xlnet
mindnlp.transformers.models.xlnet.modeling_xlnet
¶
PyTorch XLNet model.
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetFeedForward
¶
Bases: Module
XLNetFeedForward is a class that represents a feed-forward neural network layer for the XLNet model. It inherits from nn.Module and contains methods for initializing and forwarding the feed-forward layer.
The init method initializes the XLNetFeedForward object with the given configuration. It sets up the layer normalization, dense layers, dropout, and activation function based on the configuration parameters.
The forward method takes an input tensor and passes it through the feed-forward layer. It applies the layer_1, activation function, dropout, layer_2, and layer normalization operations to the input tensor, and returns the output tensor after the feed-forward processing.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetFeedForward.__init__(config)
¶
Initializes an instance of the XLNetFeedForward class.
PARAMETER | DESCRIPTION |
---|---|
self |
The object instance.
|
config |
An instance of the configuration class containing model parameters.
|
RETURNS | DESCRIPTION |
---|---|
None |
Description
This method initializes the XLNetFeedForward object by setting the layer normalization, two dense layers, dropout rate, and activation function.
-
self.layer_norm: A LayerNorm module that normalizes the input to the dimensions of the model's hidden size. It takes the following parameters:
- config.d_model: An integer representing the size of the input and output layers.
- epsilon: A small value added to the variance to avoid division by zero. Default value is 'config.layer_norm_eps'.
-
self.layer_1: A Dense layer that maps the input to a hidden layer. It takes the following parameters:
- config.d_model: An integer representing the size of the input layer.
- config.d_inner: An integer representing the size of the hidden layer.
-
self.layer_2: A Dense layer that maps the hidden layer to the output layer. It takes the following parameters:
- config.d_inner: An integer representing the size of the hidden layer.
- config.d_model: An integer representing the size of the output layer.
-
self.dropout: A Dropout layer that randomly sets elements to zero during training to prevent overfitting. It takes the following parameter:
- p: The probability of an element to be zeroed. Default value is 'config.dropout'.
-
self.activation_function: The activation function used in the feed-forward layer. It can be either a string representing the name of the activation function or a custom activation function. If it is a string, it is looked up in the ACT2FN mapping, which maps activation function names to their corresponding functions. Otherwise, it is directly assigned to the provided activation function.
Note
- The 'config' parameter should be an instance of the configuration class, which contains necessary model parameters.
- The 'config.ff_activation' parameter can be either a string or a custom activation function.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetFeedForward.forward(inp)
¶
Constructs the XLNet feed-forward layer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetFeedForward class.
TYPE:
|
inp |
The input tensor to the feed-forward layer.
|
RETURNS | DESCRIPTION |
---|---|
None |
This method applies the XLNet feed-forward layer operations on the input tensor. It performs the following steps:
- Applies layer_1 on the input tensor.
- Applies the activation function on the output of layer_1.
- Applies dropout regularization on the output of the activation function.
- Applies layer_2 on the output of the dropout operation.
- Applies dropout regularization on the output of layer_2.
- Adds the input tensor to the output of layer_2 and applies layer normalization.
- Returns the final output tensor.
Note
The input tensor is expected to have the shape (batch_size, sequence_length, hidden_size).
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoice
¶
Bases: XLNetPreTrainedModel
This class represents an XLNet model for multiple choice tasks. It extends the XLNetPreTrainedModel class and provides functionality for forwarding the model and handling multiple choice classification tasks. The class includes methods for initializing the model with configuration, forwarding the model with input tensors, and computing the loss for multiple choice classification. It utilizes XLNetModel and SequenceSummary modules for processing input data and generating model outputs. The class also incorporates various input and output options to customize the model behavior during training and evaluation.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoice.__init__(config)
¶
Initialize the XLNetForMultipleChoice class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetForMultipleChoice class.
TYPE:
|
config |
The configuration object containing parameters for model initialization. This should be an instance of a configuration class compatible with XLNetModel.
