)
            >>> model.set_output_embeddings(new_embeddings)
            ```
        """
        self.lm_head.decoder = new_embeddings
        self.lm_head.bias = new_embeddings.bias
    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        past_key_values: Tuple[Tuple[mindspore.Tensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]:
        r"""
        Args:
            encoder_hidden_states  (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
                the model is configured as a decoder.
            encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
                the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
                `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
                ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
            past_key_values (`tuple(tuple(mindspore.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of
                shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
                Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
                don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
                `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
                `past_key_values`).

        Returns:
            `Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]`

        Example:
            ```python
            >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig
            ...
            >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
            >>> config = AutoConfig.from_pretrained("roberta-base")
            >>> config.is_decoder = True
            >>> model = XLMRobertaForCausalLM.from_pretrained("roberta-base", config=config)
            ...
            >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
            >>> outputs = model(**inputs)
            ...
            >>> prediction_logits = outputs.logits
            ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shifted_prediction_scores = prediction_scores[:, :-1, :]
            labels = labels[:, 1:]
            lm_loss = ops.cross_entropy(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=lm_loss,
            logits=prediction_scores,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        # cut decoder_input_ids if past_key_values is used
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}

    def _reorder_cache(self, past_key_values, beam_idx):
        """
        Reorders the cache of past key values based on the provided beam index.

        Args:
            self (XLMRobertaForCausalLM): The instance of XLMRobertaForCausalLM.
            past_key_values (tuple): A tuple of past key values for each layer.
            beam_idx (torch.Tensor): A tensor containing the beam indices.

        Returns:
            None.

        Raises:
            IndexError: If the beam index is out of range for the past_key_values.
            TypeError: If the input types are incorrect or incompatible.
        """
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),
            )
        return reordered_past

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForCausalLM.__init__(config)

Initializes an instance of the XLMRobertaForCausalLM class.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An object representing the configuration for the XLMRobertaForCausalLM model.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
def __init__(self, config):
    """
    Initializes an instance of the XLMRobertaForCausalLM class.

    Args:
        self: The instance of the class.
        config: An object representing the configuration for the XLMRobertaForCausalLM model.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    if not config.is_decoder:
        logger.warning("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
    self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
    self.lm_head = XLMRobertaXLLMHead(config)

    # Initialize weights and apply final processing
    self.init_weights()

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForCausalLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
encoder_hidden_states

Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

TYPE: (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

encoder_attention_mask

Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

labels

Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

use_cache

If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

TYPE: `bool`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Union[Tuple[Tensor], CausalLMOutputWithCrossAttentions]

Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]

Example
>>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig
...
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True
>>> model = XLMRobertaForCausalLM.from_pretrained("roberta-base", config=config)
...
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
...
>>> prediction_logits = outputs.logits
Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    past_key_values: Tuple[Tuple[mindspore.Tensor]] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]:
    r"""
    Args:
        encoder_hidden_states  (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
            ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        past_key_values (`tuple(tuple(mindspore.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of
            shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).

    Returns:
        `Union[Tuple[mindspore.Tensor], CausalLMOutputWithCrossAttentions]`

    Example:
        ```python
        >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig
        ...
        >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
        >>> config = AutoConfig.from_pretrained("roberta-base")
        >>> config.is_decoder = True
        >>> model = XLMRobertaForCausalLM.from_pretrained("roberta-base", config=config)
        ...
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
        ...
        >>> prediction_logits = outputs.logits
        ```
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    if labels is not None:
        use_cache = False

    outputs = self.roberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        encoder_hidden_states=encoder_hidden_states,
        encoder_attention_mask=encoder_attention_mask,
        past_key_values=past_key_values,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]
    prediction_scores = self.lm_head(sequence_output)

    lm_loss = None
    if labels is not None:
        # we are doing next-token prediction; shift prediction scores and input ids by one
        shifted_prediction_scores = prediction_scores[:, :-1, :]
        labels = labels[:, 1:]
        lm_loss = ops.cross_entropy(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

    if not return_dict:
        output = (prediction_scores,) + outputs[2:]
        return ((lm_loss,) + output) if lm_loss is not None else output

    return CausalLMOutputWithCrossAttentions(
        loss=lm_loss,
        logits=prediction_scores,
        past_key_values=outputs.past_key_values,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        cross_attentions=outputs.cross_attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForCausalLM.get_output_embeddings()

Method to retrieve the output embeddings from XLMRobertaForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaForCausalLM class. It is used to access the decoder of the model to get the output embeddings.

TYPE: XLMRobertaForCausalLM

RETURNS DESCRIPTION
None

This method does not return any value but directly provides access to the output embeddings through the decoder.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
def get_output_embeddings(self):
    """
    Method to retrieve the output embeddings from XLMRobertaForCausalLM model.

    Args:
        self (XLMRobertaForCausalLM): The instance of the XLMRobertaForCausalLM class.
            It is used to access the decoder of the model to get the output embeddings.

    Returns:
        None: This method does not return any value but directly provides access to the output embeddings through
            the decoder.

    Raises:
        None.
    """
    return self.lm_head.decoder

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForCausalLM.set_output_embeddings(new_embeddings)

Sets the output embeddings for the XLMRobertaForCausalLM model.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaForCausalLM class.

