text_classification
mindnlp.transformers.pipelines.text_classification.TextClassificationPipeline
¶
Bases: Pipeline
Text classification pipeline using any ModelForSequenceClassification
. See the sequence classification
examples for more information.
Example
>>> from transformers import pipeline
...
>>> classifier = pipeline(model="distilbert-base-uncased-finetuned-sst-2-english")
>>> classifier("This movie is disgustingly good !")
[{'label': 'POSITIVE', 'score': 1.0}]
...
>>> classifier("Director tried too much.")
[{'label': 'NEGATIVE', 'score': 0.996}]
Learn more about the basics of using a pipeline in the pipeline tutorial
This text classification pipeline can currently be loaded from [pipeline
] using the following task identifier:
"sentiment-analysis"
(for classifying sequences according to positive or negative sentiments).
If multiple classification labels are available (model.config.num_labels >= 2
), the pipeline will run a softmax
over the results. If there is a single label, the pipeline will run a sigmoid over the result.
The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on hf-mirror.com/models.
Source code in mindnlp/transformers/pipelines/text_classification.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
mindnlp.transformers.pipelines.text_classification.TextClassificationPipeline.__call__(*args, **kwargs)
¶
Classify the text(s) given as inputs.
PARAMETER | DESCRIPTION |
---|---|
args |
One or several texts to classify. In order to use text pairs for your classification, you can send a
dictionary containing
TYPE:
|
top_k |
How many results to return.
TYPE:
|
function_to_apply |
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: If this argument is not specified, then it will apply the following functions according to the number of labels:
Possible values are:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
A list or a list of list of
|
|
If |
Source code in mindnlp/transformers/pipelines/text_classification.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
mindnlp.transformers.pipelines.text_classification.TextClassificationPipeline.__init__(**kwargs)
¶
Initializes an instance of the TextClassificationPipeline class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the class.
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/pipelines/text_classification.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
mindnlp.transformers.pipelines.text_classification.TextClassificationPipeline.postprocess(model_outputs, function_to_apply=None, top_k=1, _legacy=True)
¶
Postprocess method in the TextClassificationPipeline class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the TextClassificationPipeline class.
TYPE:
|
model_outputs |
The dictionary containing model outputs with the following keys:
TYPE:
|
function_to_apply |
The function to apply to the model outputs. Can be one of the following:
TYPE:
|
top_k |
The number of top predictions to return. Default is 1.
TYPE:
|
_legacy |
A flag indicating whether to use legacy behavior. Default is True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict or None: If top_k is 1 and _legacy is True, returns a dictionary with keys:
If top_k is not 1 or _legacy is False, returns a list of dictionaries with keys:
The list is sorted by score in descending order and truncated to top_k if specified. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the function_to_apply argument is not recognized. |
Source code in mindnlp/transformers/pipelines/text_classification.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
mindnlp.transformers.pipelines.text_classification.TextClassificationPipeline.preprocess(inputs, **tokenizer_kwargs)
¶
Preprocesses the input data for text classification using a tokenizer.
PARAMETER | DESCRIPTION |
---|---|
self |
An instance of the TextClassificationPipeline class.
|
inputs |
The input data to be preprocessed. It can be one of the following:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, GenericTensor]
|
A dictionary containing preprocessed inputs in the form of {"input_ids": tensor, "attention_mask": tensor}. The tensors represent the encoded input sequences and attention masks, respectively. The keys in the dictionary are as follows:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the inputs are invalid and don't match any of the supported formats. |
Source code in mindnlp/transformers/pipelines/text_classification.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|