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the provided config is not of the expected type. |
ValueError
|
If there are any issues during the initialization process. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoice.forward(input_ids=None, token_type_ids=None, input_mask=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, head_mask=None, inputs_embeds=None, labels=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetForMultipleChoice
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Classification loss.
TYPE:
|
logits |
num_choices is the second dimension of the input tensors. (see input_ids above). Classification scores (before SoftMax).
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnswering
¶
Bases: XLNetPreTrainedModel
The XLNetForQuestionAnswering class represents a XLNet model for question answering. It inherits from XLNetPreTrainedModel and provides methods for forwarding the model and processing input data for question answering tasks. The class includes methods for computing start and end positions of the labelled span, determining if a question has an answer or no answer, and computing the plausibility of the answer. Additionally, it provides functionality for handling optional masks of tokens that can't be in answers.
Example
>>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
>>> import torch
...
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
>>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")
...
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnswering.__init__(config)
¶
Initializes an instance of XLNetForQuestionAnswering.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetForQuestionAnswering class. |
config |
An object containing configuration settings for XLNetForQuestionAnswering.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnswering.forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, is_impossible=None, cls_index=None, p_mask=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
is_impossible |
Labels whether a question has an answer or no answer (SQuAD 2.0)
TYPE:
|
cls_index |
Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
TYPE:
|
p_mask |
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be masked. 0.0 mean token is not masked.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, XLNetForQuestionAnsweringOutput]
|
|
Example
>>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
>>> import torch
...
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
>>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")
...
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
...
>>> loss = outputs.loss
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetForQuestionAnswering
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimple
¶
Bases: XLNetPreTrainedModel
This class represents a simple implementation of the XLNet model for question answering tasks. It is designed specifically for question answering tasks where the start and end positions of the answer in the input sequence need to be predicted.
The XLNetForQuestionAnsweringSimple
class inherits from the XLNetPreTrainedModel
class, which provides the
basic infrastructure and functionality for XLNet models.
The class has a forwardor method __init__
that initializes the XLNetForQuestionAnsweringSimple instance with
the given configuration. The configuration includes the number of labels for the classification task and other
model-specific settings. It also initializes the XLNetModel transformer, which is responsible for the main
computations of the XLNet model, and the qa_outputs
module, which is a fully connected layer for predicting start
and end positions.
The forward
method is the main entry point for using the XLNetForQuestionAnsweringSimple model. It takes various
input tensors, such as input_ids
, attention_mask
, and token_type_ids
, which represent the input sequence and
its properties. It also takes optional tensors such as start_positions
and end_positions
, which are the labels
for the positions of the start and end of the answer span in the input sequence.
The method returns either a tuple or a XLNetForQuestionAnsweringSimpleOutput
object, depending on the return_dict
parameter. The output contains the predicted start and end logits, and optionally, the total loss, the transformer's
mems, hidden states, and attentions.
The forward
method also handles the computation of the loss if the start and end positions are provided.
It clamps the positions to the length of the sequence and applies the CrossEntropyLoss to calculate the start and
end losses. The total loss is the average of the start and end losses.
If the return_dict
parameter is False
, the method returns a tuple containing the total loss (if available),
the start logits, the end logits, and other optional outputs. If the total loss is not available, the tuple contains
only the logits and optional outputs.
If the return_dict
parameter is True
, the method returns a XLNetForQuestionAnsweringSimpleOutput
object that
encapsulates all the outputs.
Note
The class assumes the usage of the mindspore
library for tensor operations and loss computation.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimple.__init__(config)
¶
Initializes an instance of the 'XLNetForQuestionAnsweringSimple' class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
config |
The configuration object for the XLNet model. The 'config' object should contain the following attributes:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimple.forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
start_positions |
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
end_positions |
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimpleOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetForQuestionAnsweringSimple
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
TYPE:
|
start_logits |
Span-start scores (before SoftMax).
TYPE:
|
end_logits |
Span-end scores (before SoftMax).
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassification
¶
Bases: XLNetPreTrainedModel
The XLNetForSequenceClassification
class is a subclass of XLNetPreTrainedModel
that represents a model for
sequence classification tasks using XLNet.