TYPE: XLMRobertaForCausalLM

new_embeddings

The new embeddings to be set as the output embeddings for the model.

TYPE: Module

RETURNS DESCRIPTION

None.

Note

The output embeddings are used in the decoder layer of the XLMRobertaForCausalLM model. By setting new embeddings, users can customize the output layer of the model according to their specific requirements.

Example
>>> model = XLMRobertaForCausalLM.from_pretrained('xlm-roberta-base')
>>> new_embeddings = torch.nn.Embedding(10, 768)
>>> model.set_output_embeddings(new_embeddings)
Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
def set_output_embeddings(self, new_embeddings):
    """
    Sets the output embeddings for the XLMRobertaForCausalLM model.

    Args:
        self (XLMRobertaForCausalLM): The instance of the XLMRobertaForCausalLM class.
        new_embeddings (torch.nn.Module): The new embeddings to be set as the output embeddings for the model.

    Returns:
        None.

    Raises:
        None.

    Note:
        The output embeddings are used in the decoder layer of the XLMRobertaForCausalLM model.
        By setting new embeddings, users can customize the output layer of the model according to their specific
        requirements.

    Example:
        ```python
        >>> model = XLMRobertaForCausalLM.from_pretrained('xlm-roberta-base')
        >>> new_embeddings = torch.nn.Embedding(10, 768)
        >>> model.set_output_embeddings(new_embeddings)
        ```
    """
    self.lm_head.decoder = new_embeddings
    self.lm_head.bias = new_embeddings.bias

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMaskedLM

Bases: XLMRobertaXLPreTrainedModel

XLMRobertaForMaskedLM

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
class XLMRobertaXLForMaskedLM(XLMRobertaXLPreTrainedModel):
    """XLMRobertaForMaskedLM"""
    _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]

    def __init__(self, config):
        """
        Initializes an instance of XLMRobertaForMaskedLM.

        Args:
            self: The instance of the class.
            config (object): The configuration object containing the settings for the model.
                It should have attributes like 'is_decoder' to control the behavior of the model.
                If 'is_decoder' is set to True, a warning message will be logged.
                Ensure that 'is_decoder' is set to False for bi-directional self-attention.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
        self.lm_head = XLMRobertaXLLMHead(config)

        # Initialize weights and apply final processing
        self.init_weights()

    def get_output_embeddings(self):
        """Get the output embeddings for the XLM-Roberta model.

        Args:
            self (XLMRobertaForMaskedLM): The instance of the XLMRobertaForMaskedLM class.

        Returns:
            None.

        Raises:
            None.
        """
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        """
        This method sets the output embeddings for the XLMRobertaForMaskedLM model.

        Args:
            self (XLMRobertaForMaskedLM): The instance of the XLMRobertaForMaskedLM class.
            new_embeddings (torch.nn.Module): The new embeddings to be set as the output embeddings for the model. 
                It should be an instance of torch.nn.Module representing the new embeddings.

        Returns:
            None.

        Raises:
            TypeError: If the new_embeddings parameter is not an instance of torch.nn.Module.
            AttributeError: If the lm_head.decoder attribute does not exist or is not accessible within the
                XLMRobertaForMaskedLM instance.
        """
        self.lm_head.decoder = new_embeddings
        self.lm_head.bias = new_embeddings.bias

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], MaskedLMOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
                config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
                loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
            kwargs (`Dict[str, any]`, optional, defaults to *{}*):
                Used to hide legacy arguments that have been deprecated.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMaskedLM.__init__(config)

Initializes an instance of XLMRobertaForMaskedLM.

PARAMETER DESCRIPTION
self

The instance of the class.

config

The configuration object containing the settings for the model. It should have attributes like 'is_decoder' to control the behavior of the model. If 'is_decoder' is set to True, a warning message will be logged. Ensure that 'is_decoder' is set to False for bi-directional self-attention.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
def __init__(self, config):
    """
    Initializes an instance of XLMRobertaForMaskedLM.

    Args:
        self: The instance of the class.
        config (object): The configuration object containing the settings for the model.
            It should have attributes like 'is_decoder' to control the behavior of the model.
            If 'is_decoder' is set to True, a warning message will be logged.
            Ensure that 'is_decoder' is set to False for bi-directional self-attention.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    if config.is_decoder:
        logger.warning(
            "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
            "bi-directional self-attention."
        )

    self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
    self.lm_head = XLMRobertaXLLMHead(config)

    # Initialize weights and apply final processing
    self.init_weights()

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMaskedLM.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

kwargs

Used to hide legacy arguments that have been deprecated.

TYPE: `Dict[str, any]`, optional, defaults to *{}*

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], MaskedLMOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        kwargs (`Dict[str, any]`, optional, defaults to *{}*):
            Used to hide legacy arguments that have been deprecated.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.roberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        encoder_hidden_states=encoder_hidden_states,
        encoder_attention_mask=encoder_attention_mask,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]
    prediction_scores = self.lm_head(sequence_output)

    masked_lm_loss = None
    if labels is not None:
        # move labels to correct device to enable model parallelism
        masked_lm_loss = ops.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

    if not return_dict:
        output = (prediction_scores,) + outputs[2:]
        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

    return MaskedLMOutput(
        loss=masked_lm_loss,
        logits=prediction_scores,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMaskedLM.get_output_embeddings()

Get the output embeddings for the XLM-Roberta model.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaForMaskedLM class.

