text2text_generation
mindnlp.transformers.pipelines.text2text_generation.Text2TextGenerationPipeline
¶
Bases: Pipeline
Pipeline for text to text generation using seq2seq models.
Example
>>> from mindnlp.transformers import pipeline
...
>>> generator = pipeline("text2text-generation", model="t5-base")
>>> generator(
... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google"
... )
[{'generated_text': 'question: Who created the RuPERTa-base?'}]
Learn more about the basics of using a pipeline in the pipeline tutorial. You can pass text generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about text generation parameters in Text generation strategies and Text generation.
This Text2TextGenerationPipeline pipeline can currently be loaded from [pipeline
] using the following task
identifier: "text2text-generation"
.
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on hf-mirror.com/models. For a list of available parameters, see the following documentation
Example
>>> text2text_generator = pipeline("text2text-generation")
>>> text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything")
Source code in mindnlp/transformers/pipelines/text2text_generation.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
mindnlp.transformers.pipelines.text2text_generation.Text2TextGenerationPipeline.__call__(*args, **kwargs)
¶
Generate the output text(s) using text(s) given as inputs.
PARAMETER | DESCRIPTION |
---|---|
args |
Input text for the encoder.
TYPE:
|
return_tensors |
Whether or not to include the tensors of predictions (as token indices) in the outputs.
TYPE:
|
return_text |
Whether or not to include the decoded texts in the outputs.
TYPE:
|
clean_up_tokenization_spaces |
Whether or not to clean up the potential extra spaces in the text output.
TYPE:
|
truncation |
The truncation strategy for the tokenization within the pipeline.
TYPE:
|
generate_kwargs |
Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework here).
|
RETURNS | DESCRIPTION |
---|---|
A list or a list of list of
|
Source code in mindnlp/transformers/pipelines/text2text_generation.py
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
mindnlp.transformers.pipelines.text2text_generation.Text2TextGenerationPipeline.__init__(*args, **kwargs)
¶
Initializes an instance of Text2TextGenerationPipeline.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the Text2TextGenerationPipeline class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/pipelines/text2text_generation.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
mindnlp.transformers.pipelines.text2text_generation.Text2TextGenerationPipeline.check_inputs(input_length, min_length, max_length)
¶
Checks whether there might be something wrong with given input with regard to the model.
Source code in mindnlp/transformers/pipelines/text2text_generation.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
mindnlp.transformers.pipelines.text2text_generation.Text2TextGenerationPipeline.postprocess(model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False)
¶
Postprocesses the model outputs to generate the final records based on the specified return type.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Text2TextGenerationPipeline class. |
model_outputs |
The model outputs containing the generated output_ids.
TYPE:
|
return_type |
The type of return value to be generated. Defaults to ReturnType.TEXT.
TYPE:
|
clean_up_tokenization_spaces |
Flag indicating whether to clean up tokenization spaces. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list
|
A list of records containing the processed model outputs based on the specified return type. |
Source code in mindnlp/transformers/pipelines/text2text_generation.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
mindnlp.transformers.pipelines.text2text_generation.Text2TextGenerationPipeline.preprocess(inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs)
¶
Preprocesses the input text for text-to-text generation.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the Text2TextGenerationPipeline class. |
inputs |
The input text or list of input texts to be preprocessed.
TYPE:
|
truncation |
The strategy to use for truncating the input text if it exceeds the maximum length. Defaults to TruncationStrategy.DO_NOT_TRUNCATE.
TYPE:
|
**kwargs |
Additional keyword arguments to be passed to the _parse_and_tokenize method.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the inputs parameter is not a string or a list of strings. |
ValueError
|
If the truncation parameter is not a valid TruncationStrategy. |
Exception
|
Any other exception that may occur during preprocessing. |
Source code in mindnlp/transformers/pipelines/text2text_generation.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|