XLNetForSequenceClassification utilizes the XLNet model architecture combined with a linear layer for classification. It can be used for both single-label and multi-label classification tasks.
To instantiate this class, you need to provide a config
object as an argument. The config
object contains various
configuration parameters for the XLNet model and the classification layer.
METHOD | DESCRIPTION |
---|---|
`forward` |
This method forwards the XLNetForSequenceClassification model by performing the necessary
computations. It takes several input tensors, such as |
ATTRIBUTE | DESCRIPTION |
---|---|
`num_labels` |
The number of labels in the classification task.
|
`config` |
The configuration object containing parameters for the XLNet model and the classification layer.
|
`transformer` |
The XLNetModel instance used for sequence representation.
|
`sequence_summary` |
The SequenceSummary instance used to summarize the sequence representation.
|
`logits_proj` |
The linear layer used to project the sequence summary to the number of labels.
|
Note
- The
forward
method automatically determines theproblem_type
based on theconfig
parameters and the providedlabels
. Theproblem_type
can be either 'regression', 'single_label_classification', or 'multi_label_classification'. - The loss function used for regression is Mean-Square Loss (MSELoss), while for classification, it is Cross-Entropy Loss (CrossEntropyLoss) for single-label classification and Binary Cross-Entropy Loss (BCEWithLogitsLoss) for multi-label classification.
- The
forward
method allows for various optional arguments, such asoutput_attentions
,output_hidden_states
, andreturn_dict
, which control the output format of the XLNet model. - The
forward
method returns either a tuple of outputs ifreturn_dict
is False, or an instance ofXLNetForSequenceClassificationOutput
ifreturn_dict
is True.
Example
>>> config = XLNetConfig(...)
>>> model = XLNetForSequenceClassification(config)
>>> inputs = {
... 'input_ids': input_ids,
... 'attention_mask': attention_mask,
... 'labels': labels,
... }
>>> outputs = model.forward(**inputs)
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassification.__init__(config)
¶
Initializes a new instance of the XLNetForSequenceClassification class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetForSequenceClassification class.
|
config |
An instance of the XLNetConfig class containing the configuration settings for the XLNet model.
|
RETURNS | DESCRIPTION |
---|---|
None |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassification.forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, labels=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the sequence classification/regression loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetForSequenceClassification
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Classification (or regression if config.num_labels==1) loss.
TYPE:
|
logits |
Classification (or regression if config.num_labels==1) scores (before SoftMax).
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForTokenClassification
¶
Bases: XLNetPreTrainedModel
XLNetForTokenClassification is a class that represents a XLNet model for token classification tasks, inheriting from XLNetPreTrainedModel. It includes methods for initializing the model with configuration parameters, forwarding the model with various input tensors and optional parameters, and computing the token classification loss.
ATTRIBUTE | DESCRIPTION |
---|---|
num_labels |
The number of labels for token classification.
TYPE:
|
transformer |
The XLNet model for processing input tensors.
TYPE:
|
classifier |
The classifier layer for token classification.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the XLNetForTokenClassification instance with the provided configuration. |
forward |
Constructs the XLNetForTokenClassification model using the input tensors and optional parameters, and computes the token classification loss. Parameters:
Returns:
Notes:
Example:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForTokenClassification.__init__(config)
¶
Initializes an instance of XLNetForTokenClassification.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetForTokenClassification class. |
config |
A configuration object containing parameters for the model.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForTokenClassification.forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, labels=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for computing the multiple choice classification loss. Indices should be in
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetForTokenClassificationOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetForTokenClassificationOutput
].
PARAMETER | DESCRIPTION |
---|---|
loss |
Classification loss.
TYPE:
|
logits |
Classification scores (before SoftMax).
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModel
¶
Bases: XLNetPreTrainedModel
A Python class representing the XLNetLMHeadModel, which inherits from XLNetPreTrainedModel.
XLNetLMHeadModel includes methods for initializing the model, preparing inputs for generation, and forwarding the model for language modeling tasks. It also provides a method for reordering the cache during beam search or beam sample generation.