TYPE: XLMRobertaForMaskedLM

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
def get_output_embeddings(self):
    """Get the output embeddings for the XLM-Roberta model.

    Args:
        self (XLMRobertaForMaskedLM): The instance of the XLMRobertaForMaskedLM class.

    Returns:
        None.

    Raises:
        None.
    """
    return self.lm_head.decoder

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMaskedLM.set_output_embeddings(new_embeddings)

This method sets the output embeddings for the XLMRobertaForMaskedLM model.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaForMaskedLM class.

TYPE: XLMRobertaForMaskedLM

new_embeddings

The new embeddings to be set as the output embeddings for the model. It should be an instance of torch.nn.Module representing the new embeddings.

TYPE: Module

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the new_embeddings parameter is not an instance of torch.nn.Module.

AttributeError

If the lm_head.decoder attribute does not exist or is not accessible within the XLMRobertaForMaskedLM instance.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
def set_output_embeddings(self, new_embeddings):
    """
    This method sets the output embeddings for the XLMRobertaForMaskedLM model.

    Args:
        self (XLMRobertaForMaskedLM): The instance of the XLMRobertaForMaskedLM class.
        new_embeddings (torch.nn.Module): The new embeddings to be set as the output embeddings for the model. 
            It should be an instance of torch.nn.Module representing the new embeddings.

    Returns:
        None.

    Raises:
        TypeError: If the new_embeddings parameter is not an instance of torch.nn.Module.
        AttributeError: If the lm_head.decoder attribute does not exist or is not accessible within the
            XLMRobertaForMaskedLM instance.
    """
    self.lm_head.decoder = new_embeddings
    self.lm_head.bias = new_embeddings.bias

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMultipleChoice

Bases: XLMRobertaXLPreTrainedModel

XLMRobertaForMultipleChoice

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
class XLMRobertaXLForMultipleChoice(XLMRobertaXLPreTrainedModel):
    """XLMRobertaForMultipleChoice"""
    def __init__(self, config):
        """
        __init__

        Initialize the XLMRobertaForMultipleChoice model.

        Args:
            self: The instance of the class.
            config: An instance of the configuration class containing the model configuration.
                It is used to initialize the XLMRobertaModel, dropout, and classifier.
                It should be of type XLMRobertaConfig.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)

        self.roberta = XLMRobertaXLModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self.init_weights()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], MultipleChoiceModelOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
                num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
                `input_ids` above)
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
        flat_position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
        flat_inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1])
            if inputs_embeds is not None
            else None
        )

        outputs = self.roberta(
            flat_input_ids,
            position_ids=flat_position_ids,
            token_type_ids=flat_token_type_ids,
            attention_mask=flat_attention_mask,
            head_mask=head_mask,
            inputs_embeds=flat_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            loss = ops.cross_entropy(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMultipleChoice.__init__(config)

init

Initialize the XLMRobertaForMultipleChoice model.

PARAMETER DESCRIPTION
self

The instance of the class.

config

An instance of the configuration class containing the model configuration. It is used to initialize the XLMRobertaModel, dropout, and classifier. It should be of type XLMRobertaConfig.

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
def __init__(self, config):
    """
    __init__

    Initialize the XLMRobertaForMultipleChoice model.

    Args:
        self: The instance of the class.
        config: An instance of the configuration class containing the model configuration.
            It is used to initialize the XLMRobertaModel, dropout, and classifier.
            It should be of type XLMRobertaConfig.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)

    self.roberta = XLMRobertaXLModel(config)
    self.dropout = nn.Dropout(config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, 1)

    # Initialize weights and apply final processing
    self.init_weights()

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForMultipleChoice.forward(input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], MultipleChoiceModelOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

    flat_input_ids = input_ids.view(-1, input_ids.shape[-1]) if input_ids is not None else None
    flat_position_ids = position_ids.view(-1, position_ids.shape[-1]) if position_ids is not None else None
    flat_token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
    flat_attention_mask = attention_mask.view(-1, attention_mask.shape[-1]) if attention_mask is not None else None
    flat_inputs_embeds = (
        inputs_embeds.view(-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1])
        if inputs_embeds is not None
        else None
    )

    outputs = self.roberta(
        flat_input_ids,
        position_ids=flat_position_ids,
        token_type_ids=flat_token_type_ids,
        attention_mask=flat_attention_mask,
        head_mask=head_mask,
        inputs_embeds=flat_inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    pooled_output = outputs[1]

    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)
    reshaped_logits = logits.view(-1, num_choices)

    loss = None
    if labels is not None:
        # move labels to correct device to enable model parallelism
        loss = ops.cross_entropy(reshaped_logits, labels)

    if not return_dict:
        output = (reshaped_logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return MultipleChoiceModelOutput(
        loss=loss,
        logits=reshaped_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForQuestionAnswering

Bases: XLMRobertaXLPreTrainedModel

XLMRobertaForQuestionAnswering

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
class XLMRobertaXLForQuestionAnswering(XLMRobertaXLPreTrainedModel):
    """XLMRobertaForQuestionAnswering"""
    def __init__(self, config):
        """
        Initializes the XLMRobertaForQuestionAnswering class.

