zero_shot_classification
mindnlp.transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline
¶
Bases: ChunkPipeline
NLI-based zero-shot classification pipeline using a ModelForSequenceClassification
trained on NLI (natural
language inference) tasks. Equivalent of text-classification
pipelines, but these models don't require a
hardcoded number of potential classes, they can be chosen at runtime. It usually means it's slower but it is
much more flexible.
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Then, the logit for entailment is taken as the logit for the candidate label being valid. Any NLI model can be used, but the id of the entailment label must be included in the model config's :attr:~transformers.PretrainedConfig.label2id.
Example
>>> from transformers import pipeline
...
>>> oracle = pipeline(model="facebook/bart-large-mnli")
>>> oracle(
... "I have a problem with my iphone that needs to be resolved asap!!",
... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
... )
{'sequence': 'I have a problem with my iphone that needs to be resolved asap!!',
'labels': ['urgent', 'phone', 'computer', 'not urgent', 'tablet'],
'scores': [0.504, 0.479, 0.013, 0.003, 0.002]}
...
>>> oracle(
... "I have a problem with my iphone that needs to be resolved asap!!",
... candidate_labels=["english", "german"],
... )
{'sequence': 'I have a problem with my iphone that needs to be resolved asap!!',
'labels': ['english', 'german'], 'scores': [0.814, 0.186]}
Learn more about the basics of using a pipeline in the pipeline tutorial
This NLI pipeline can currently be loaded from [pipeline
] using the following task identifier:
"zero-shot-classification"
.
The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list of available models on hf-mirror.com/models.
Source code in mindnlp/transformers/pipelines/zero_shot_classification.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
mindnlp.transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline.entailment_id
property
¶
Returns the index of the 'entailment' label in the label-to-identifier mapping of the ZeroShotClassificationPipeline's model configuration.
PARAMETER | DESCRIPTION |
---|---|
self |
The current instance of the ZeroShotClassificationPipeline class. |
RETURNS | DESCRIPTION |
---|---|
int
|
The index of the 'entailment' label in the label-to-identifier mapping. If the 'entailment' label is not found, -1 is returned. |
mindnlp.transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline.__call__(sequences, *args, **kwargs)
¶
Classify the sequence(s) given as inputs. See the [ZeroShotClassificationPipeline
] documentation
for more information.
PARAMETER | DESCRIPTION |
---|---|
sequences |
The sequence(s) to classify, will be truncated if the model input is too large.
TYPE:
|
candidate_labels |
The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels.
TYPE:
|
hypothesis_template |
The template used to turn each label into an NLI-style hypothesis.
This template must include a {} or similar syntax for the candidate
label to be inserted into the template. For example, the default
template is
TYPE:
|
multi_label |
Whether or not multiple candidate labels can be true. If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
A
|
Source code in mindnlp/transformers/pipelines/zero_shot_classification.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
mindnlp.transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline.__init__(*args, args_parser=ZeroShotClassificationArgumentHandler(), **kwargs)
¶
Initializes a new instance of the ZeroShotClassificationPipeline class.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ZeroShotClassificationPipeline class.
|
*args |
Variable length argument list.
DEFAULT:
|
args_parser |
An instance of the ZeroShotClassificationArgumentHandler class that handles the arguments for zero-shot classification. Defaults to ZeroShotClassificationArgumentHandler().
DEFAULT:
|
**kwargs |
Keyword arguments.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None. |
Source code in mindnlp/transformers/pipelines/zero_shot_classification.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
mindnlp.transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline.postprocess(model_outputs, multi_label=False)
¶
This method postprocesses the model outputs for a ZeroShotClassificationPipeline.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ZeroShotClassificationPipeline class.
TYPE:
|
model_outputs |
A list of dictionaries containing the model outputs. Each dictionary must have the keys 'candidate_label', 'sequence', and 'logits'. The 'candidate_label' key represents the candidate label, 'sequence' key represents the sequence, and 'logits' key holds the logits values.
TYPE:
|
multi_label |
A flag indicating whether the classification is multi-label or not. If set to True, the method processes the outputs accordingly.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
A dictionary containing the processed information of the model outputs. It includes the 'sequence' key with the sequence value, 'labels' key with the list of candidate labels in descending order of their scores, and 'scores' key with the corresponding scores of the candidate labels. |
RAISES | DESCRIPTION |
---|---|
IndexError
|
If the indices accessed during processing are out of bounds. |
ValueError
|
If there are issues with the input data or calculations within the method. |
Source code in mindnlp/transformers/pipelines/zero_shot_classification.py
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
mindnlp.transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline.preprocess(inputs, candidate_labels=None, hypothesis_template='This example is {}.')
¶
This method preprocesses inputs for zero-shot classification and generates model inputs for each candidate label.
PARAMETER | DESCRIPTION |
---|---|
self |
The instance of the ZeroShotClassificationPipeline class.
|
inputs |
The input sequences to be classified.
|
candidate_labels |
The list of candidate labels for classification. Defaults to None.
DEFAULT:
|
hypothesis_template |
The template string for the hypothesis. Defaults to 'This example is {}'.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
None
|
This method yields dictionaries with model inputs for each candidate label. |
Source code in mindnlp/transformers/pipelines/zero_shot_classification.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|