The XLNetLMHeadModel class is designed to work with XLNetModel and nn.Linear to process input data, generate predictions, and calculate loss during training.
The class includes methods for preparing inputs for language generation tasks, such as masked language modeling, and for forwarding the model to perform auto-regressive language modeling.
The _reorder_cache method is used to re-order the mems cache during beam search or beam sample generation to match mems with the correct beam_idx at each generation step.
The class is designed to be used in conjunction with the XLNetModel and XLNetLMHeadModelOutput classes to facilitate language modeling tasks.
For usage examples and additional information, refer to the provided code documentation.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModel.__init__(config)
¶
Initializes an instance of the XLNetLMHeadModel class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetLMHeadModel class.
TYPE:
|
config |
The configuration object for the XLNet model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the configuration is invalid or missing required attributes. |
TypeError
|
If the provided config is not of type XLNetConfig. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModel.forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, labels=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
labels |
Labels for masked language modeling. The labels should correspond to the masked input words that should be predicted and depends on
Indices are selected in
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, XLNetLMHeadModelOutput]
|
|
Example
>>> from transformers import AutoTokenizer, XLNetLMHeadModel
>>> import torch
...
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
>>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")
...
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
...
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[
... 0
... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
...
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
... 0
... ) # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[
... :, :, -1
... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float
... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
... 0, 0, -1
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
...
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss
>>> next_token_logits = (
... outputs.logits
... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModel.get_output_embeddings()
¶
Returns the output embeddings of the XLNet language model head.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the XLNetLMHeadModel class.
|
RETURNS | DESCRIPTION |
---|---|
lm_loss
|
This method returns the output embeddings of the XLNet language model head. The output embeddings are used in various downstream tasks such as text classification and named entity recognition. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModel.prepare_inputs_for_generation(input_ids, past_key_values=None, use_mems=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetLMHeadModel class.
TYPE:
|
input_ids |
The input tensor containing tokenized input IDs.
TYPE:
|
past_key_values |
A tuple of past key values from previous generation steps. Defaults to None.
TYPE:
|
use_mems |
A boolean flag indicating whether to use memory. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return any value. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the input_ids tensor is not of the expected shape. |
ValueError
|
If past_key_values are provided but are not in the expected format. |
TypeError
|
If use_mems is not a boolean value. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModel.set_output_embeddings(new_embeddings)
¶
This method sets the output embeddings for the XLNetLMHeadModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetLMHeadModel class.
TYPE:
|
new_embeddings |
The new output embeddings to be set for the model. It should be a tensor of the appropriate shape and type.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the new_embeddings parameter is not of type tensor. |
ValueError
|
If the new_embeddings parameter does not meet the required shape or type constraints. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetLMHeadModel
].
PARAMETER | DESCRIPTION |
---|---|
logits |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLayer
¶
Bases: Module
Represents a layer of the XLNet model. This class includes methods for initializing the layer, forwarding the layer's output, and applying chunking to the forward pass.
This class inherits from the nn.Module class.
ATTRIBUTE | DESCRIPTION |
---|---|
rel_attn |
XLNetRelativeAttention The XLNetRelativeAttention instance for relative attention computation.
|
ff |
XLNetFeedForward The XLNetFeedForward instance for feed-forward computation.
|
dropout |
nn.Dropout The dropout instance for regularization.
|
chunk_size_feed_forward |
int The chunk size for feed-forward computation.
|
seq_len_dim |
int The sequence length dimension.
|
METHOD | DESCRIPTION |
---|---|
__init__ |
Initializes the XLNetLayer with the provided configuration. |
forward |
Constructs the output of the XLNetLayer based on the provided inputs and optional arguments. |
ff_chunk |
Applies chunking to the forward pass for the provided output_x. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLayer.__init__(config)
¶
Initializes an instance of the XLNetLayer class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetLayer class.
|
config |
A configuration object containing parameters for the XLNetLayer initialization.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLayer.ff_chunk(output_x)
¶
Performs a forward pass through the XLNetLayer for a given input chunk.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the XLNetLayer class.