        Args:
            self (XLMRobertaForQuestionAnswering): The instance of the XLMRobertaForQuestionAnswering class.
            config (XLMRobertaConfig): The configuration object for the XLM-RoBERTa model. It contains various parameters 
                for model initialization, such as num_labels, hidden_size, and more.

        Returns:
            None.

        Raises:
            TypeError: If the provided config is not of type XLMRobertaConfig.
            ValueError: If the number of labels in the config is not a positive integer.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.init_weights()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        start_positions: Optional[mindspore.Tensor] = None,
        end_positions: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], QuestionAnsweringModelOutput]:
        r"""
        Args:
            start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the start of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
            end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for position (index) of the end of the labelled span for computing the token classification loss.
                Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
                are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.shape) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.shape) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.shape[1]
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
            end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForQuestionAnswering.__init__(config)

Initializes the XLMRobertaForQuestionAnswering class.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaForQuestionAnswering class.

TYPE: XLMRobertaForQuestionAnswering

config

The configuration object for the XLM-RoBERTa model. It contains various parameters for model initialization, such as num_labels, hidden_size, and more.

TYPE: XLMRobertaConfig

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If the provided config is not of type XLMRobertaConfig.

ValueError

If the number of labels in the config is not a positive integer.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
def __init__(self, config):
    """
    Initializes the XLMRobertaForQuestionAnswering class.

    Args:
        self (XLMRobertaForQuestionAnswering): The instance of the XLMRobertaForQuestionAnswering class.
        config (XLMRobertaConfig): The configuration object for the XLM-RoBERTa model. It contains various parameters 
            for model initialization, such as num_labels, hidden_size, and more.

    Returns:
        None.

    Raises:
        TypeError: If the provided config is not of type XLMRobertaConfig.
        ValueError: If the number of labels in the config is not a positive integer.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.init_weights()

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForQuestionAnswering.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
start_positions

Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

end_positions

Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    start_positions: Optional[mindspore.Tensor] = None,
    end_positions: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], QuestionAnsweringModelOutput]:
    r"""
    Args:
        start_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.roberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, axis=-1)
    start_logits = start_logits.squeeze(-1)
    end_logits = end_logits.squeeze(-1)

    total_loss = None
    if start_positions is not None and end_positions is not None:
        # If we are on multi-GPU, split add a dimension
        if len(start_positions.shape) > 1:
            start_positions = start_positions.squeeze(-1)
        if len(end_positions.shape) > 1:
            end_positions = end_positions.squeeze(-1)
        # sometimes the start/end positions are outside our model inputs, we ignore these terms
        ignored_index = start_logits.shape[1]
        start_positions = start_positions.clamp(0, ignored_index)
        end_positions = end_positions.clamp(0, ignored_index)

        start_loss = ops.cross_entropy(start_logits, start_positions, ignore_index=ignored_index)
        end_loss = ops.cross_entropy(end_logits, end_positions, ignore_index=ignored_index)
        total_loss = (start_loss + end_loss) / 2

    if not return_dict:
        output = (start_logits, end_logits) + outputs[2:]
        return ((total_loss,) + output) if total_loss is not None else output

    return QuestionAnsweringModelOutput(
        loss=total_loss,
        start_logits=start_logits,
        end_logits=end_logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForSequenceClassification

Bases: XLMRobertaXLPreTrainedModel

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
class XLMRobertaXLForSequenceClassification(XLMRobertaXLPreTrainedModel):
    def __init__(self, config):
        """
        Args:
            self (object): The instance of the class.
            config (object):
                The configuration object containing the model hyperparameters and settings.

                - Type: XLMRobertaConfig
                - Purpose: Specifies the configuration for the XLM-Roberta model.
                - Restrictions: Must be a valid instance of XLMRobertaConfig.

        Returns:
            None.

        Raises:
            None.
        """
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
        self.classifier = XLMRobertaXLClassificationHead(config)

        # Initialize weights and apply final processing
        self.init_weights()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], SequenceClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
                Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
                config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
                `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
                else:
                    loss = ops.mse_loss(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = ops.binary_cross_entropy_with_logits(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForSequenceClassification.__init__(config)

PARAMETER DESCRIPTION
self

The instance of the class.

TYPE: object

config

The configuration object containing the model hyperparameters and settings.

  • Type: XLMRobertaConfig
  • Purpose: Specifies the configuration for the XLM-Roberta model.
  • Restrictions: Must be a valid instance of XLMRobertaConfig.

TYPE: object

RETURNS DESCRIPTION

None.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
def __init__(self, config):
    """
    Args:
        self (object): The instance of the class.
        config (object):
            The configuration object containing the model hyperparameters and settings.

            - Type: XLMRobertaConfig
            - Purpose: Specifies the configuration for the XLM-Roberta model.
            - Restrictions: Must be a valid instance of XLMRobertaConfig.

    Returns:
        None.

    Raises:
        None.
    """
    super().__init__(config)
    self.num_labels = config.num_labels
    self.config = config

    self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
    self.classifier = XLMRobertaXLClassificationHead(config)

    # Initialize weights and apply final processing
    self.init_weights()

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForSequenceClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

TYPE: `mindspore.Tensor` of shape `(batch_size,)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], SequenceClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.roberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = outputs[0]
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        # move labels to correct device to enable model parallelism
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and labels.dtype in (mindspore.int64, mindspore.int32):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            if self.num_labels == 1:
                loss = ops.mse_loss(logits.squeeze(), labels.squeeze())
            else:
                loss = ops.mse_loss(logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss = ops.binary_cross_entropy_with_logits(logits, labels)

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForTokenClassification

Bases: XLMRobertaXLPreTrainedModel

XLMRobertaForTokenClassification

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
class XLMRobertaXLForTokenClassification(XLMRobertaXLPreTrainedModel):
    """XLMRobertaForTokenClassification"""
    def __init__(self, config):
        """
        Initializes the XLMRobertaForTokenClassification model.

        Args:
            self: The instance of the XLMRobertaForTokenClassification class.
            config: An object containing configuration settings for the model.
                It must provide the following attributes:

                - num_labels (int): The number of labels for token classification.
                - classifier_dropout (float, optional): The dropout probability for the classifier layer.
                If not specified, it defaults to the hidden dropout probability specified in the configuration.
                - hidden_dropout_prob (float): The dropout probability for hidden layers.
                - hidden_size (int): The size of the hidden layers in the model.

        Returns:
            None.

        Raises:
            TypeError: If config is not provided or is not an instance of the expected configuration object.
            ValueError: If the required attributes (num_labels, hidden_dropout_prob, hidden_size) are missing from
                the config.
        """
        super().__init__(config)
        self.num_labels = config.num_labels

        self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(p=classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.init_weights()

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        labels: Optional[mindspore.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], TokenClassifierOutput]:
        r"""
        Args:
            labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)
                active_labels = ops.where(
                    active_loss, labels.view(-1), mindspore.Tensor(-100).to(dtype=labels.dtype)
                )
                loss = ops.cross_entropy(active_logits, active_labels)
            else:
                loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForTokenClassification.__init__(config)

Initializes the XLMRobertaForTokenClassification model.

PARAMETER DESCRIPTION
self

The instance of the XLMRobertaForTokenClassification class.

config

An object containing configuration settings for the model. It must provide the following attributes:

  • num_labels (int): The number of labels for token classification.
  • classifier_dropout (float, optional): The dropout probability for the classifier layer. If not specified, it defaults to the hidden dropout probability specified in the configuration.
  • hidden_dropout_prob (float): The dropout probability for hidden layers.
  • hidden_size (int): The size of the hidden layers in the model.

RETURNS DESCRIPTION

None.

RAISES DESCRIPTION
TypeError

If config is not provided or is not an instance of the expected configuration object.

ValueError

If the required attributes (num_labels, hidden_dropout_prob, hidden_size) are missing from the config.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
def __init__(self, config):
    """
    Initializes the XLMRobertaForTokenClassification model.

    Args:
        self: The instance of the XLMRobertaForTokenClassification class.
        config: An object containing configuration settings for the model.
            It must provide the following attributes:

            - num_labels (int): The number of labels for token classification.
            - classifier_dropout (float, optional): The dropout probability for the classifier layer.
            If not specified, it defaults to the hidden dropout probability specified in the configuration.
            - hidden_dropout_prob (float): The dropout probability for hidden layers.
            - hidden_size (int): The size of the hidden layers in the model.

    Returns:
        None.

    Raises:
        TypeError: If config is not provided or is not an instance of the expected configuration object.
        ValueError: If the required attributes (num_labels, hidden_dropout_prob, hidden_size) are missing from
            the config.
    """
    super().__init__(config)
    self.num_labels = config.num_labels

    self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
    classifier_dropout = (
        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
    )
    self.dropout = nn.Dropout(p=classifier_dropout)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    # Initialize weights and apply final processing
    self.init_weights()

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLForTokenClassification.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
labels

Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    labels: Optional[mindspore.Tensor] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], TokenClassifierOutput]:
    r"""
    Args:
        labels (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    outputs = self.roberta(
        input_ids,
        attention_mask=attention_mask,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        head_mask=head_mask,
        inputs_embeds=inputs_embeds,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    sequence_output = outputs[0]

    sequence_output = self.dropout(sequence_output)
    logits = self.classifier(sequence_output)

    loss = None
    if labels is not None:
        # Only keep active parts of the loss
        if attention_mask is not None:
            active_loss = attention_mask.view(-1) == 1
            active_logits = logits.view(-1, self.num_labels)
            active_labels = ops.where(
                active_loss, labels.view(-1), mindspore.Tensor(-100).to(dtype=labels.dtype)
            )
            loss = ops.cross_entropy(active_logits, active_labels)
        else:
            loss = ops.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))

    if not return_dict:
        output = (logits,) + outputs[2:]
        return ((loss,) + output) if loss is not None else output

    return TokenClassifierOutput(
        loss=loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLModel

Bases: XLMRobertaXLPreTrainedModel

The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set to True. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder argument and add_cross_attention set to True; an encoder_hidden_states is then expected as an input to the forward pass. .. _*Attention is all you need: https://arxiv.org/abs/1706.03762

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
class XLMRobertaXLModel(XLMRobertaXLPreTrainedModel):
    """
    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in *Attention is
    all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
    Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder`
    argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with
    both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as
    an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
    """

    # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->XLMRobertaXL
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = XLMRobertaXLEmbeddings(config)
        self.encoder = XLMRobertaXLEncoder(config)

        self.pooler = XLMRobertaXLPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        input_ids: Optional[mindspore.Tensor] = None,
        attention_mask: Optional[mindspore.Tensor] = None,
        token_type_ids: Optional[mindspore.Tensor] = None,
        position_ids: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        inputs_embeds: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        past_key_values: Optional[List[mindspore.Tensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[mindspore.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        r"""
        Args:
            encoder_hidden_states  (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
                the model is configured as a decoder.
            encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
                the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
            past_key_values (`tuple(tuple(mindspore.Tensor))` of length `config.n_layers` with each tuple having 4 tensors
                of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
                Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
                don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
                `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
                `past_key_values`).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if attention_mask is None:
            attention_mask = ops.ones(((batch_size, seq_length + past_key_values_length)))
        if token_type_ids is None:
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.broadcast_to((batch_size, seq_length))
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.shape
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = ops.ones(encoder_hidden_shape)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLModel.forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)

PARAMETER DESCRIPTION
encoder_hidden_states

Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

TYPE: (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional* DEFAULT: None

encoder_attention_mask

Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

TYPE: `mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional* DEFAULT: None

use_cache

If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

TYPE: `bool`, *optional* DEFAULT: None

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
def forward(
    self,
    input_ids: Optional[mindspore.Tensor] = None,
    attention_mask: Optional[mindspore.Tensor] = None,
    token_type_ids: Optional[mindspore.Tensor] = None,
    position_ids: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    inputs_embeds: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    past_key_values: Optional[List[mindspore.Tensor]] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple[mindspore.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
    r"""
    Args:
        encoder_hidden_states  (`mindspore.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`mindspore.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (`tuple(tuple(mindspore.Tensor))` of length `config.n_layers` with each tuple having 4 tensors
            of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if self.config.is_decoder:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
    else:
        use_cache = False

    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
    if input_ids is not None:
        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
        input_shape = input_ids.shape
    elif inputs_embeds is not None:
        input_shape = inputs_embeds.shape[:-1]
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    batch_size, seq_length = input_shape
    # past_key_values_length
    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

    if attention_mask is None:
        attention_mask = ops.ones(((batch_size, seq_length + past_key_values_length)))
    if token_type_ids is None:
        if hasattr(self.embeddings, "token_type_ids"):
            buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
            buffered_token_type_ids_expanded = buffered_token_type_ids.broadcast_to((batch_size, seq_length))
            token_type_ids = buffered_token_type_ids_expanded
        else:
            token_type_ids = ops.zeros(input_shape, dtype=mindspore.int64)

    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
    # ourselves in which case we just need to make it broadcastable to all heads.
    extended_attention_mask: mindspore.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

    # If a 2D or 3D attention mask is provided for the cross-attention
    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
    if self.config.is_decoder and encoder_hidden_states is not None:
        encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.shape
        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
        if encoder_attention_mask is None:
            encoder_attention_mask = ops.ones(encoder_hidden_shape)
        encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
    else:
        encoder_extended_attention_mask = None

    # Prepare head mask if needed
    # 1.0 in head_mask indicate we keep the head
    # attention_probs has shape bsz x n_heads x N x N
    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

    embedding_output = self.embeddings(
        input_ids=input_ids,
        position_ids=position_ids,
        token_type_ids=token_type_ids,
        inputs_embeds=inputs_embeds,
        past_key_values_length=past_key_values_length,
    )
    encoder_outputs = self.encoder(
        embedding_output,
        attention_mask=extended_attention_mask,
        head_mask=head_mask,
        encoder_hidden_states=encoder_hidden_states,
        encoder_attention_mask=encoder_extended_attention_mask,
        past_key_values=past_key_values,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    sequence_output = encoder_outputs[0]
    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

    if not return_dict:
        return (sequence_output, pooled_output) + encoder_outputs[1:]

    return BaseModelOutputWithPoolingAndCrossAttentions(
        last_hidden_state=sequence_output,
        pooler_output=pooled_output,
        past_key_values=encoder_outputs.past_key_values,
        hidden_states=encoder_outputs.hidden_states,
        attentions=encoder_outputs.attentions,
        cross_attentions=encoder_outputs.cross_attentions,
    )

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
class XLMRobertaXLPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """
    config_class = XLMRobertaXLConfig
    base_model_prefix = "roberta"

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.bias is not None:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            weight = np.random.normal(0.0, self.config.initializer_range, cell.weight.shape)
            if cell.padding_idx:
                weight[cell.padding_idx] = 0

            cell.weight.set_data(Tensor(weight, cell.weight.dtype))
        elif isinstance(cell, nn.LayerNorm):
            cell.weight.set_data(initializer('ones', cell.weight.shape, cell.weight.dtype))
            cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLSelfAttention

Bases: Module

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
class XLMRobertaXLSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(p=config.attention_probs_dropout_prob)
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        if self.position_embedding_type in ('relative_key', 'relative_key_query'):
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)

        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, x: mindspore.Tensor) -> mindspore.Tensor:
        """transpose_for_scores"""
        new_x_shape = x.shape[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states: mindspore.Tensor,
        attention_mask: Optional[mindspore.Tensor] = None,
        head_mask: Optional[mindspore.Tensor] = None,
        encoder_hidden_states: Optional[mindspore.Tensor] = None,
        encoder_attention_mask: Optional[mindspore.Tensor] = None,
        past_key_value: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[mindspore.Tensor]:
        """
        Constructs the self-attention mechanism for the XLMRoberta model.