TYPE:
|
output_x |
The input chunk to be processed. It should be a tensor.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetLayer.forward(output_h, output_g, attn_mask_h, attn_mask_g, r, seg_mat, mems=None, target_mapping=None, head_mask=None, output_attentions=False)
¶
This method forwards the XLNet layer.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetLayer class.
|
output_h |
The output tensor from the previous layer for the current head.
TYPE:
|
output_g |
The output tensor from the previous layer for the global context.
TYPE:
|
attn_mask_h |
The attention mask for the current head.
TYPE:
|
attn_mask_g |
The attention mask for the global context.
TYPE:
|
r |
The number of attention heads.
TYPE:
|
seg_mat |
The segment matrix specifying the segment for each token.
TYPE:
|
mems |
The memory tensor. Defaults to None.
TYPE:
|
target_mapping |
The target mapping tensor. Defaults to None.
TYPE:
|
head_mask |
The head mask tensor. Defaults to None.
TYPE:
|
output_attentions |
Controls whether to output attentions. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple
|
A tuple containing the output tensors for the current head and the global context, and any additional outputs. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the dimensions of input tensors are not compatible. |
RuntimeError
|
If there is a runtime issue during the execution of the method. |
TypeError
|
If the input types are not as expected. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel
¶
Bases: XLNetPreTrainedModel
The XLNetModel class represents a model for XLNet, which is a type of pre-trained model for natural language processing. It inherits from the XLNetPreTrainedModel class and provides methods for initializing the model, creating attention masks, caching memory, and forwarding the model for inference. The class also includes methods for managing input embeddings, positional embeddings, and relative positional encoding.
The class includes methods for creating attention masks, caching memory, and forwarding the model for inference. It also provides functionality for managing input embeddings, positional embeddings, and relative positional encoding. The class methods are designed to handle various input parameters and configurations for fine-tuning and using the XLNet model for specific NLP tasks. The class is designed to be flexible and efficient for handling different use cases and scenarios.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.__init__(config)
¶
This method initializes an instance of the XLNetModel class with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetModel class.
|
config |
A configuration object containing the following parameters:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the provided configuration is invalid or incomplete. |
TypeError
|
If the data types of the configuration parameters are not as expected. |
RuntimeError
|
If an error occurs during the initialization process. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.cache_mem(curr_out, prev_mem)
¶
Caches memory for the XLNetModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetModel class.
TYPE:
|
curr_out |
The current output tensor.
TYPE:
|
prev_mem |
The previous memory tensor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.create_mask(qlen, mlen)
¶
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
PARAMETER | DESCRIPTION |
---|---|
qlen |
Sequence length
|
mlen |
Mask length
|
::
same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen >
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, use_mems=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetModel class.
|
input_ids |
The input tensor containing the token IDs. Default is None.
TYPE:
|
attention_mask |
The attention mask tensor to avoid attending to padding tokens. Default is None.
TYPE:
|
mems |
The memory tensor for caching previous hidden states. Default is None.
TYPE:
|
perm_mask |
The permutation mask tensor for partial attention over sequence. Default is None.
TYPE:
|
target_mapping |
The target mapping tensor for masked language modeling. Default is None.
TYPE:
|
token_type_ids |
The tensor containing token type IDs for differentiating sequences. Default is None.
TYPE:
|
input_mask |
The input mask tensor indicating padding tokens. Default is None.
TYPE:
|
head_mask |
The mask tensor for controlling the attention heads. Default is None.
TYPE:
|
inputs_embeds |
The tensor containing precomputed embeddings. Default is None.
TYPE:
|
use_mems |
Flag indicating whether to use memory for caching. Default is None.
TYPE:
|
output_attentions |
Flag indicating whether to output attention weights. Default is None.
TYPE:
|
output_hidden_states |
Flag indicating whether to output hidden states of all layers. Default is None.
TYPE:
|
return_dict |
Flag indicating whether to return output as a dict. Default is None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[Tuple, XLNetModelOutput]
|
Union[Tuple, XLNetModelOutput]: The output of the XLNetModel forward method, which includes the last hidden state, memory tensors, hidden states of all layers, and attention weights. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
Raised if both input_ids and inputs_embeds are specified simultaneously, or if neither input_ids nor inputs_embeds are specified. |
FutureWarning
|
Raised when the 'use_cache' argument is deprecated. Use 'use_mems' instead. |
ValueError
|
Raised if an unsupported attention type is encountered. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.get_input_embeddings()
¶
This method retrieves the input embeddings from the XLNetModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetModel class. The self parameter is required to access the word_embedding attribute.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.positional_embedding(pos_seq, inv_freq, bsz=None)
staticmethod
¶
This method is a static method in the class 'XLNetModel' and is used to generate positional embeddings for input sequences.
PARAMETER | DESCRIPTION |
---|---|
pos_seq |
A tensor containing the positional sequence.
TYPE:
|
inv_freq |
A tensor containing the inverse frequency values.
TYPE:
|
bsz |
An optional parameter representing the batch size.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
torch.Tensor: A tensor containing the positional embeddings.
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.relative_positional_encoding(qlen, klen, bsz=None)
¶
Encodes relative positional information for the XLNetModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetModel class.
TYPE:
|
qlen |
The length of the query sequence.
TYPE:
|
klen |
The length of the key sequence.
TYPE:
|
bsz |
The batch size. Defaults to None.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModel.set_input_embeddings(new_embeddings)
¶
Method to set new input embeddings for the XLNetModel.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the XLNetModel class. This parameter is a reference to the current XLNetModel instance where the embeddings will be set.
TYPE:
|
new_embeddings |
The new input embeddings to be assigned to the XLNetModel. This parameter represents the new embeddings that will replace the existing word embeddings in the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetModelOutput
dataclass
¶
Bases: ModelOutput
Output type of [XLNetModel
].
PARAMETER | DESCRIPTION |
---|---|
last_hidden_state |
Sequence of hidden-states at the last layer of the model.
TYPE:
|
mems |
Contains pre-computed hidden-states. Can be used (see
TYPE:
|
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetPreTrainedModel
¶
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
|
mindnlp.transformers.models.xlnet.modeling_xlnet.XLNetRelativeAttention
¶
Bases: Module
This class represents the relative attention mechanism used in XLNet model for sequence processing tasks.
The XLNetRelativeAttention class implements the core operations for performing relative positional attention in the XLNet model. It includes methods for initializing the attention mechanism, pruning attention heads, shifting for relative attention score calculation, and processing post-attention outputs.
ATTRIBUTE | DESCRIPTION |
---|---|
n_head |
Number of attention heads.
TYPE:
|
d_head |
Dimensionality of each attention head.
TYPE:
|
d_model |
Dimensionality of the model.
TYPE:
|
scale |
Scaling factor for attention scores.
TYPE:
|
q |
Query matrix for attention computation.
TYPE:
|
k |
Key matrix for attention computation.
TYPE:
|
v |
Value matrix for attention computation.
TYPE:
|
o |
Output matrix for attention computation.
TYPE:
|
r |
Relative position matrix.
TYPE:
|
r_r_bias |
Relative position bias for rows.
TYPE:
|
r_s_bias |
Relative position bias for segments.
TYPE:
|
r_w_bias |
Relative position bias for columns.
TYPE:
|
seg_embed |
Segment embedding matrix.
TYPE:
|
layer_norm |
Layer normalization for model outputs.
TYPE:
|
dropout |
Dropout layer for regularization.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
prune_heads |
Method to prune specific attention heads (NotImplementedError). |
rel_shift |
Static method to perform relative shift for attention score calculation. |
rel_shift_bnij |
Static method to perform relative shift for attention score calculation with different axis. |
rel_attn_core |
Method for core relative positional attention operations. |
post_attention |
Method for post-attention processing. |
forward |
Method for forwarding the attention mechanism with optional outputs. |
Note
This class inherits from nn.Module, which is a base class for neural network cells in the MindSpore framework.
Source code in mindnlp/transformers/models/xlnet/modeling_xlnet.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
|