        Args:
            self: An instance of the XLMRobertaSelfAttention class.
            hidden_states (mindspore.Tensor): The input hidden states. Shape (batch_size, seq_length, hidden_size).
            attention_mask (Optional[mindspore.Tensor]): The attention mask tensor.
                Shape (batch_size, seq_length, seq_length). Defaults to None.
            head_mask (Optional[mindspore.Tensor]): The head mask tensor.
                Shape (num_attention_heads, seq_length, seq_length). Defaults to None.
            encoder_hidden_states (Optional[mindspore.Tensor]): The hidden states from the encoder.
                Shape (batch_size, seq_length, hidden_size). Defaults to None.
            encoder_attention_mask (Optional[mindspore.Tensor]): The attention mask for the encoder hidden states.
                Shape (batch_size, seq_length, seq_length). Defaults to None.
            past_key_value (Optional[Tuple[Tuple[mindspore.Tensor]]]):
                The past key-value pairs for each layer in the encoder. Defaults to None.
            output_attentions (Optional[bool]): Whether to output attention probabilities. Defaults to False.

        Returns:
            Tuple[mindspore.Tensor]: A tuple containing the context layer tensor.
                Shape (batch_size, seq_length, hidden_size).

                - If output_attentions is True, the tuple also contains attention probabilities tensor.
                Shape (batch_size, num_attention_heads, seq_length, seq_length).
                - If the model is a decoder, the tuple also contains the past key-value pairs.

        Raises:
            None.
        """
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = ops.cat([past_key_value[0], key_layer], axis=2)
            value_layer = ops.cat([past_key_value[1], value_layer], axis=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        use_cache = past_key_value is not None
        if self.is_decoder:
            # if cross_attention save Tuple(mindspore.Tensor, mindspore.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(mindspore.Tensor, mindspore.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)
        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))
        if self.position_embedding_type in ('relative_key', 'relative_key_query'):
            query_length, key_length = query_layer.shape[2], key_layer.shape[2]
            if use_cache:
                position_ids_l = mindspore.Tensor(key_length - 1, dtype=mindspore.int64).view(-1, 1)
            else:
                position_ids_l = ops.arange(query_length, dtype=mindspore.int64).view(-1, 1)
            position_ids_r = ops.arange(key_length, dtype=mindspore.int64).view(1, -1)
            distance = position_ids_l - position_ids_r

            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = ops.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = ops.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = ops.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
            attention_scores = attention_scores + attention_mask
        # Normalize the attention scores to probabilities.
        attention_probs = ops.softmax(attention_scores, axis=-1)
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = ops.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3)
        new_context_layer_shape = context_layer.shape[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLSelfAttention.forward(hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False)

Constructs the self-attention mechanism for the XLMRoberta model.

PARAMETER DESCRIPTION
self

An instance of the XLMRobertaSelfAttention class.

hidden_states

The input hidden states. Shape (batch_size, seq_length, hidden_size).

TYPE: Tensor

attention_mask

The attention mask tensor. Shape (batch_size, seq_length, seq_length). Defaults to None.

TYPE: Optional[Tensor] DEFAULT: None

head_mask

The head mask tensor. Shape (num_attention_heads, seq_length, seq_length). Defaults to None.

TYPE: Optional[Tensor] DEFAULT: None

encoder_hidden_states

The hidden states from the encoder. Shape (batch_size, seq_length, hidden_size). Defaults to None.

TYPE: Optional[Tensor] DEFAULT: None

encoder_attention_mask

The attention mask for the encoder hidden states. Shape (batch_size, seq_length, seq_length). Defaults to None.

TYPE: Optional[Tensor] DEFAULT: None

past_key_value

The past key-value pairs for each layer in the encoder. Defaults to None.

TYPE: Optional[Tuple[Tuple[Tensor]]] DEFAULT: None

output_attentions

Whether to output attention probabilities. Defaults to False.

TYPE: Optional[bool] DEFAULT: False

RETURNS DESCRIPTION
Tuple[Tensor]

Tuple[mindspore.Tensor]: A tuple containing the context layer tensor. Shape (batch_size, seq_length, hidden_size).

  • If output_attentions is True, the tuple also contains attention probabilities tensor. Shape (batch_size, num_attention_heads, seq_length, seq_length).
  • If the model is a decoder, the tuple also contains the past key-value pairs.
Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def forward(
    self,
    hidden_states: mindspore.Tensor,
    attention_mask: Optional[mindspore.Tensor] = None,
    head_mask: Optional[mindspore.Tensor] = None,
    encoder_hidden_states: Optional[mindspore.Tensor] = None,
    encoder_attention_mask: Optional[mindspore.Tensor] = None,
    past_key_value: Optional[Tuple[Tuple[mindspore.Tensor]]] = None,
    output_attentions: Optional[bool] = False,
) -> Tuple[mindspore.Tensor]:
    """
    Constructs the self-attention mechanism for the XLMRoberta model.

    Args:
        self: An instance of the XLMRobertaSelfAttention class.
        hidden_states (mindspore.Tensor): The input hidden states. Shape (batch_size, seq_length, hidden_size).
        attention_mask (Optional[mindspore.Tensor]): The attention mask tensor.
            Shape (batch_size, seq_length, seq_length). Defaults to None.
        head_mask (Optional[mindspore.Tensor]): The head mask tensor.
            Shape (num_attention_heads, seq_length, seq_length). Defaults to None.
        encoder_hidden_states (Optional[mindspore.Tensor]): The hidden states from the encoder.
            Shape (batch_size, seq_length, hidden_size). Defaults to None.
        encoder_attention_mask (Optional[mindspore.Tensor]): The attention mask for the encoder hidden states.
            Shape (batch_size, seq_length, seq_length). Defaults to None.
        past_key_value (Optional[Tuple[Tuple[mindspore.Tensor]]]):
            The past key-value pairs for each layer in the encoder. Defaults to None.
        output_attentions (Optional[bool]): Whether to output attention probabilities. Defaults to False.

    Returns:
        Tuple[mindspore.Tensor]: A tuple containing the context layer tensor.
            Shape (batch_size, seq_length, hidden_size).

            - If output_attentions is True, the tuple also contains attention probabilities tensor.
            Shape (batch_size, num_attention_heads, seq_length, seq_length).
            - If the model is a decoder, the tuple also contains the past key-value pairs.

    Raises:
        None.
    """
    mixed_query_layer = self.query(hidden_states)

    # If this is instantiated as a cross-attention module, the keys
    # and values come from an encoder; the attention mask needs to be
    # such that the encoder's padding tokens are not attended to.
    is_cross_attention = encoder_hidden_states is not None

    if is_cross_attention and past_key_value is not None:
        # reuse k,v, cross_attentions
        key_layer = past_key_value[0]
        value_layer = past_key_value[1]
        attention_mask = encoder_attention_mask
    elif is_cross_attention:
        key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
        value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
        attention_mask = encoder_attention_mask
    elif past_key_value is not None:
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        key_layer = ops.cat([past_key_value[0], key_layer], axis=2)
        value_layer = ops.cat([past_key_value[1], value_layer], axis=2)
    else:
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))

    query_layer = self.transpose_for_scores(mixed_query_layer)

    use_cache = past_key_value is not None
    if self.is_decoder:
        # if cross_attention save Tuple(mindspore.Tensor, mindspore.Tensor) of all cross attention key/value_states.
        # Further calls to cross_attention layer can then reuse all cross-attention
        # key/value_states (first "if" case)
        # if uni-directional self-attention (decoder) save Tuple(mindspore.Tensor, mindspore.Tensor) of
        # all previous decoder key/value_states. Further calls to uni-directional self-attention
        # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
        # if encoder bi-directional self-attention `past_key_value` is always `None`
        past_key_value = (key_layer, value_layer)
    # Take the dot product between "query" and "key" to get the raw attention scores.
    attention_scores = ops.matmul(query_layer, key_layer.swapaxes(-1, -2))
    if self.position_embedding_type in ('relative_key', 'relative_key_query'):
        query_length, key_length = query_layer.shape[2], key_layer.shape[2]
        if use_cache:
            position_ids_l = mindspore.Tensor(key_length - 1, dtype=mindspore.int64).view(-1, 1)
        else:
            position_ids_l = ops.arange(query_length, dtype=mindspore.int64).view(-1, 1)
        position_ids_r = ops.arange(key_length, dtype=mindspore.int64).view(1, -1)
        distance = position_ids_l - position_ids_r

        positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
        positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

        if self.position_embedding_type == "relative_key":
            relative_position_scores = ops.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
            attention_scores = attention_scores + relative_position_scores
        elif self.position_embedding_type == "relative_key_query":
            relative_position_scores_query = ops.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
            relative_position_scores_key = ops.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
            attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
    if attention_mask is not None:
        # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
        attention_scores = attention_scores + attention_mask
    # Normalize the attention scores to probabilities.
    attention_probs = ops.softmax(attention_scores, axis=-1)
    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self.dropout(attention_probs)

    # Mask heads if we want to
    if head_mask is not None:
        attention_probs = attention_probs * head_mask

    context_layer = ops.matmul(attention_probs, value_layer)
    context_layer = context_layer.permute(0, 2, 1, 3)
    new_context_layer_shape = context_layer.shape[:-2] + (self.all_head_size,)
    context_layer = context_layer.view(new_context_layer_shape)

    outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

    if self.is_decoder:
        outputs = outputs + (past_key_value,)
    return outputs

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.XLMRobertaXLSelfAttention.transpose_for_scores(x)

transpose_for_scores

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
207
208
209
210
211
def transpose_for_scores(self, x: mindspore.Tensor) -> mindspore.Tensor:
    """transpose_for_scores"""
    new_x_shape = x.shape[:-1] + (self.num_attention_heads, self.attention_head_size)
    x = x.view(new_x_shape)
    return x.permute(0, 2, 1, 3)

mindnlp.transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl.create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0)

Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's utils.make_positions.

PARAMETER DESCRIPTION
x

mindspore.Tensor x:

RETURNS DESCRIPTION

mindspore.Tensor

Source code in mindnlp/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: mindspore.Tensor x:

    Returns:
        mindspore.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (ops.cumsum(mask, axis=1).astype(mask.dtype) + past_key_values_length) * mask
    return incremental_indices.long() + padding_idx